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Abstract

We derive a formula for Greenberg’s L-invariant of Tate twists of the symmetric sixth
power of an ordinary non-CM cuspidal newform of weight >4, under some technical
assumptions. This requires a ‘sufficiently rich’ Galois deformation of the symmetric
cube, which we obtain from the symmetric cube lift to GSp(4)/Q of Ramakrishnan–
Shahidi and the Hida theory of this group developed by Tilouine–Urban. The
L-invariant is expressed in terms of derivatives of Frobenius eigenvalues varying in
the Hida family. Our result suggests that one could compute Greenberg’s L-invariant
of all symmetric powers by using appropriate functorial transfers and Hida theory on
higher rank groups.

Introduction

The notion of an L-invariant was introduced by Mazur, Tate, and Teitelbaum in their
investigations of a p-adic analogue of the Birch and Swinnerton-Dyer conjecture in [MTT86].
When considering the p-adic L-function of an elliptic curve E over Q with split, multiplicative
reduction at p, they saw that its p-adic L-function vanishes even when its usual L-function does
not (an ‘exceptional zero’ or ‘trivial zero’). They introduced a p-adic invariant, the ‘(p-adic)
L-invariant’, of E as a fudge factor to recuperate the p-adic interpolation property of L(1, E, χ)
using the derivative of its p-adic L-function. Their conjecture appears in [MTT86, §§ 13–14]
and was proved by Greenberg and Stevens in [GS93]. The proof conceptually splits up into two
parts. One part relates the L-invariant of E to the derivative in the ‘weight direction’ of the
unit eigenvalue of Frobenius in the Hida family containing f (the modular form corresponding
to E). The other part uses the functional equation of the two-variable p-adic L-function to
relate the derivative in the weight direction to the derivative of interest, in the ‘cyclotomic
direction’. In this article, we provide an analogue of the first part of this proof replacing the
p-adic Galois representation ρf attached to f with Tate twists of Sym6 ρf . More specifically,
we obtain a formula for Greenberg’s L-invariant [Gre94] of Tate twists of Sym6 ρf in terms of
derivatives in weight directions of the unit eigenvalues of Frobenius varying in some ordinary
Galois deformation of Sym3 ρf .

Let us describe the previous work in this subject. In his original article, Greenberg [Gre94]
computed his L-invariant for all symmetric powers of ρf when f is associated to an elliptic
curve with split, multiplicative reduction at p. In this case, the computation is local, and quite
simple. In a series of articles, Hida has relaxed the assumption on f allowing higher weights
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and dealing with Hilbert modular forms (see [Hid07]), but still requiring, for the most part,
ρf to be (potentially) non-crystalline (though semistable) at p in order to obtain an explicit
formula for the L-invariant. A notable exception where a formula is known in the crystalline
case is the symmetric square, done by Hida in [Hid04] (see also Chapter 2 of the author’s PhD
thesis [Har09] for a slightly different approach). Another exception comes again from Greenberg’s
original article [Gre94], where he computed his L-invariant when E has good ordinary reduction
at p and has complex multiplication. In this case, the symmetric powers are reducible and the
value of the L-invariant comes down to the result of Ferrero–Greenberg [FG78]; see the author’s
article [Har11] for the details in the more general case of a CM modular form. The general
difficulty in the crystalline case is that Greenberg’s L-invariant is then a global invariant and its
computation requires the construction of a global Galois cohomology class.

In this article, we attack the crystalline case for the next symmetric power which has an
L-invariant, namely the sixth power (a symmetric power n has an L-invariant in the crystalline
case only when n≡ 2 (mod 4)). In general, one could expect to be able to compute Greenberg’s
L-invariant of Symnρf by looking at ordinary Galois deformations of Symn/2ρf (see § 1.3).
Unfortunately, when n > 2 in the crystalline case, Symn/2 of the Hida deformation of ρf is
insufficient. The new ingredient we bring to the table is the idea to use a functorial transfer of
Symn/2f to a higher rank group, use Hida theory there, and hope that the additional variables
in the Hida family provide non-trivial Galois cohomology classes. In Theorem A, we show that
this works for n= 6 using the symmetric cube lift of Ramakrishnan–Shahidi [RS07] (under
certain technical assumptions). This provides hope that such a strategy would yield formulas
for Greenberg’s L-invariant for all symmetric powers in the crystalline case. The author is
currently investigating if the combined use of the potential automorphy results of [BGHT11],
the functorial descent to a unitary group, and Hida theory on it [Hid02] will be of service in this
endeavour.

We also address whether the L-invariant of the symmetric sixth power equals that of the
symmetric square. There is a guess, due to Greenberg, that it does. We fall short of providing a
definitive answer, but obtain a relation between the two in Theorem B.

There are several facets of the symmetric sixth power L-invariant which we do not address.
We do not discuss the expected non-vanishing of the L-invariant nor its expected relation to the
size of a Selmer group. Furthermore, we make no attempt to show that Greenberg’s L-invariant
is the actual L-invariant appearing in an interpolation formula of L-values. Aside from the fact
that the p-adic L-function of the symmetric sixth power has not been constructed, a major
impediment to proving this identity is that the point at which the p-adic L-function has an
exceptional zero is no longer the centre of the functional equation, and a direct generalization
of the second part of the proof of Greenberg–Stevens is therefore not possible. Citro suggested
a way for dealing with this latter problem in the symmetric square case in [Cit08]. Finally, we
always restrict to the case where f is ordinary at p. Recently, in [Ben11], Benois has generalized
Greenberg’s definition of L-invariant to the non-ordinary case, and our results suggest that one
could hope to compute his L-invariant using the eigenvariety for GSp(4)/Q.

We remark that the results of this article were obtained in the author’s PhD thesis [Har09,
ch. 3]. There, we give a slightly different construction of the global Galois cohomology class,
still using the same deformation of the symmetric cube. In particular, we use Ribet’s method
of constructing a global extension of Galois representations by studying an irreducible, but
residually reducible, representation. We refer the reader to [Har09] for details.
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L-invariant of Sym6f

Notation and conventions
We fix throughout a prime p> 3 and an isomorphism ι∞ : Qp

∼= C. For a field F , GF denotes
the absolute Galois group of F . We fix embeddings ι` of Q into Q` for all primes `. These define
primes ` of Q over `, and we let G` denote the decomposition group of ` in GQ, which we may
thus identify with GQ`

. Let I` denote the inertia subgroup of G`. Let A denote the adeles of Q
and let Af be the finite adeles.

By a p-adic representation (over K) of a topological group G, we mean a continuous
representation ρ :G→AutK(V ), where K is a finite extension of Qp and V is a finite-dimensional
K-vector space equipped with its p-adic topology. Let χp denote the p-adic cyclotomic character
and let 〈χp〉 denote its composition with the projection Z×p → 1 + pZp. We denote the Tate dual
Hom(V, K(1)) of V by V ∗. Denote the Galois cohomology of the absolute Galois group of F with
coefficients in M by H i(F, M).

For compatibility with [Gre94], we take Frobp to be an arithmetic Frobenius element at p,
and we normalize the local reciprocity map rec : Q×p →Gab

Qp
so that Frobp corresponds to p. We

normalize the p-adic logarithm logp : Q×p −→Qp by logp(p) = 0.

1. Greenberg’s theory of trivial zeroes

In [Gre94], Greenberg introduced a theory describing the expected order of the trivial zero, as
well as a conjectural value for the L-invariant of a p-ordinary motive. In this section, we briefly
describe this theory, restricting ourselves to the case we will require in the following; specifically,
we will assume the ‘exceptional subquotient’ W is isomorphic to the trivial representation. We
end this section by explaining our basic method of computing L-invariants of symmetric powers
of cusp forms.

1.1 Ordinarity, exceptionality, and some Selmer groups
Let ρ :GQ→GL(V ) be a p-adic representation over a field K. Recall that V is called
ordinary if there is a descending filtration {F iV }i∈Z of Gp-stable K-subspaces of V such
that Ip acts on griV = F iV/F i+1V via multiplication by χi

p (and F iV = V (respectively
F iV = 0) for i sufficiently negative (respectively sufficiently positive)). Under this assumption,
Greenberg [Gre89] has defined what we call the ordinary Selmer group for V as

SelQ(V ) := ker
(
H1(Q, V )−→

∏
v

H1(Qv, V )/Lv(V )
)
,

where the product is over all places v of Q and the local conditions Lv(V ) are given by

Lv(V ) :=

{
H1

nr(Qv, V ) := ker(H1(Qv, V )→H1(Iv, V )), v 6= p,

H1
ord(Qp, V ) := ker(H1(Qp, V )→H1(Ip, V/F 1V )), v = p.

(1)

This Selmer group is conjecturally related to the p-adic L-function of V at s= 1.
To develop the theory of exceptional zeroes following Greenberg [Gre94], we introduce three

additional assumptions on V (which will be satisfied by the V in which we are interested).
Assume:

(C) V is critical in the sense that dimK V/F 1V = dimK V −, where V − is the (−1)-eigenspace
of complex conjugation;
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(U) V has no Gp subquotient isomorphic to a crystalline extension of K by K(1);
(S) Gp acts semisimply on griV for all i ∈ Z.

If V arises from a motive, condition (C) is equivalent to that motive being critical at s= 1 in
the sense of Deligne [Del79] (see [Gre89, § 6]). Condition (U) will come up when we want to
define the L-invariant. Assumption (S) allows us to refine the ordinary filtration and define a
Gp-subquotient of V that (conjecturally) regulates the behaviour of V with respect to exceptional
zeroes.

Definition 1.1. (a) Let F 00V be the maximal Gp-subspace of F 0V such that Gp acts trivially
on F 00V/F 1V .

(b) Let F 11V be the minimal Gp-subspace of F 1V such that Gp acts on F 1V/F 11V via
multiplication by χp.

(c) Define the exceptional subquotient W of V as

W := F 00V/F 11V.

(d) V is called exceptional if W 6= 0.

Note that W is ordinary with F 2W = 0, F 1W = F 1/F 11V , and F 0W =W . For ? = 00, 11, or
i ∈ Z, we denote

F ?H1(Qp, V ) := im(H1(Qp, F
?V )−→H1(Qp, V )).

For simplicity, we impose the following condition on V , which will be sufficient for our later
work:

(T′) W ∼=K, i.e. F 11V = F 1V and dimK F 00V/F 1V = 1.

We remark that this is a special case of condition (T) of [Gre94].
The ordinarity of V and assumptions (C), (U), (S), and (T′) allow us to introduce Greenberg’s

balanced Selmer group SelQ(V ) of V (terminology due to Hida) as follows. The local conditions
Lv(V ) at v 6= p are simply given by the unramified conditions Lv(V ) of (1). At p, Lp(V ) is
characterized by the following two properties:

(Bal1) F 11H1(Qp, V )⊆ Lp(V )⊆ F 00H1(Qp, V );
(Bal2) im(Lp(V )→H1(Qp, W )) =H1

nr(Qp, W ).

The balanced Selmer group of V is

SelQ(V ) := ker
(
H1(Q, V )−→

∏
v

H1(Qv, V )/Lv(V )
)
.

The rationale behind the name ‘balanced’ is provided by the following basic result of
Greenberg.

Proposition 1.2 [Gre94, Proposition 2]. The balanced Selmer groups of V and V ∗ have the
same dimension.

To make the reader feel more familiar with the balanced Selmer group, we offer the following
result on its value under our running assumptions.

Proposition 1.3. Let V be an ordinary p-adic representation of GQ. Under assumptions (C),
(U), (S), and especially (T′), we have the following equalities:

SelQ(V ) = SelQ(V ) =H1
g (Q, V ) =H1

f (Q, V ),

where H1
g (Q, V ) and H1

f (Q, V ) are the Bloch–Kato Selmer groups introduced in [BK90].
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Proof. The second equality is due to Flach [Fla90, Lemma 2] and the last equality follows
from [BK90, Corollary 3.8.4]. We proceed to prove the first equality. The local conditions at
v 6= p are the same for SelQ(V ) and SelQ(V ), so we are left to show that Lp(V ) = Lp(V ).

Let c ∈ Lp(V ). Condition (Bal1) implies that there is c′ ∈H1(Qp, F
00V ) mapping to c. By

(Bal2), the image of c′ under the map in the bottom row of the commutative diagram

H1(Qp, V ) // H1(Ip, V/F 1V )

H1(Qp, F
00V )

OO

// H1(Ip, W )

OO

is zero. Thus, c is in the kernel of the map in the top row, which is exactly Lp(V ).

For the reverse equality, let c ∈ Lp(V ) and consider the commutative diagram.

H1(Qp, V/F
00V )

f2 // H1(Ip, V/F 00V )

c ∈H1(Qp, V )
f1 //

f3

OO

H1(Ip, V/F 1V )

OO

H1(Qp, F
00V )

OO

// H1(Ip, W )

f4

OO

The local condition Lp(V ) satisfies (Bal1) if c ∈ ker f3. By definition, c ∈ ker f1, so we show that
ker f2 = 0. By inflation–restriction, ker f2 is equal to

im(H1(Gp/Ip, (V/F 00V )Ip)−→H1(Qp, V/F
00V )).

Note that (V/F 00V )Ip = F 0V/F 00V . The pro-cyclic group Gp/Ip has (topological) generator
Frobp, so

H1(Gp/Ip, F
0V/F 00V )∼= (F 0V/F 00V )/((Frobp −1)(F 0V/F 00V )) = 0,

where the last equality is because F 00V was defined to be exactly the part of F 0V on which
Frobp acts trivially (mod F 1V ). Thus, Lp(V ) satisfies (Bal1), so there is a c′ ∈H1(Qp, F

00V )
mapping to c. Its image in H1(Ip, V/F 1V ) is trivial, so it suffices to show that ker f4 = 0 to
conclude that Lp(V ) satisfies (Bal2). By the long exact sequence in cohomology, the exactness
(on the right) of

0−→W Ip −→ (V/F 1V )Ip −→ (V/F 00V )Ip −→ 0

shows that ker f4 = 0. 2

Remark 1.4. In fact, this result is still valid if (T′) is relaxed to simply F 11V = F 1V (see [Har09,
Lemma 1.3.4]).

1.2 Greenberg’s L-invariant

We now proceed to define Greenberg’s L-invariant. To do so, we impose one final condition on V ,
namely:

(Z) the balanced Selmer group of V is zero: SelQ(V ) = 0.
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This will allow us to define a one-dimensional global subspace Hexc
glob in a global Galois cohomology

group (via some local conditions) whose image in H1(Qp, W ) will be a line. The slope of this
line is the L-invariant of V .

Let Σ denote the set of primes of Q ramified for V , together with p and ∞, let QΣ denote
the maximal extension of Q unramified outside Σ, and let GΣ := Gal(QΣ/Q). By definition,
SelQ(V ) ⊆ H1(GΣ, V ). The Poitou–Tate exact sequence with local conditions Lv(V ) yields the
exact sequence

0−→ SelQ(V )−→H1(GΣ, V )−→
⊕
v∈Σ

H1(Qv, V )/Lv(V )−→ SelQ(V ∗).

Combining this with assumption (Z) and Proposition 1.2 gives an isomorphism

H1(GΣ, V )∼=
⊕
v∈Σ

H1(Qv, V )/Lv(V ). (2)

Definition 1.5. Let Hexc
glob be the one-dimensional subspace1 of H1(GΣ, V ) corresponding to

the subspace F 00H1(Qp, V )/Lp(V ) of
⊕

v∈Σ H
1(Qv, V )/Lv(V ) under the isomorphism in (2).

By definition of F 00V , we know that (V/F 00V )Gp = 0. Hence, we have injections

H1(Qp, F
00V ) ↪→H1(Qp, V )

and

H1(Qp, W ) ↪→H1(Qp, V/F
1V ).

Definition 1.6. Let Hexc
loc ⊆H1(Qp, W ) be the image of Hexc

glob in the bottom right cohomology
group in the commutative diagram.

H1(GΣ, V ) // H1(Qp, V ) // H1(Qp, V/F
1V )

Hexc
glob

//

⊆

F 00H1(Qp, V )

⊆

H1(Qp, F
00V ) //

∼ =

H1(Qp, W ).
?�

OO

Lemma 1.7. Under the running assumptions, we have:

(a) dimK Hexc
loc = 1;

(b) Hexc
loc ∩H1

nr(Qp, W ) = 0.

Proof. This follows immediately from the definitions of Hexc
glob and of Lp(V ), together with

assumption (U). 2

There are canonical coordinates on H1(Qp, W )∼= Hom(GQp , W ) given as follows. Every
homomorphism ϕ :GQp →W factors through the maximal pro-p quotient of Gab

Qp
, which

is Gal(F∞/Qp), where F∞ is the compositum of two Zp-extensions of Qp: the cyclotomic one,
Qp,∞, and the maximal unramified abelian extension Qnr

p . Let

Γ∞ := Gal(Qp,∞/Qp)∼= Gal(F∞/Qnr
p )

1 This is the subspace denoted T̃ in [Gre94]. Page 161 of loc. cit. shows that it is one dimensional.
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and

Γnr := Gal(Qnr
p /Qp)∼= Gal(F∞/Qp,∞);

then

Gal(F∞/Qp) = Γ∞ × Γnr.

Therefore, H1(Qp, W ) breaks up into Hom(Γ∞, W )×Hom(Γnr, W ). We have Hom(Γ∞, W ) =
Hom(Γ∞,Qp)⊗W and Hom(Γnr, W ) = Hom(Γnr,Qp)⊗W . Composing the p-adic logarithm
with the cyclotomic character provides a natural basis of Hom(Γ∞,Qp), and the function
ordp : Frobp 7→ 1 provides a natural basis of Hom(Γnr,Qp). Coordinates are then provided by
the isomorphisms

Hom(Γ∞, W ) → W
logp χp ⊗ w 7→ w

and
Hom(Γnr, W ) → W

ordp ⊗w 7→ w.

The L-invariant of V is the slope of Hexc
loc with respect to these coordinates.

Specifically, we will compute the L-invariant in § 3 by constructing a global class [c] ∈
H1(GΣ, V ) satisfying:

(CL1) [cv] ∈H1
nr(Qv, V ) for all v ∈ Σ\{p};

(CL2) [cp] ∈ F 00H1(Qp, V );

(CL3) [cp] 6∈ F 1H1(Qp, V ).

These conditions ensure that, under the isomorphism in (2), [c] maps to a non-zero element in
F 00H1(Qp, V )/Lp(V ). Indeed, (CL1) and (CL2) show that it lies in that subspace, while (CL3)
ensures that it is non-zero (since, by the proof of Proposition 1.3, Lp(V ) = F 1H1(Qp, V )). Thus,
[c] generates Hexc

glob and its image [cp] ∈H1(Qp, W ) generates Hexc
loc . Let u ∈ Z×p be any principal

unit, so that under our normalizations, χp(rec(u)) = u−1. Then the coordinates of [cp] are given by(
− 1

logp u
cp(rec(u)), cp(Frobp)

)
, (3)

where cp is a cocycle in [cp]. Note that these coordinates are independent of the choice of u. We
then have the following formula for the L-invariant of V :

L(V ) =
cp(Frobp)

−cp(rec(u))/logp u
. (4)

1.3 Symmetric power L-invariants of ordinary cusp forms

Let f be a p-ordinary,2 holomorphic, cuspidal, normalized newform of weight k > 2, level Γ1(N)
(prime to p), and trivial character. Let E = Q(f) be the field generated by the Fourier coefficients
of f . Let p0|p be the prime of E above p corresponding to the fixed embedding ιp, and let
ρf :GQ→GL(Vf ) be the contragredient of the p0-adic Galois representation (occurring in étale
cohomology) attached to f by Deligne [Del71] on the two-dimensional vector space Vf over
K := Ep0 . Let αp denote the root of x2 − apx+ pk−1 which is a p-adic unit. The p-ordinarity

2 More specifically, ι∞-ordinary, in the sense that ordp(ι−1
∞ (ap)) = 0, where ap is the pth Fourier coefficient of f .
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assumption implies that

ρf |Gp ∼
(
χk−1

p δ−1 ϕ

0 δ

)
,

where δ is the unramified character sending Frobp to αp [Wil88, Theorem 2.1.4]. Thus, ρf is
ordinary. Note that assumption (S) is automatically satisfied by all (Tate twists of) symmetric
powers of ρf since all graded pieces of the ordinary filtration are one dimensional. For
condition (U) to be violated, we have must have k = 2 and αp = 1, but the Hasse bound shows
that this is impossible.

Lemma 1.8. If (Symn ρf )(r) is an exceptional, critical Tate twist of ρf , then n≡ 2 (mod 4),
r = (n/2)(1− k) or (n/2)(1− k) + 1, and k is even. Furthermore, the exceptional subquotient is
isomorphic to K or K(1), respectively.

Proof. The critical Tate twists are listed in [RS08, Lemma 3.3]. Determining those that are
exceptional is a quick computation, noting that δ is non-trivial. 2

For the Tate twist by (n/2)(1− k) + 1, the exceptional subquotient is isomorphic to K(1), a
case we did not treat in the previous section. However, Greenberg defined the L-invariant of such
a representation in terms of the L-invariant of its Tate dual, whose exceptional subquotient is
isomorphic to the trivial representation. In fact, the Tate dual of the twist by (n/2)(1− k) + 1
is the twist by (n/2)(1− k) and the L-invariant of the twist by (n/2)(1− k) + 1 is the negative of
that by (n/2)(1− k) (see [Ben11, Proposition 2.2.7] for the relation between the L-invariants of
Tate duals). Accordingly, let m be a positive odd integer, n := 2m, ρn := (Symn ρf )(m(1− k)),
and assume k is even. We present a basic setup for computing Greenberg’s L-invariant L(ρn)
using a deformation of ρm := Symmρf . The main obstacle in carrying out this computation is
to find a ‘sufficiently rich’ deformation of ρm to obtain a non-trivial answer. We do so below in
the case n= 6 for non-CM f (of weight >4) by transferring ρ3 to GSp(4)/Q and using a Hida
deformation on this group. The case n= 2 has been dealt with by Hida in [Hid04] (see also
[Har09, ch. 2]).

We need a lemma from the finite-dimensional representation theory of GL(2), whose proof
we leave to the reader.

Lemma 1.9. Let Std denote the standard representation of GL(2). Then, for m an odd positive
integer, there is a decomposition

End(Symm Std)∼=
m⊕

i=0

(Sym2i Std)⊗ det−i.

Since detρf = χk−1
p , this lemma implies that ρn occurs as a (global) direct summand in

End ρm. A deformation of ρm provides a class in H1(Q, End ρm). If its projection to H1(Q, ρn)
is non-trivial (and satisfies conditions (CL1–3) of the previous section), then it generates Hexc

glob

and can be used to compute L(ρn).

An obvious choice of deformation of ρm is the symmetric mth power of the Hida deformation
of ρf . The cohomology class of this deformation has a non-trivial projection to H1(Q, ρn) only
when m= 1 (i.e. n= 2, the symmetric square). For larger m, a ‘richer’ deformation is required.
The aims of the remaining sections of this article are to obtain such a deformation in the
case m= 3 (n= 6) and to use it to find a formula for the L-invariant of ρ6 in terms of derivatives
of Frobenius eigenvalues varying in the deformation.
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2. Input from GSp(4)/Q

We use this section to set up our notation and conventions concerning the group GSp(4)/Q, its
automorphic representations, its Hida theory, and the Ramakrishnan–Shahidi symmetric cube lift
from GL(2)/Q to it. We only provide what is required for our calculation of the L-invariant of ρ6.

2.1 Notation and conventions

Let V be a four-dimensional vector space over Q with basis {e1, . . . , e4} equipped with the
symplectic form given by

J =


1

1
−1

−1

 .

Let GSp(4) be the group of symplectic similitudes of (V, J), i.e. g ∈GL(4) such that tgJg = ν(g)J
for some ν(g) ∈Gm. The stabilizer of the isotropic flag 0⊆ 〈e1〉 ⊆ 〈e1, e2〉 is the Borel subgroup
B of GSp(4) whose elements are of the form

a ∗ ∗ ∗
b ∗ ∗

c

b
∗
c

a

 .

Writing an element of the maximal torus T as

t=


t1

t2
ν(t)
t2

ν(t)
t1

 ,

we identify the character group X∗(T ) with triples (a, b, c) satisfying a+ b≡ c (mod 2) so that

t(a,b,c) = ta1t
b
2ν(t)(c−a−b)/2.

The dominant weights with respect to B are those with a> b> 0. If Π is an automorphic
representation of GSp(4,A) whose infinite component Π∞ is a holomorphic discrete series,
we will say Π has weight (a, b) if Π∞ has the same infinitesimal character as the algebraic
representation of GSp(4) whose highest weight is (a, b, c) (for some c). For example, a classical
Siegel modular form of (classical) weight (k1, k2) gives rise to an automorphic representation of
weight (k1 − 3, k2 − 3) under our normalizations.

2.2 The Ramakrishnan–Shahidi symmetric cube lift

We wish to move the symmetric cube of a cusp form f to a cuspidal automorphic representation
of GSp(4,A) in order to use the Hida theory on this group to obtain an interesting Galois
deformation of the symmetric cube of ρf . The following functorial transfer due to Ramakrishnan
and Shahidi [RS07, Theorem A′] allows us to do so in certain circumstances.
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Theorem 2.1 (Ramakrishnan–Shahidi [RS07]). Let π be the cuspidal automorphic represen-
tation of GL(2,A) defined by a holomorphic, non-CM newform f of even weight k > 2, level N ,
and trivial character. Then there is an irreducible cuspidal automorphic representation Π of
GSp(4,A) with the following properties:

(a) Π∞ is in the holomorphic discrete series with its L-parameter being the symmetric cube
of that of π;

(b) Π has weight (2(k − 2), k − 2), trivial central character, and is unramified outside of N ;

(c) ΠK 6= 0 for some compact open subgroup K of GSp(4,Af ) of level equal to the conductor
of Sym3ρf ;

(d) L(s,Π) = L(s, π, Sym3), where L(s,Π) is the degree-four spin L-function;

(e) Π is weakly equivalent3 to a globally generic cuspidal automorphic representation;

(f) Π is not CAP, nor endoscopic.4

We remark that the weight in part (b) can be read off from the L-parameter of Π∞ given
in [RS07, (1.7)]. As for part (e), note that the construction of Π begins by constructing a globally
generic representation on the bottom of p. 323 of [RS07], and ends by switching, in the middle
of p. 326, the infinite component from the generic discrete series element of the Archimedean
L-packet to the holomorphic one. Alternatively, in [Wei08], Weissauer has shown that any non-
CAP, non-endoscopic irreducible cuspidal automorphic representation of GSp(4,A) is weakly
equivalent to a globally generic cuspidal automorphic representation.

2.3 Hida deformation of ρ3 on GSp(4)/Q

Let f be a p-ordinary, holomorphic, non-CM, cuspidal, normalized newform of even weight k > 4,
level Γ1(N) (prime to p), and trivial character. We have added the non-CM hypothesis to be
able to use the Ramakrishnan–Shahidi lift.5 According to Lemma 1.8, we only need to consider
even weights. The restriction k 6= 2 is forced by problems with the Hida theory on GSp(4)/Q in
the weight (0, 0).

Tilouine and Urban [TU99, Urb01, Urb05], as well as Pilloni (see [Pil09], building on
Hida [Hid02]), have worked on developing Hida theory on GSp(4)/Q. In this section, we describe
the consequences their work has on the deformation theory of ρ3 = Sym3ρf (where ρf is as
described in § 1.3).

We begin by imposing two new assumptions:

(Ét) the universal ordinary p-adic Hecke algebra of GSp(4)/Q is étale over the Iwasawa algebra
at the height-one prime corresponding to Π;

(RAI) the representation ρ3 is residually absolutely irreducible.

Considering ρ3 as the p-adic Galois representation attached to the Ramakrishnan–Shahidi
lift Π of f , we obtain a ring A of p-adic analytic functions in two variables (s1, s2) on some
neighbourhood of the point (a, b) = (2(k − 2), k − 2) ∈ Z2

p, a free rank four module M over A,

3 Recall that ‘weakly equivalent’ means that the local components are isomorphic for almost all places.
4 Recall that an irreducible, cuspidal, automorphic representation of GSp(4,A) is ‘CAP’ if it is weakly equivalent
to the induction of an automorphic representation on a proper Levi subgroup, and it is ‘endoscopic’ if the local
L-factors of its spin L-function are equal, at almost all places, to the product of the local L-factors of two cuspidal
automorphic representations of GL(2,A) with equal central characters.
5 This is not really an issue as the CM case is much simpler and has been treated in [Har11].
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and a deformation ρ̃3 :GQ→AutA(M) of ρ3 such that ρ̃3(a, b) = ρ3 and

ρ̃3|Gp ∼


θ1θ2µ1 ξ12 ξ13 ξ14

θ2µ2 ξ23 ξ24

θ1µ
−1
2 ξ34

µ−1
1

 , (5)

where the µi are unramified, and

µ1(a, b) = δ−3, (6)
µ2(a, b) = δ−1, (7)

θ1(s1, s2) = χk−1
p 〈χp〉s2−(k−2), (8)

θ1(a, b) = χk−1
p , (9)

θ2(s1, s2) = χ2(k−1)
p 〈χp〉s1−2(k−2), (10)

θ2(a, b) = χ2(k−1)
p . (11)

Remark 2.2. Assumption (RAI) allows us to take the integral version of [TU99, Theorem 7.1]
(see the comment of loc. cit. at the end of § 7) and assumption (Ét) says that the coefficients
are p-adic analytic. The shape of ρ̃3|Gp can be seen as follows. That four distinct Hodge–Tate
weights show up can be seen by using [Urb01, Lemma 3.1] and the fact that both Π and the
representation obtained from Π by switching the infinite component are automorphic. Applying
Theorem 3.4 of loc. cit. gives part of the general form of ρ̃3|Gp (taking into account that we work
with the contragredient). The form the unramified characters on the diagonal take is due to ρ̃3|Gp

taking values in the Borel subgroup B (this follows from Corollary 3.2 and Proposition 3.4 of
loc. cit.). That the specializations of the µi and θi at (a, b) are what they are is simply because
ρ̃3 is a deformation of ρ3.

We may take advantage of assumption (Ét) to determine a bit more information about the
µi. Indeed, let ρ̃f denote the Hida deformation (on GL(2)/Q) of ρf , so that

ρ̃f |Gp ∼
(
θµ−1 ξ

0 µ

)
,

where θ, µ, and ξ are p-adic analytic functions on some neighbourhood of s= k, θ(s) =
χk−1

p 〈χp〉s−k, and µ(s) is the unramified character sending Frobp to αp(s) (where αp(s) is the
p-adic analytic function giving the pth Fourier coefficients in the Hida family of f) [Wil88,
Theorem 2.2.2]. By [GV04, Remark 9], we know that every arithmetic specialization of ρ̃f is
non-CM. We may thus apply the Ramakrishnan–Shahidi lift to the even weight specializations
and conclude that Sym3 ρ̃f is an ordinary modular deformation of ρ3. Assumption (Ét) then
implies that Sym3 ρ̃f is a specialization of ρ̃3. Since the weights of the symmetric cube lift of a
weight k′ cusp form are (2(k′ − 2), k′ − 2), we can conclude that Sym3 ρ̃f is the ‘subfamily’ of
ρ̃3 where s1 = 2s2. Thus,

µ1(2s, s) = µ−3(s+ 2),
µ2(2s, s) = µ−1(s+ 2).

Applying the chain rule yields

2∂1µ1(a, b) + ∂2µ1(a, b) =−3µ′(k)
δ4

, (12)

2∂1µ2(a, b) + ∂2µ2(a, b) =−µ
′(k)
δ2

. (13)
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3. Calculating the L-invariant

For the remainder of this article, let f be a p-ordinary, holomorphic, non-CM, cuspidal,
normalized newform of even weight k > 4, level Γ1(N) (prime to p), and trivial character. Let
ρf , ρ3, and ρ6 be as in § 1.3, and let W denote the exceptional subquotient of ρ6. Furthermore,
assume condition (Z) that SelQ(ρ6) = 0. We now put together the ingredients of the previous
sections to compute Greenberg’s L-invariant of ρ6.

3.1 Constructing the global Galois cohomology class
Recall that if ρ′3 is an infinitesimal deformation of ρ3 (over K[ε] :=K[x]/(x2)), a corresponding
cocycle c′3 :GQ→ End ρ3 is defined by the equation

ρ′3(g) = ρ3(g)(1 + εc′3(g)).

Let ρ̃3 be the deformation of ρ3 constructed in § 2.3. Taking a first-order expansion of the
entries of ρ̃3 around (a, b) = (2(k − 2), k − 2)) in any given direction yields an infinitesimal
deformation of ρ3. We parametrize these as follows. A p-adic analytic function F ∈ A has a
first-order expansion near (s1, s2) = (a, b) given by

F (a+ ε1, b+ ε2)≈ F (a, b) + ε1∂1F (a, b) + ε2∂2F (a, b),

where ε1 = s1 − a and ε2 = s2 − b. We introduce a parameter ∆ ∈K to indicate the direction in
the (s1, s2)-plane in which we are taking the infinitesimal deformation. This will correspond to
the direction where ∆(s1 − a) = (1−∆)(s2 − b). Let ρ̃3,∆ denote the infinitesimal deformation
of ρ3 obtained by first specializing ρ̃3 along the direction given by ∆ and then taking the quotient
by the ideal ((s1, s2)− (a, b))2. Concretely, we take each entry F (s1, s2) of ρ̃3 and replace it with
F (a, b) + (1−∆)ε∂1F (a, b) + ∆ε∂2F (a, b) ∈K[ε]. We take the cocycle corresponding to ρ̃3,∆,
project it to ρ6 (in the decomposition of Lemma 1.9), and denote the result by c6,∆.

3.2 Properties of the global Galois cohomology class
To use c6,∆ to compute the L-invariant of ρ6, we must show that it satisfies conditions (CL1–3)
of § 1.2. The proofs of [Hid07, Lemmas 1.2 and 1.3] apply to the cocycle c6,∆ to show that it
satisfies (CL1).6

To verify conditions (CL2) and (CL3) (and to compute the L-invariant of ρ6), we need to
find an explicit formula for part of c6,∆|Gp . We know that

ρf |Gp ∼
(
χk−1

p δ−1 ϕ

0 δ

)
.

Taking the symmetric cube (considered as a subspace of the third tensor power) yields

ρ3|Gp ∼


χ

3(k−1)
p δ−3 3χ2(k−1)

p ϕ

δ2

3χk−1
p ϕ2

δ
ϕ3

χ
2(k−1)
p δ−1 2χk−1

p ϕ δϕ2

χk−1
p δ δ2ϕ

δ3


.

6 The deformation ρ̃3 clearly satisfies conditions (K31–4) of [Hid07, § 0] and our c6,∆ is a special case of the cocycles
Hida defined in the proof of Lemma 1.2 of loc. cit.
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Taking first-order expansions of the entries of ρ̃3ρ
−1
3 − I4, specializing along the direction given

by ∆, and projecting yields c6,∆. However, since we are interested in an explicit formula for
c6,∆|Gp , we need to determine a basis that gives the decomposition of Lemma 1.9. This can be
done using the theory of raising and lowering operators. We obtain the following result.

Theorem 3.1. In such an aforementioned basis,

c6,∆|Gp ∼



∗

(1−∆)

(
∂1θ2

χ
2(k−1)
p

− 2∂1θ1

χk−1
p

− δ3∂1µ1 + 3δ∂1µ2

)

+ ∆

(
∂2θ2

χ
2(k−1)
p

− 2∂2θ1

χk−1
p

− δ3∂2µ1 + 3δ∂2µ2

)
0,


(14)

where ∗ and 0 are both 3× 1, and all derivatives are evaluated at (a, b).

Sketch of proof. We outline the method used to obtain an explicit decomposition as in
Lemma 1.9. Such decompositions can be computed by locating the highest weight vectors and
applying the lowering operator to them. To be more precise, recall that the elements

X =
(

0 1
0 0

)
, Y =

(
0 0
1 0

)
, and H = [X,Y] =

(
1 0
0 −1

)
of the Lie algebra of SL(2) act on any finite-dimensional representation of GL(2). The eigenvalues
of H that occur are called the weights of the representation and its eigenspaces consist of
the vectors of a fixed (well-defined) weight. The operator X (respectively Y) is the raising
(respectively lowering) operator which raises (respectively lowers) the weight of a vector by
2. One way to locate highest weight vectors is by diagonalizing H and determining the kernel
of X in each eigenspace. In our computations, we can, in fact, know a basis for the eigenspaces
without diagonalizing.

To progress from ρf to the projection onto ρ6, we keep track of triples (V, X, Y ), where V is
a representation of GL(2), thought of as a matrix in a fixed basis, and X and Y are the matrix
representations of X and Y, respectively, in this basis. The process we go through involves taking
subquotients, changing basis, and multilinear algebra operations, so we describe how these affect
such triples.

– Taking a subquotient simply involves extracting a block from each matrix.

– If U is a change of basis matrix, then U · (V, X, Y ) = (U−1V U, U−1XU, U−1Y U).

– If (Vi, Xi, Yi), for i= 1, 2, are two triples, the triple obtained by taking their tensor product
is (V ′, X ′, Y ′), where V ′ is the classical Kronecker product V1 ⊗ V2, X ′ =X1 ⊗ Id + Id⊗X2,
and Y ′ = Y1 ⊗ Id + Id⊗Y2.7 Note that if vi ∈ Vi has weight wi, then v1 ⊗ v2 has weight
w1 + w2.

– The dual of (V, X, Y ) is (V, X, Y )∨ = ((V −1)t,−Xt,−Y t) in the dual basis, where the
superscript t denotes the transpose. Note that if v ∈ V has weight w, its dual has weight −w.

7 The use of the Kronecker product implicitly contains the choice of a basis for the tensor product. If vi,1, . . . , vi,ni

is a basis of Vi, the corresponding basis for V1 ⊗ V2 is v1,1 ⊗ v2,1, v1,1 ⊗ v2,2, . . . , v1,2 ⊗ v2,1, v1,2 ⊗ v2,2, . . . , i.e. it
is the lexicographic ordering of the v1,j ⊗ v2,k.
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– We identify End(V, X, Y ) with (V, X, Y )⊗ (V, X, Y )∨. Explicitly, given T ∈ End(V ),
considered as a matrix with respect to the fixed basic of V , its coordinates in the tensor
product are obtained by simply concatenating its rows.

We begin with the standard representation Std of GL(2) in a basis v1, v2, where v1 is a highest
weight vector (of weight 1) and v2 = Yv1. Thus, the initial triple is (Std, X, Y ), where X and
Y are the matrices X and Y above. We then take the third tensor power, (Std, X, Y )⊗3, and
determine its subspace isomorphic to Sym3 Std. Specifically, v1 ⊗ v1 ⊗ v1 is the only vector of
weight 3 (up to scalar multiple) and thus it is the highest weight vector for Sym3 Std. The rest
of this subspace is determined by computing powers of Y acting on v1 ⊗ v1 ⊗ v1. Then, viewing
End(Sym3 Std) as (Sym3 Std)⊗ (Sym3 Std)∨ as above, we can identify bases of the eigenspaces
of H as explicit tensor products; for example, v⊗3

1 ⊗ (v∨2 )⊗3 is the only vector of weight 6 (up to
scalar multiple), and then compute the kernel of X on each of these eigenspaces to locate the
highest weight vectors. Applying Y to these provides the decomposition of End(Sym3 Std) given
in Lemma 1.9.

To carry out the computation at hand, we identify Std with the underlying representation
space of ρf ⊗K K[ε] in a basis in which ρf |Gp has the form(

χk−1
p δ−1 ϕ

0 δ

)
.

Then, for each g ∈GQ, the matrix

ρ̃3,∆(g)ρ−1
3 (g)− I4

can be viewed as an element of End(Sym3 Std). Identifying the latter with (Sym3 Std)⊗
(Sym3 Std)∨ and decomposing as explained above allows us to extract the projection onto
(Sym6 Std)⊗ det−3. This yields the formula stated for c6,∆ on Gp. 2

Since the bottom three coordinates in (14) are zero, the image of c6,∆|Gp lands in F 00ρ6, i.e.
c6,∆ satisfies (CL2). If we can show that the middle coordinate is non-zero, then c6,∆ satisfies
(CL3). In fact, we will show that c6,∆ satisfies (CL3) if, and only if, ∆ 6= 1/3 (in this latter case,
we will show that [c6,1/3] = 0).

Let c6,∆ denote the image of c6,∆ in H1(Qp, W ). Let

α(i,j)
p := ∂jµi(a, b)(Frobp).

Corollary 3.2. The coordinates of c6,∆, as in (3), are

(1− 3∆, (1−∆)(−α3
pα

(1,1)
p + 3αpα

(2,1)
p ) + ∆(−α3

pα
(1,2)
p + 3αpα

(2,2)
p )).

In particular, if ∆ 6= 1/3, then c6,∆ satisfies (CL3).

Before proving this, we state and prove a lemma.

Lemma 3.3. Recall that θ(s) = χk−1
p 〈χp〉s−k. For any integer s> 2, and any principal unit u:

(a) θ′(s)(Frobp) = 0;

(b)
θ′(s)(rec(u))
χs−1

p (rec(u))
=−logp u.

Proof. The first equality is simply because χp(Frobp) = 1. For the second, recall that χp(rec(u)) =
u−1, so θ(s)(rec(u)) = u1−s. Thus, the logarithmic derivative of θ(s)(rec(u)) is indeed −logp u. 2
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Proof of Corollary 3.2. The first coordinate is obtained by taking an arbitrary principal unit u,
evaluating c6,∆ and rec(u), and dividing by −logp u. By (8) and (10), ∂iθi = 0. Combining the
fact that the µi are unramified with part (b) of the above lemma yields

c6,∆(rec(u))
−logp u

=
(1−∆)(−logp u) + ∆(−2 logp u)

−logp u
= 1− 3∆.

If ∆ 6= 1/3, the first coordinate is non-zero, so c6,∆ itself is non-zero, so c6,∆ satisfies (CL3).

Combining part (a) of the above lemma with (6) and (7) yields the second coordinate (recall
that δ(Frobp) = αp). 2

Remark 3.4. If we take ∆ = 1/3, the first coordinate of c6,1/3 vanishes. Hence, c6,1/3 ∈
H1

nr(Qp, W ). Therefore, [c6,1/3] ∈ SelQ(V ) = 0 (by assumption (Z)). The direction ∆ = 1/3 is
the one for which ε1/ε2 = 2, i.e. the direction corresponding to the symmetric cube of the GL(2)
Hida deformation of ρf . This is an instance of the behaviour mentioned at the end of § 1.3.

3.3 Formula for the L-invariant

Tying all this together yields the main theorem of this article.

Theorem A. Let p> 3 be a prime. Let f a p-ordinary, holomorphic, non-CM, cuspidal,
normalized newform of even weight k > 4, level Γ1(N) (prime to p), and trivial character. Let
ρ be a critical, exceptional Tate twist of Sym6ρf ; then ρ= ρ6 = (Sym6ρf )(3(1− k)) or its Tate

dual. Assume conditions (Ét), (RAI), and (Z). Then

L(ρ6) =−α3
pα

(1,1)
p + 3αpα

(2,1)
p and L(ρ∗6) =−L(ρ6). (15)

Proof. Pick any ∆ 6= 1/3. We have shown that [c6,∆] satisfies (CL1–3) and hence generates Hexc
glob.

The coordinates of its image in H1(Qp, W ) were obtained in Corollary 3.2. Therefore, L(ρ6) can
be computed from (4). Specifically, the result is obtained by solving the system of linear equations
in L(ρ6) and the α(i,j)

p given by the coordinates of c6,∆ and (12) and (13). The L-invariant of ρ∗6
is the negative of that of ρ6 (see [Ben11, Proposition 2.2.7]). 2

Remark 3.5. (a) We could express this result in terms of other α(i,j)
p . For example, picking ∆ = 1

yields

L(ρ6) = 1
2α

3
pα

(1,2)
p − 3

2αpα
(2,2)
p .

(b) The L-invariants of all symmetric powers in the p-ordinary CM case have been treated
in [Har11].

3.4 Relation to Greenberg’s L-invariant of the symmetric square

We can carry out the above analysis for the projection to ρ2 := (Sym2ρf )(1− k) in Lemma 1.9
and compare the value of L(ρ2) obtained with the known value (see [Hid04, Theorem 1.1] and
[Har09, Theorem A])

L(ρ2) =−2
α′p
αp
,
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where α′p = µ′(k)(Frobp) = α′p(k), and one assumes that SelQ(ρ2) = 0.8 The restriction of the
cocycle c2,∆ (in an appropriate basis) is

c2,∆|Gp ∼



∗

(1−∆)
(
− 2∂1θ2

χ
2(k−1)
p

− ∂1θ1

χk−1
p

− 3δ3∂1µ1 − δ∂1µ2

)
+ ∆

(
− 2∂2θ2

χ
2(k−1)
p

− ∂2θ1

χk−1
p

− 3δ3∂2µ1 − δ∂2µ2

)
0


.

Accordingly, the coordinates of the class c2,∆ are

(∆− 2, (1−∆)(−3α3
pα

(1,1)
p − αpα

(2,1)
p ) + ∆(−3α3

pα
(1,2)
p − αpα

(2,2)
p )).

The cocycle c2,∆ can be used to compute L(ρ2) when ∆ 6= 2. When ∆ = 2, one has, as above,
[c2,∆] ∈ SelQ(ρ2). Taking ∆ = 0 yields

L(ρ2) = 3
2α

3
pα

(1,1)
p + 1

2αpα
(2,1)
p . (16)

Combining (15) and (16) yields the following relation between L-invariants.

Theorem B. Assuming (Ét), (RAI), (Z), and SelQ(ρ2) = 0, we have

L(ρ6) =−10α3
pα

(1,1)
p + 6L(ρ2).

Remark 3.6. There is a guess, suggested by Greenberg [Gre94, p. 170], that the L-invariants of
all symmetric powers of ρf should be equal. This is known in the cases where it is relatively
easy to compute the L-invariant, namely when f corresponds to an elliptic curve with split,
multiplicative reduction at p, or when f has CM. In the case at hand, we fall one relation short
of showing the equality of L(ρ6) and L(ρ2). Equality would occur if one knew the relation

α(1,1)
p

?=−
α′p
α4

p

.
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