Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-rbzxz Total loading time: 0.363 Render date: 2022-05-24T16:03:54.441Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

On Critical Level Sets of Some two Degrees of Freedom Integrable Hamiltonian Systems

Published online by Cambridge University Press:  20 November 2018

Christine Médan*
Affiliation:
Laboratoire de Mathématiques Émile Picard Université Paul Sabatier 118, route de Narbonne 31062 Toulouse France
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that all Liouville's tori generic bifurcations of a large class of two degrees of freedom integrable Hamiltonian systems (the so called Jacobi–Moser–Mumford systems) are nondegenerate in the sense of Bott. Thus, for such systems, Fomenko's theory [4] can be applied (we give the example of Gel'fand–Dikii's system). We also check the Bott property for two interesting systems: the Lagrange top and the geodesic flow on an ellipsoid.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1998

References

1. Audin, M., Courbes Algébriques et Systèmes Intégrables: Geodésiques des Quadriques. Expo. Math. 12 (1994), 193226.Google Scholar
2. Bott, R., Nondegenerate Critical Manifolds. Ann. of Math. (2) 60 (1954), 248261.Google Scholar
3. Donagi, R.,Dubrovin, B., Frankel, E. and Previato, E., Integrable systems and quantum groups.Montecatini Terme, 1993. Lecture Notes in Mathematics, 1620.Google Scholar
4. Fomenko, A.T., Integrability and Nonintegrability in Geometry and Mechanics.MIA, Kluwer Academic Publishers, 1988.CrossRefGoogle Scholar
5. Fomenko, A.T., Topological Classification of Integrable systems (Ed.: Fomenko, A.T.). Adv. Soviet Math. 6 , 1991.CrossRefGoogle Scholar
6. Gavrilor, L., Ouazzani, M., Cabox, R., Bifurcation Diagrams and Fomenko's Surgery on Liouville's Tori of the Kolossoff Potential U = ρ + 1/ρ – k cos ϕ. Ann. Sci. Ecole Norm. Sup 26 (1993), 545564.Google Scholar
7. Gavrilov, L. and Zhivkov, A., The Complex Geometry of Lagrange Top. Preprint 61 of Laboratoire de Mathématiques É. Picard, Université Paul Sabatier - Toulouse III.Google Scholar
8. Lagrange, J.L., Mécanique Analytique, 1788 In: OEuvres de Lagrange, tome XII, Gauthier-Villars, 1889.Google Scholar
9. Médan, C., The Bi-Hamiltonian Structure of the Lagrange Top. Phys. Lett. A 215 (1996), 176180.Google Scholar
10. Mumford, D., Tata Lectures on Theta II. Progr. Math. 43 , Birkhäuser, Boston, MA, 1984.Google Scholar
11. Zung, Nguyen Tien, Singularities of Integrable Geodesic Flows on Multidimentional Torus and Sphere. J. Geom. Phys. 18 (1996), 147162.Google Scholar
12. Plakoo, J., Gel’fand-Dikii's System Revisited. J. Geom. Phys. 21 (1996), 4354.Google Scholar
13. Vanhaecke, P., Integrable Systems and Symetric Products of Curves. Preprint.Google Scholar
You have Access

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

On Critical Level Sets of Some two Degrees of Freedom Integrable Hamiltonian Systems
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

On Critical Level Sets of Some two Degrees of Freedom Integrable Hamiltonian Systems
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

On Critical Level Sets of Some two Degrees of Freedom Integrable Hamiltonian Systems
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *