Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-12T10:25:28.586Z Has data issue: false hasContentIssue false

A Classification of Semi-Translation Planes

Published online by Cambridge University Press:  20 November 2018

Norman Lloyd Johnson*
Affiliation:
University of Iowa, Iowa City, Iowa
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The classification of certain types of projective planes has recently been of considerable interest to both geometers and group theorists. Due in part to the current general interest in finite mathematics and the developments connecting group theory and finite geometry, the Lenz-Barlotti classification of finite projective planes (2; 10), in particular, has generated a tremendous amount of research. A great deal of this research has been related to the construction of non-Desarguesian planes.

Fryxell (6), Hughes (7), Luneburg (11), and Ostrom (13; 15; 18) have found examples of projective planes, all of which are of a general type that we call semi-translation planes. Many of these planes are of the same Lenz-Barlotti class I-1. (The Lùneburg planes are translation planes. However, the planes dual to the Luneburg planes are semi-translation planes as well as dual translation planes.)

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1969

References

1. André, J., Über Perspektivitàten in endliche projektiven Ebenen, Arch. Math. 6 (1954), 2432.Google Scholar
2. Barlotti, A., Le possibili configurazioni del sistemi delle coppie puntoretta ﹛A, a) per cui un piano grafico risulta (A, a)-transitivo, Boll. Un. Mat. Ital. (3) 12 (1957), 212226.Google Scholar
3. Dickson, L. E., Linear groups (Dover, New York, 1958).Google Scholar
4. Foulser, D. A., Collineation groups of generalized André systems (to appear).Google Scholar
5. Foulser, D. A., The flag-transitive collineation groups of the finite Desarguesian affine planes, Can. J. Math. 16 (1964), 443472.Google Scholar
6. Fryxell, R., Sequences of planes constructed from nearfield planes of square order, Ph.D. dissertation, Washington State University, Pullman, Washington, 1964.Google Scholar
7. Hughes, D. R., A class of non-Desarguesian projective planes, Can. J. Math. 9 (1957), 378388.Google Scholar
8. Johnson, N. L., A classification of semi-translation planes, Ph.D. dissertation, Washington State University, Pullman, Washington, 1968.Google Scholar
9. Johnson, N. L., Nonstrict semi-translation planes, Arch. Math, (to appear).Google Scholar
10. Lenz, H., Kleiner Desarguess cher Satz und Dualitat in projektiven Ebenen, Jber. Deutsch. Math.-Verein. 57 (1954), 2031.Google Scholar
11. Liineburg, H., Uber projektive Ebenen, indenen jede Fahne von einer nichttrivialen Elation invariant gelassen wird, Abh. Math. Sem. Univ. Hamburg 29 (1965), 2776.Google Scholar
12. Ostrom, T. G., A characterization of the Hughes planes, Can. J. Math. 17 (1965), 916922.Google Scholar
13. Ostrom, T. G., Collineation groups of semi-translation planes, Pacific J. Math. 15 (1965), 273279.Google Scholar
14. Ostrom, T. G., Derivable nets, Can. Math. Bull. 8 (1965), 601613.Google Scholar
15. Ostrom, T. G., The dual Luneburg planes, Math. Z. 92 (1966), 201209.Google Scholar
16. Ostrom, T. G., Lecture notes, Proceedings of the Projective Geometry Conference, pp. 100120 (University of Illinois, Chicago, Illinois, 1967).Google Scholar
17. Ostrom, T. G., Replaceable nets, net collineations, and net extensions, Can. J. Math. 18 (1966), 666672.Google Scholar
18. Ostrom, T. G., Semi-translation planes, Trans. Amer. Math. Soc. III (1964), 118.Google Scholar
19. Ostrom, T. G., Correction to “Transitivities in projective planes”,Can. J. Math. 10 (1958), 507512.Google Scholar
20. Ostrom, T. G., Vector spaces and construction of finite projective planes, Arch. Math. 19 (1968), 125.Google Scholar
21. Pedoe, D., An introduction to projective geometry (Pergamon, Oxford, 1963).Google Scholar
22. Pickert, G., Projektive Ebenen (Springer-Verlag, Berlin, 1955).Google Scholar