Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-xdj6x Total loading time: 0.175 Render date: 2021-09-26T01:57:44.384Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Bioavailability of calcium of fresh cheeses, enteral food and mineral water. A study with stable calcium isotopes in young adult women

Published online by Cambridge University Press:  09 March 2007

W. Van Dokkum
Affiliation:
Tno Nutrition and Food Research Institute, PO Box 360, 3700 AJ Zeist, The Netherlands
V. De La Guéronnière
Affiliation:
Danone, 7 rue de Téhéran, 75381 Paris Cedex 08, France
G. Schaafsma
Affiliation:
Tno Nutrition and Food Research Institute, PO Box 360, 3700 AJ Zeist, The Netherlands
C. Bouley
Affiliation:
Danone, 7 rue de Téhéran, 75381 Paris Cedex 08, France
J. Luten
Affiliation:
Tno Nutrition and Food Research Institute, PO Box 360, 3700 AJ Zeist, The Netherlands
C. Latgé
Affiliation:
Danone, 7 rue de Téhéran, 75381 Paris Cedex 08, France
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

True fractional Ca absorption from six foods was measured in twelve normal healthy women, aged 20–29 years. The tested foods were commercially available fresh cheese, fresh cheese prepared by new technology and rich in Ca, similar cheese with added Fe, enteral food, mineral water alone and combined with a spaghetti meal. The aim of the study was to investigate: (1) Ca absorption from a new Ca-rich fresh cheese and to compare it with that from the traditional commercial type of fresh cheese; (2) the effect of Fe enrichment of the new cheese on Ca absorption; (3) Ca absorption from the mineral water and the enteral product and to compare it with that from the dairy products; (4) the effect of a meal combined with the mineral water on Ca absorption. All test foods were consumed by all subjects according to a design with two Latin squares. Each treatment of 2 d was followed by a wash-out period of 2 weeks. Ca absorption was measured using a double stable-isotope (44Ca and 48Ca) extrinsic labelling technique. Mean fractional Ca absorption from the new fresh cheese was not significantly different from that from the traditional type (37·7 (SD 10·2)% v. 42·2 (SD 11·6)%). The addition of Fe to the new cheese did not significantly influence Ca absorption. Ca-absorption values from the mineral water (37·0 (SD 98) %) and from the enterd product (42·6 (SD 11·4)%) were not significantly different from those from the dairy products (37·7–42·2%, SD 10·2–11·6%). The co-ingestion of a spaghetti meal with the mineral water significantly enhanced Ca absorption from 37 (SD 9·8)% to 46·1 (SD 11·7)%. It is concluded that a new process leading to a fresh cheese with a higher Ca concentration does not alter Ca bioavailability compared with the standard technology and for a constant Ca supply. Thus this new fresh cheese would probably provide more Ca than the standard one. The fractional Ca-absorption values for mineral water and the enteral product indicate that these products can make an interesting contribution to Ca supply for populations with a low Ca intake and patients with specilic diseases respectively.

Type
Bioavailability of calcium from various sources
Copyright
Copyright © The Nutrition Society 1996

References

Anonymous (1988). War eet Nederland, Resultaten van de voedselconsumptiepeiling 1987–1988. Rijswijk: Ministerie van WVC.Google Scholar
Chapuy, M. C., Arlot, M. E., Duboeuf, F., Brun, J., Crouzet, B., Arnaud, S., Delmas, P. D. & Meunier, P. J. (1992). Vitamin D3 and calcium to prevent hip fractures in elderly women. New England Journal of Medicine 327, 16371642.CrossRefGoogle ScholarPubMed
Cochran, W. G. & Cox, G. M. (1957). Experimental Designs, 2nd ed. New York: John Wiley & Sons.Google Scholar
Cook, J. D., Dassenko, S. A. & Whittaker, P. (1991). Calcium supplementation: effect on iron absorption. American Journal of Clinical Nutrition 53, 106111.CrossRefGoogle ScholarPubMed
Cumming, R. G. (1990). Calcium intake and bone mass: a quantitative review of the evidence. Calcified Tissue International 47, 194201.CrossRefGoogle Scholar
Cummings, S. R., Black, D. M., Nevitt, M. C., Browner, W., Cauley, J. C., Ensrud, K., Genant, H. K., Palermo, L., Scott, J. & Vogt, T. M. (1993). Bone density at various sites for prediction of hip fractures. Lancet 341, 7275.CrossRefGoogle ScholarPubMed
Dawson-Hughes, B., Dallal, G. E., Krall, E. A., Sadowski, L., Sahyoun, N. & Tannenbaum, S. (1990). A controlled trial of the effect of calcium supplementation on bone density in postmenopausal women. New England Journal of Medicine 323, 878883.CrossRefGoogle Scholar
De Bièvre, P. (1984). Isotopic abundances and atomic weights of the elements. Journal ofPhysica1 Chemistry 13, 809891.Google Scholar
Delmas, P. D. (1992). Bases physiopathologiques des ostéoporoses. (Physiopathological basis of osteoporosis). In Ostéroporose. Pour une Prévention Nutrionelle du Risque? Colloque International, Paris, UNESCO, 21 Mai 1992, pp. 512. Paris: CERIN.Google Scholar
Eastell, R., Vièira, N. E., Yergey, A. L. & Riggs, B. L. (1989). One-day test using stable isotopes to measure true fractional calcium absorption. Journal of Bone and Mineral Research 4, 463468.CrossRefGoogle ScholarPubMed
Erp-Baart, A. M. J. van (editor) (1994). NEVO-tabel. Naderlands Voedingsstoffenbestand 1993–1994. Den Haag: Voorlichtingsbureau voor de Voeding.Google Scholar
Fairweather-Tait, S. J., Johnson, A., Eagles, J., Ganatra, S., Kennedy, H. & Gurr, M. I. (1989). Studies on calcium absorption from milk using a double-label stable isotope technique. British Journal of Nutrition 62, 379388.CrossRefGoogle ScholarPubMed
Hallberg, L., Brune, M., Erlandsson, M., Sandberg, A. S. & Rossander-Hultén, L. (1991). Calcium: effect of different amounts on nonheme and heme iron absorption in humans. American Journal of Clinical Nutrition 53, 112119.CrossRefGoogle ScholarPubMed
Hallberg, L., Rossander-Hulthén, L., Brune, M. & Gleerup, A. (1992). Inhibition of haem-iron absorption in man by calcium. British Journal of Nutrition 69, 533540.CrossRefGoogle Scholar
Halpern, G. M., van de Water, J., Delabroise, A.-M., Keen, C. L. & Gershwin, M. E. (1991). Comparative uptake of calcium from milk and calcium-rich mineral water in lactose intolerant adults: implications for treatment of osteoporosis. American Journal of Preventive Medicine 7, 379383.CrossRefGoogle ScholarPubMed
Harvey, J. A., Zobitz, M. M. & Pak, C. Y. C. (1988). Dose dependency of calcium absorption: a comparison of calcium carbonate and calcium citrate. Journal of Bone and Mineral Research 3, 253258.CrossRefGoogle ScholarPubMed
Heaney, R. P., Gallagher, J. C., Johnston, C. C., Neer, R., Parfitt, A. M., Chir, B. & Donald Whedon, G. (1982). Calcium nutrition and bone health in the elderly. American Journal of Clinical Nutrition 36, 9861013.CrossRefGoogle ScholarPubMed
Heaney, R. P., Recker, R. R. & Saville, P. D. (1978). Menopausal changes in calcium balance performance. Journal of Laboratory and Clinical Medicine 92, 953963.Google ScholarPubMed
Heaney, R. P., Smith, K. T., Recker, R. R. & Hinders, S. M. (1989). Meal effects on calcium absorption. American Journal of Clinical Nutrition 49, 312376.CrossRefGoogle ScholarPubMed
Heaney, R. P. & Weaver, C. M. (1990). Calcium absorption from kale. American Journal of Clinical Nutrition 51, 656657.CrossRefGoogle ScholarPubMed
Heaney, R. P., Weaver, C. M. & Fitzsimmons, M. L. (1990). Influence of calcium load on absorption fraction. Journal of Bone and Mineral Research 5, 11351138.CrossRefGoogle ScholarPubMed
Heaney, R. P., Weaver, C. M. & Recker, R. R. (1988). Calcium absorbability from spinach. American Journal of Clinical Nutrition 47, 707709.CrossRefGoogle ScholarPubMed
Hulshof, K. F. A. M., Van der Heiden-Winkeldermaat, H. J., Kistemaker, C. & Van Beresteijn, E. C. H. (1989). De calciuminneming uit zuivelprodukten; meting via een schriftelijke vragenlijst (The calcium intake from dairy products; assessment via a dietary questionnaire). Voeding 50, 302306.Google Scholar
Johnston, C. C., Miller, J. Z., Slemenda, C. W., Reister, T. K., Hui, S., Christian, J. C. & Peacock, M. (1992). Calcium supplementation and increase in bone mineral density in children. New England Journal of Medicine 327, 8287.CrossRefGoogle ScholarPubMed
Kerstetter, J. E. & Allen, L. H. (1989). Dietary protein increases urinary calcium. Journal of Nutrition 120, 134136.CrossRefGoogle Scholar
Le Graet, Y. & Brulé, G. (1993). Les équilibres minéraux du lait: influence du pH et de la force ionique (The equilibrium between minerals in milk: influence of pH and ionic strength). Lait 73, 5160.CrossRefGoogle Scholar
Luten, J. B., Muys, Th. & Van Dokkum, W. (1993). The determination of stable isotope ratio of zinc, copper, iron in faeces and calcium in urine by ICP-MS. In Bioavailability '93. Nutritional, Chemical and Food Processing Implications of Nutrient Availability, pp. 161168 [Schlemmer, U. editor]. Karlsruhe, Germany: Bundes-forschungsanstalt für Ernährung.Google Scholar
McCarron, D. A., Lipkin, M., Rivlin, R. S. & Heaney, R. P. (1990). Dietary calcium and chronic diseases. Medical Hypotheses 31, 265273.CrossRefGoogle ScholarPubMed
McParland, B. E., Goulding, A. & Campbell, A. J. (1989). Dietary salt affects biochemical markers of resorption and formation of bone in elderly women. British Medical Journal 299, 834835.CrossRefGoogle ScholarPubMed
Matkovic, V., Fontana, D., Tominac, C., Goel, P. & Chesnut, C. H. (1990). Factors that influence peak bone mass formation: a study of calcium balance and the inheritance of bone mass in adolescent females. American Journal of Clinical Nutrition 52, 878888.CrossRefGoogle ScholarPubMed
National Institute of Health Osteoporosis Consensus Development Conference Statement (1984). Journal of the American Medical Association 252, 799802.CrossRefGoogle Scholar
Pak, C. Y. C. & Avioli, L. V. (1988). Factors affecting absorbability of calcium from calcium salts and food. Calcified Tissue International 43, 5560.CrossRefGoogle ScholarPubMed
Prince, R. L., Smith, M., Dick, I. M., Price, R. I., Webb, P. G., Henderson, N. K. & Harris, M. M. (1991). Prevention of post-menopausal osteoporosis. A comparative study of exercise, calcium supplementation, and hormone-replacement therapy. New England Journal of Medicine 325, 11891195.CrossRefGoogle ScholarPubMed
Ramsdale, S. J., Bassey, E. J. & Pye, D. J. (1994). Dietary calcium intake relates to bone mineral density in premenopausal women. British Journal of Nutrition 71, 7784.CrossRefGoogle ScholarPubMed
Recker, R. R., Bammi, A., Bargerlux, M. J. & Heaney, R. P. (1988). Calcium absorbability from milk products, an imitation milk and calcium carbonate. American Journal of Clinical Nutrition 47, 9395.CrossRefGoogle ScholarPubMed
Recker, R. R., Davies, K. M., Hinders, S. M., Heaney, R. P., Stegman, M. R. & Kimmel, D. M. (1992). Bone gain in young adult women. Journal of the American Medical Association 268, 24032408.CrossRefGoogle ScholarPubMed
Reid, I. R., Ames, R. W., Evans, M. C., Gamble, G. D. & Sharpe, S. J. (1993). Effect of calcium supplementation on bone loss in postmenopausal women. New England Journal of Medicine 328, 460464.CrossRefGoogle Scholar
Riggs, B. L. & Melton, L. J. III (1986). Involutional osteoporosis. New England Journal of Medicine 314, 16761684.CrossRefGoogle ScholarPubMed
Riggs, B. L., Whaner, H. W., MeltonL. J., L. J., III, Richelson, L. S., Judd, H. L. & Offord, K. P. (1986). Rate of bone loss in the appendicular and axial skeleton of women. Journal of Clinical Investigation 77, 14871491.CrossRefGoogle Scholar
Sandström, B., Fairweather-Tait, S., Hurrell, R. & Van Dokkum, W. (1993). Methods for studying mineral and trace element absorption in humans using stable isotopes. Nutrition Research Reviews 6, 7195.CrossRefGoogle ScholarPubMed
Schaafsma, G. (1991). Extracellular calcium homeostasis. Bulletin of the International Dairy Federation 255, 2630.Google Scholar
Schaafsma, G., Van Beresteyn, E. C. H., Raymakers, J. A. & Duursma, S. A. (1987). Nutritional aspects of osteoporosis. World Review of Nutrition and Dietetics 49, 121159.CrossRefGoogle Scholar
Wood, R. J., Gerhardt, A. & Rosenberg, I. H. (1987). Effects of glucose and glucose polymers on calcium absorption in healthy subjects. American Journal of Clinical Nutrition 46, 699701.CrossRefGoogle ScholarPubMed
Zarkadas, M., Gougeon-Reyburn, R., Marliss, E. B., Block, E. & Alton-Mackey, M. (1989). Sodium chloride supplementation and urinary calcium excretion in postmenopausal women. American Journal of Clinical Nutrition 50. 10881094.CrossRefGoogle ScholarPubMed
You have Access
28
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Bioavailability of calcium of fresh cheeses, enteral food and mineral water. A study with stable calcium isotopes in young adult women
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Bioavailability of calcium of fresh cheeses, enteral food and mineral water. A study with stable calcium isotopes in young adult women
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Bioavailability of calcium of fresh cheeses, enteral food and mineral water. A study with stable calcium isotopes in young adult women
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *