We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The conjecture of Brown, Erdős and Sós from 1973 states that, for any k ≥ 3, if a 3-uniform hypergraph H with n vertices does not contain a set of k +3 vertices spanning at least k edges then it has o(n2) edges. The case k = 3 of this conjecture is the celebrated (6, 3)-theorem of Ruzsa and Szemerédi which implies Roth’s theorem on 3-term arithmetic progressions in dense sets of integers. Solymosi observed that, in order to prove the conjecture, one can assume that H consists of triples (a, b, ab) of some finite quasigroup Γ. Since this problem remains open for all k ≥ 4, he further proposed to study triple systems coming from finite groups. In this case he proved that the conjecture holds also for k = 4. Here we completely resolve the Brown–Erdős–Sós conjecture for all finite groups and values of k. Moreover, we prove that the hypergraphs coming from groups contain sets of size
$\Theta (\sqrt k )$
which span k edges. This is best possible and goes far beyond the conjecture.
We give a new formula for the number of cyclic subgroups of a finite abelian group. This is based on Burnside’s lemma applied to the action of the power automorphism group. The resulting formula generalises Menon’s identity.
For a group $G$, let $\unicode[STIX]{x1D6E4}(G)$ denote the graph defined on the elements of $G$ in such a way that two distinct vertices are connected by an edge if and only if they generate $G$. Let $\unicode[STIX]{x1D6E4}^{\ast }(G)$ be the subgraph of $\unicode[STIX]{x1D6E4}(G)$ that is induced by all the vertices of $\unicode[STIX]{x1D6E4}(G)$ that are not isolated. We prove that if $G$ is a 2-generated noncyclic abelian group, then $\unicode[STIX]{x1D6E4}^{\ast }(G)$ is connected. Moreover, $\text{diam}(\unicode[STIX]{x1D6E4}^{\ast }(G))=2$ if the torsion subgroup of $G$ is nontrivial and $\text{diam}(\unicode[STIX]{x1D6E4}^{\ast }(G))=\infty$ otherwise. If $F$ is the free group of rank 2, then $\unicode[STIX]{x1D6E4}^{\ast }(F)$ is connected and we deduce from $\text{diam}(\unicode[STIX]{x1D6E4}^{\ast }(\mathbb{Z}\times \mathbb{Z}))=\infty$ that $\text{diam}(\unicode[STIX]{x1D6E4}^{\ast }(F))=\infty$.
Approximation sequences and derived equivalences occur frequently in the research of mutation of tilting objects in representation theory, algebraic geometry and noncommutative geometry. In this paper, we introduce symmetric approximation sequences in additive categories and weakly n-angulated categories which include (higher) Auslander-Reiten sequences (triangles) and mutation sequences in algebra and geometry, and show that such sequences always give rise to derived equivalences between the quotient rings of endomorphism rings of objects in the sequences modulo some ghost and coghost ideals.
A subset $A$ of a finite abelian group $G$ is called $(k,l)$-sum-free if the sum of $k$ (not necessarily distinct) elements of $A$ never equals the sum of $l$ (not necessarily distinct) elements of $A$. We find an explicit formula for the maximum size of a $(k,l)$-sum-free subset in $G$ for all $k$ and $l$ in the case when $G$ is cyclic by proving that it suffices to consider $(k,l)$-sum-free intervals in subgroups of $G$. This simplifies and extends earlier results by Hamidoune and Plagne [‘A new critical pair theorem applied to sum-free sets in abelian groups’, Comment. Math. Helv.79(1) (2004), 183–207] and Bajnok [‘On the maximum size of a $(k,l)$-sum-free subset of an abelian group’, Int. J. Number Theory5(6) (2009), 953–971].
The genus spectrum of a finite group G is the set of all g such that G acts faithfully on a compact Riemann surface of genus g. It is an open problem to find a general description of the genus spectrum of the groups in interesting classes, such as the Abelian p-groups. Motivated by earlier work of Talu for odd primes, we develop a general combinatorial method, for arbitrary primes, to obtain a structured description of the so-called reduced genus spectrum of Abelian p-groups, including the reduced minimum genus. In particular, we determine the complete genus spectrum for a large subclass, namely, those having ‘large’ defining invariants. With our method we construct infinitely many counterexamples to a conjecture of Talu, which states that an Abelian p-group is recoverable from its genus spectrum. Finally, we give a series of examples of our method, in the course of which we prove, for example, that almost all elementary Abelian p-groups are uniquely determined by their minimum genus, and that almost all Abelian p-groups of exponent p2 are uniquely determined by their minimum genus and Kulkarni invariant.
The relation between the structure of a ring and the structure of its additive group is studied in the context of some recent results in additive groups of mixed rings. Namely, the notion of the square subgroup of an abelian group, which is a generalization of the concept of nil-group, is considered mainly for mixed non-splitting abelian groups which are the additive groups only of rings whose all subrings are ideals. A non-trivial construction of such a group of finite torsion-free rank no less than two, for which the quotient group modulo the square subgroup is not a nil-group, is given. In particular, a new class of abelian group for which an old problem posed by Stratton and Webb has a negative solution, is indicated. A new, far from obvious, application of rings in which the relation of being an ideal is transitive, is obtained.
A lattice walk with all steps having the same length $d$ is called a $d$-walk. Denote by ${\mathcal{T}}_{d}$ the terminal set, that is, the set of all lattice points that can be reached from the origin by means of a $d$-walk. We examine some geometric and algebraic properties of the terminal set. After observing that $({\mathcal{T}}_{d},+)$ is a normal subgroup of the group $(\mathbb{Z}^{N},+)$, we ask questions about the quotient group $\mathbb{Z}^{N}/{\mathcal{T}}_{d}$ and give the number of elements of $\mathbb{Z}^{2}/{\mathcal{T}}_{d}$ in terms of $d$. To establish this result, we use several consequences of Fermat’s theorem about representations of prime numbers of the form $4k+1$ as the sum of two squares. One of the consequences is the fact, observed by Sierpiński, that every natural power of such a prime number has exactly one relatively prime representation. We provide explicit formulas for the relatively prime integers in this representation.
A class of abelian topological groups was previously defined to be a variety of topological groups with coproducts if it is closed under forming subgroups, quotients, products and coproducts in the category of all abelian topological groups and continuous homomorphisms. This extended research on varieties of topological groups initiated by the second author. The key to describing varieties of topological groups generated by various classes was proving that all topological groups in the variety are a quotient of a subgroup of a product of groups in the generating class. This paper analyses generating varieties of topological groups with coproducts. It focuses on the interplay between forming products and coproducts. It is proved that the variety of topological groups with coproducts generated by all discrete groups contains topological groups which cannot be expressed as a quotient of a subgroup of a product of a coproduct of discrete groups. It is proved that the variety of topological groups with coproducts generated by any infinite-dimensional Hilbert space contains all infinite-dimensional Hilbert spaces, answering an open question. This contrasts with the result that a variety of topological groups generated by a topological group does not contain any infinite-dimensional Hilbert space of greater cardinality.
The first example of a torsion-free abelian group $(A,+,0)$ such that the quotient group of $A$ modulo the square subgroup is not a nil-group is indicated (for both associative and general rings). In particular, the answer to the question posed by Stratton and Webb [‘Abelian groups, nil modulo a subgroup, need not have nil quotient group’, Publ. Math. Debrecen27 (1980), 127–130] is given for torsion-free groups. A new method of constructing indecomposable nil-groups of any rank from $2$ to $2^{\aleph _{0}}$ is presented. Ring multiplications on $p$-pure subgroups of the additive group of the ring of $p$-adic integers are investigated using only elementary methods.
Let G be an additive abelian group, let n ⩾ 1 be an integer, let S be a sequence over G of length |S| ⩾ n + 1, and let ${\mathsf h}$(S) denote the maximum multiplicity of a term in S. Let Σn(S) denote the set consisting of all elements in G which can be expressed as the sum of terms from a subsequence of S having length n. In this paper, we prove that either ng ∈ Σn(S) for every term g in S whose multiplicity is at least ${\mathsf h}$(S) − 1 or |Σn(S)| ⩾ min{n + 1, |S| − n + | supp (S)| − 1}, where |supp(S)| denotes the number of distinct terms that occur in S. When G is finite cyclic and n = |G|, this confirms a conjecture of Y. O. Hamidoune from 2003.
Let $G$ be a finite abelian group and $A\subseteq G$. For $n\in G$, denote by $r_{A}(n)$ the number of ordered pairs $(a_{1},a_{2})\in A^{2}$ such that $a_{1}+a_{2}=n$. Among other things, we prove that for any odd number $t\geq 3$, it is not possible to partition $G$ into $t$ disjoint sets $A_{1},A_{2},\dots ,A_{t}$ with $r_{A_{1}}=r_{A_{2}}=\cdots =r_{A_{t}}$.
The class of almost completely decomposable groups with a critical typeset of type $(2,2)$ and a homocyclic regulator quotient of exponent $p^{3}$ is shown to be of bounded representation type. There are only $16$ isomorphism at $p$ types of indecomposables, all of rank $8$ or lower.
This paper presents new results concerning the structure of $\text{SI}$-groups and refines and purifies the results obtained in this field by Shalom Feigelstock [‘Additive groups of rings whose subrings are ideals’, Bull. Aust. Math. Soc.55 (1997), 477–481]. The structure theorem describing torsion-free $\text{SI}$-groups is proved in the associative case. Numerous examples of $\text{SI}$-groups are given. Some inconsistencies in Feigelstock’s article are noted and corrected.
We characterize the abelian groups $G$ for which the functors $\mathrm{Ext} (G, - )$ or $\mathrm{Ext} (- , G)$ commute with or invert certain direct sums or direct products.
We prove for a large family of rings R that their λ-pure global dimension is greater than one for each infinite regular cardinal λ. This answers in the negative a problem posed by Rosický. The derived categories of such rings then do not satisfy, for any λ, the Adams λ-representability for morphisms. Equivalently, they are examples of well-generated triangulated categories whose λ-abelianization in the sense of Neeman is not a full functor for any λ. In particular, we show that given a compactly generated triangulated category, one may not be able to find a Rosický functor among the λ-abelianization functors.
In this paper, we characterize quadratic number fields possessing unique factorization in terms of the power cancellation property of torsion-free rank-two abelian groups, in terms of Σ-unique decomposition, in terms of a pair of point set topological properties of Eilenberg–Mac Lane spaces, and in terms of the sequence of rational primes. We give a complete set of topological invariants of abelian groups, we characterize those abelian groups that have the power cancellation property in the category of abelian groups, and we characterize those abelian groups that have Σ-unique decomposition. Our methods can be used to characterize any direct sum decomposition property of an abelian group.
This paper investigates self-small abelian groups of finite torsion-free rank. We obtain a new characterization of infinite self-small groups. In addition, self-small groups of torsion-free rank 1 and their finite direct sums are discussed.