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Abstract

A subset A of a finite abelian group G is called (k, l)-sum-free if the sum of k (not necessarily distinct)
elements of A never equals the sum of l (not necessarily distinct) elements of A. We find an explicit
formula for the maximum size of a (k, l)-sum-free subset in G for all k and l in the case when G is cyclic
by proving that it suffices to consider (k, l)-sum-free intervals in subgroups of G. This simplifies and
extends earlier results by Hamidoune and Plagne [‘A new critical pair theorem applied to sum-free sets in
abelian groups’, Comment. Math. Helv. 79(1) (2004), 183–207] and Bajnok [‘On the maximum size of a
(k, l)-sum-free subset of an abelian group’, Int. J. Number Theory 5(6) (2009), 953–971].
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1. Introduction

Let G be an additively written abelian group of finite order n and exponent e(G). When
G is cyclic, we identify it with Zn = Z/nZ; we consider 0, 1, . . . , n − 1 interchangeably
as integers and as elements of Zn.

For subsets A and B of G, we use the standard notation of A + B and A − B to denote
the sets of two-term sums and differences, respectively, with one term chosen from A
and the other from B. If, say, A consists of a single element a, we simply write a + B
and a − B instead of A + B and A − B. For a subset A of G and a positive integer h,
hA denotes the h-fold sumset of A, that is, the collection of h-term sums with (not
necessarily distinct) elements from A. Note that the h-fold sumset of A is (usually)
different from its h-fold dilation h · A = {ha | a ∈ A}.

For positive integers k and l, with k > l, we call a subset A of G (k, l)-sum-free if kA
and lA are disjoint or, equivalently, if

0 < kA − lA.

For example, A = {1, 2} is a (5, 2)-sum-free set in Z9 because 5A = {5, 6, 7, 8, 0, 1} and
2A = {2, 3, 4}. (In this example, kA and lA are not only disjoint, but also partition
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the group; such (k, l)-sum-free sets are called complete.) We denote the maximum size
of (k, l)-sum-free subsets in G by µ(G, {k, l}). As our main result in this paper, we
determine µ(Zn, {k, l}) for all n, k and l.

Before we state our results, it may be interesting to briefly review the history of this
problem. A (2, 1)-sum-free set is simply called a sum-free set. Sum-free sets in abelian
groups were first introduced by Erdős in [7] and then studied systematically by Wallis
et al. [15].

We can construct sum-free sets in G by selecting a subgroup H in G for which G/H
is cyclic and then taking the ‘middle one-third’ of the cosets of H. More precisely,
with d denoting the index of H in G,

A =

2d(d−1)/3e−1⋃
i=d(d−1)/3e

(i + H)

is sum-free in G and thus

µ(G, {2, 1}) ≥ max
d|e(G)

{⌈d − 1
3

⌉
·

n
d

}
.

Using a version of Kneser’s theorem, Diananda and Yap proved that we cannot do
better in cyclic groups.

Theorem 1.1 (Diananda and Yap, 1969; see [6, 15]). For all positive integers n,

µ(Zn, {2, 1}) = max
d|n

{⌈d − 1
3

⌉
·

n
d

}
.

The fact that the lower bound is also exact in the case of noncyclic groups was
established first for some cases by Diananda and Yap; the general question was finally
resolved by Green and Ruzsa via complicated methods that, in part, also relied on a
computer.

Theorem 1.2 (Green and Ruzsa, 2005; see [8]). For any abelian group G of order n
and exponent e(G),

µ(G, {2, 1}) = max
d|e(G)

{⌈d − 1
3

⌉
·

n
d

}
.

The first result for general k and l was given by Bier and Chin.

Theorem 1.3 (Bier and Chin, 2001; see [4]). Let p be a positive prime. If k − l is
divisible by p, then µ(Zp, {k, l}) = 0; otherwise,

µ(Zp, {k, l}) =

⌈ p − 1
k + l

⌉
.

This was generalised by Hamidoune and Plagne.

Theorem 1.4 (Hamidoune and Plagne, 2004; see [9]). If k − l is relatively prime to n,
then

µ(Zn, {k, l}) = max
d|n

{⌈d − 1
k + l

⌉
·

n
d

}
.
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The case when n and k − l are not relatively prime is considerably more
complicated. We have the following bounds of the first author.

Theorem 1.5 (Bajnok, 2009; see [1]). For all positive integers n, k and l with k > l,

max
d|n

{⌈d − δ
k + l

⌉
·

n
d

}
≤ µ(Zn, {k, l}) ≤ max

d|n

{⌈d − 1
k + l

⌉
·

n
d

}
,

where δ = gcd(d, k − l).

Until now, not even a conjecture was known for the actual value of µ(Zn, {k, l}). Here
we prove the following result.

Theorem 1.6. For all positive integers n, k and l with k > l,

µ(Zn, {k, l}) = max
d|n

{⌈d − (δ − r)
k + l

⌉
·

n
d

}
,

where δ = gcd(d, k − l) and r is the remainder of ld(d − δ)/(k + l)e (mod δ).

We may observe that δ − r is between 1 and δ, inclusive, so Theorem 1.5 follows
from Theorem 1.6; in particular, we get Theorem 1.4 when n and k − l are relatively
prime.

Let us now turn to the discussion of our approach. The main role in our development
will be played by arithmetic progressions, that is, sets of the form

A = {a + i · b | i = 0, 1, . . . ,m − 1}

for some positive integer m and elements a and b of Zn. (We will assume that
m ≤ n/ gcd(n, b) and thus A has size |A| = m. Note also that a and b are not uniquely
determined by A; the only time when this will make a difference for us is when |A| = 1,
in which case we set b = 1.) In [9], Hamidoune and Plagne proved that, if n and k − l
are relatively prime, then µ(Zn, {k, l}) equals

max
d|n

{
α(Zd, {k, l}) ·

n
d

}
,

where α(Zd, {k, l}) is the maximum size of a (k, l)-sum-free arithmetic progression
in Zd. Hamidoune and Plagne only treated the case when n and k − l are relatively
prime, as they wrote ‘in the absence of this assumption, degenerate behaviours may
appear’. Nevertheless, as the first author proved, the identity remains valid in the
general case.

Theorem 1.7 (Bajnok, 2009; see [1]). For all positive integers n, k and l with k > l,

µ(Zn, {k, l}) = max
d|n

{
α(Zd, {k, l}) ·

n
d

}
.
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When attempting to evaluate α(Zd, {k, l}), one naturally considers two types of
arithmetic progressions: those with a common difference b that is not relatively prime
to d (in which case the set is contained in a coset of a proper subgroup) and those
where b is relatively prime to d (in which case the set, unless of size 1, is not
contained in a coset of a proper subgroup). Accordingly, Hamidoune and Plagne [9]
defined β(Zd, {k, l}) as the maximum size of a (k, l)-sum-free arithmetic progression
with gcd(b, d) > 1, and γ(Zd, {k, l}) as the maximum size of a (k, l)-sum-free arithmetic
progression with gcd(b, d) = 1. Clearly,

α(Zd, {k, l}) = max{ β(Zd, {k, l}), γ(Zd, {k, l})}.

The authors of [9] evaluated both β(Zd, {k, l}) and γ(Zd, {k, l}) under the assumption that
d and k − l are relatively prime. We are able to find γ(Zd, {k, l}) without this assumption.

Theorem 1.8. For all positive integers d, k and l with k > l,

γ(Zd, {k, l}) =

⌈d − (δ − r)
k + l

⌉
,

where δ = gcd(d, k − l) and r is the remainder of ld(d − δ)/(k + l)e (mod δ).

However, evaluating β(Zd, {k, l}) in general does not seem feasible. Luckily, as we
prove here, this is not necessary, since we have the following result.

Theorem 1.9. For all positive integers n, k and l with k > l,

max
d|n

{
α(Zd, {k, l}) ·

n
d

}
= max

d|n

{
γ(Zd, {k, l}) ·

n
d

}
.

Therefore, Theorem 1.6 follows readily from Theorems 1.7–1.9. In Sections 2 and 3
below we prove Theorems 1.8 and 1.9, respectively. In Section 4 we discuss some
further related questions.

2. The maximum size of (k, l)-sum-free intervals

Recall that γ(Zd, {k, l}) denotes the maximum size of a (k, l)-sum-free arithmetic
progression in Zd whose common difference is relatively prime to d. In this section we
evaluate γ(Zd, {k, l}) and thus prove Theorem 1.8. Note that if

A = {a + i · b | i = 0, 1, . . . ,m − 1},

with b relatively prime to d, then b · c = 1 for some c ∈ Zd and thus the c-fold dilation

c · A = {c · a + i | i = 0, 1, . . . ,m − 1}

of A is the interval [ca, ca + m − 1]; furthermore, A is (k, l)-sum-free in Zd if and only
if c · A is. Therefore, we may restrict our attention to intervals.

First, we prove a lemma.
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Lemma 2.1. Suppose that k, l and d are positive integers and that k > l; let δ =

gcd(d, k − l). Then Zd contains a (k, l)-sum-free interval of size m if and only if

k(m − 1) + d(l(m − 1) + 1)/δe · δ < d.

Proof. Let A = [a, a + m − 1] with a ∈ Zd and |A| = m. (As customary, our notation
stands for the interval {a, a + 1, . . . , a + m − 1}.) Note that A is (k, l)-sum-free if and
only if

0 < kA − lA.

Observe that kA − lA is also an interval, namely

kA − lA = [(k − l)a − l(m − 1), (k − l)a + k(m − 1)].

Therefore, A is (k, l)-sum-free if and only if there is a positive integer b for which

(k − l)a − l(m − 1) ≥ bd + 1

and
(k − l)a + k(m − 1) ≤ (b + 1)d − 1.

The set of these two inequalities is equivalent to

l(m − 1) + 1 ≤ (k − l)a − bd ≤ d − k(m − 1) − 1

or
l(m − 1) + 1

δ
≤

(k − l)
δ
· a −

d
δ
· b ≤

d − k(m − 1) − 1
δ

.

Here (k − l)/δ and d/δ are relatively prime, so every integer can be written in the form

(k − l)
δ
· a −

d
δ
· b

for some a and b; we may also assume that 0 ≤ a ≤ d/δ − 1 and hence 0 ≤ a ≤ d − 1.
Therefore, Zd contains a (k, l)-sum-free interval of size m if and only if there is an
integer C with

l(m − 1) + 1
δ

≤ C ≤
d − k(m − 1) − 1

δ

or, equivalently, ⌈ l(m − 1) + 1
δ

⌉
≤

d − k(m − 1) − 1
δ

,

which is further equivalent to

k(m − 1) + d(l(m − 1) + 1)/δe · δ < d,

as claimed. �
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Proof of Theorem 1.8. Let γd = γ(Zd, {k, l}),

f =

⌈d − δ
k + l

⌉
and

m0 =

⌈d − (δ − r)
k + l

⌉
.

We then clearly have
f ≤ m0 ≤ f + 1.

Claim 1. γd ≥ f .
Proof of Claim 1. Since ds/te · t ≤ s + t − 1 for positive integers s and t,

d(l( f − 1) + 1)/δe · δ ≤ l( f − 1) + δ

and
(k + l) f ≤ d − δ + (k + l) − 1.

Therefore,

k( f − 1) + d(l( f − 1) + 1)/δe · δ ≤ (k + l)( f − 1) + δ ≤ d − 1,

from which our claim follows by Lemma 2.1. �

Claim 2. γd ≤ f + 1.
Proof of Claim 2. We can easily see that

k( f + 1) + d(l( f + 1) + 1)/δe · δ > (k + l)( f + 1) ≥ d − δ + k + l > d,

which implies our claim by Lemma 2.1. �

Claim 3. γd ≥ f + 1 if and only if m0 ≥ f + 1.
Proof of Claim 3. First note that, since r is the remainder of l f (mod δ),

d(l f + 1)/δe · δ = l f + δ − r.

Therefore, γd ≥ f + 1 if and only if

k f + l f + δ − r < d,

which is equivalent to

f <
d − (δ − r)

k + l
;

since f is an integer, this is further equivalent to f < m0, that is, to f + 1 ≤ m0, as
claimed. �

Our result that γd = m0 now follows, since, if f = m0, then γd ≥ f by Claim 1 and
γd ≤ f by Claim 3 and, if f + 1 = m0, then γd ≥ f + 1 by Claim 3 and γd ≤ f + 1 by
Claim 2. �

As a consequence of Theorem 1.8, we find the following lower bound.

Corollary 2.2. For all positive integers k, l and d with k > l,

γ(Zd, {k, l}) ≥
⌊ d
k + l

⌋
.
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3. Intervals suffice

In this section we prove Theorem 1.9, that is,

max
d|n

{
α(Zd, {k, l}) ·

n
d

}
= max

d|n

{
γ(Zd, {k, l}) ·

n
d

}
.

We only need to establish that the left-hand side is less than or equal to the right-hand
side, since, obviously,

α(Zd, {k, l}) ≥ γ(Zd, {k, l}).

Our result will thus follow from the following theorem.

Theorem 3.1. For all positive integers d, k and l with k > l, there exists a divisor c of
d for which

α(Zd, {k, l}) ≤ γ(Zc, {k, l}) ·
d
c
.

Proof. Since α(Zd, {k, l}) is the larger of β(Zd, {k, l}) and γ(Zd, {k, l}), we may assume
that it equals β(Zd, {k, l}). We let βd denote β(Zd, {k, l}).

Let A be a (k, l)-sum-free arithmetic progression in Zd of size βd and suppose that

A = {a + i · b | i = 0, 1, . . . , βd − 1}

for some elements a and b of Zd; we may assume that βd ≥ 2 (a one-element
subset would be an interval) and that g = gcd(b, d) ≥ 2. (We interchangeably consider
0, 1, . . . , d − 1 as integers and as elements of Zd.)

Let H denote the subgroup of index g in Zd. We then have a unique element
e ∈ {0, 1, . . . , g − 1} for which A is a subset of the coset e + H of H. We consider
two cases.

When k . l (mod g), then γg = γ(Zg, {k, l}) ≥ 1, since (for example) {1} is a (k, l)-
sum-free set in Zg. Therefore,

βd = |A| ≤ |H| = d/g ≤ γg · d/g.

We thus see that c = g satisfies our claim.
Assume now that k ≡ l (mod g). In this case ke + H = le + H and thus kA and lA are

both subsets of the same coset of H. Since the sets are nonempty and disjoint, we must
have |kA| < |H|, |lA| < |H| and

|kA| + |lA| ≤ |H|.

Now
kA = {ka + i · b | i = 0, 1, . . . , k · βd − k},

so
|kA| = min{|H|, k · βd − k + 1} = k · βd − k + 1

and similarly
|lA| = l · βd − l + 1.
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Therefore,
(k · βd − k + 1) + (l · βd − l + 1) ≤ |H| = d/g,

from which

βd ≤

⌊d/g − 2
k + l

⌋
+ 1.

Note that βd ≥ 2 implies that
d/g − 2 ≥ k + l;

since g ≥ 2, this then further implies that

d − d/g − 2 ≥ k + l.

Therefore,

βd ≤

⌊d/g − 2
k + l

⌋
+ 1 ≤

⌊d − 4
k + l

⌋
≤

⌊ d
k + l

⌋
.

By Corollary 2.2, we thus have βd ≤ γd, which proves our claim. �

4. Further questions

Having found the maximum size of (k, l)-sum-free sets in cyclic groups, we may
turn to some other related questions. Here we only discuss three of them; other
intriguing problems, including:

• the number of (k, l)-sum-free sets;
• maximal (k, l)-sum-free sets (with respect to inclusion);
• complete (k, l)-sum-free sets (that is, those where kA ∪ lA = G);
• maximum-size (k, l)-sum-free sets in subsets;

are discussed in detail in the first author’s book [2, Ch. G.1.1].

4.1. Noncyclic groups. Clearly, if A is a (k, l)-sum-free set in G1, then A ×G2 is
(k, l)-sum-free in G1 ×G2 and thus for any abelian group of order n and exponent e(G),

µ(G, {k, l}) ≥ µ(Ze(G), {k, l}) ·
n

e(G)
.

Therefore, by Theorem 1.6,

µ(G, {k, l}) ≥ max
d|e(G)

{⌈d − (δ − r)
k + l

⌉
·

n
d

}
,

where δ = gcd(d, k − l) and r is the remainder of ld(d − δ)/(k + l)e (mod δ). We believe
that equality holds. As we mentioned in the Introduction, Green and Ruzsa proved
this conjecture for the case (k, l) = (2, 1); see Theorem 1.2 above. As their methods
were complicated and relied, in part, on a computer, we expect the general case to be
challenging.

We have the following partial result.
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Theorem 4.1 (Bajnok, 2009; cf. [1]). We have

µ(G, {k, l}) = µ(Ze(G), {k, l}) ·
n

e(G)

whenever e(G) has at least one divisor d that is not congruent to any integer between
1 and gcd(d, k − l) (inclusive) (mod k + l).

In particular, for elementary abelian p-groups, we have the following result.

Theorem 4.2. Let p be a positive prime and r ∈ N. If k − l is divisible by p, then
µ(Zr

p, {k, l}) = 0. If k − l is not divisible by p and p − 1 is not divisible by k + l, then

µ(Zr
p, {k, l}) =

⌈ p − 1
k + l

⌉
· pr−1.

Other cases remain open.

4.2. Classification of maximum-size (k, l)-sum-free sets. The question that we
have here is: what can one say about a (k, l)-sum-free subset A of G of maximum
size |A| = µ(G, {k, l})?

The sum-free case (that is, when (k, l) = (2, 1)) has been investigated thoroughly
and is now known. It turns out that, when the order n of the group has at least one
divisor that is not congruent to 1 (mod 3), then sum-free sets of maximum size are
unions of cosets that form arithmetic progressions; see the results of Diananda and
Yap in [6] and Street in [13, 14] and also [15, Theorems 7.8 and 7.9]. The situation is
considerably less apparent, however, when all divisors of n are congruent to 1 (mod 3).
The classification was completed by Balasubramanian et al. in 2016; see [3]. The
general result is too complicated to present here. We just mention the example that the
set

{(n − 1)/3} ∪ [(n + 5)/3, (2n − 5)/3] ∪ {(2n + 1)/3},

which is two elements short of an arithmetic progression, is sum-free in Zn and has
maximum size µ(Zn, {2, 1}) = (n − 1)/3. (The classification of this case for cyclic
groups was completed by Yap; see [16].)

The case when k > 2 is not known in general, but we have the following result of
Plagne.

Theorem 4.3 (Plagne, 2002; see [10]). Let p be a positive prime and let k and l be
positive integers with k > l and k ≥ 3. Suppose also that k − l is not divisible by p. If A
is a (k, l)-sum-free set in Zp of maximum size d(p − 1)/(k + l)e, then A is an arithmetic
progression.

We are not aware of further results on the classification of (k, l)-sum-free sets of
maximum size.
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4.3. Additive k-tuples. Given a subset A of G and a positive integer k, we may ask
for the cardinality P(G, k, A) of the set

{(a1, . . . , ak) ∈ Ak | a1 + · · · + ak ∈ A}.

We can then set P(G, k,m) as the minimum value of P(G, k, A) among all m-subsets
A of G (with m ∈ N). By definition, P(G, k,m) = 0 whenever m ≤ µ(G, {k, 1}), but
P(G, k,m) ≥ 1 for µ(G, {k, 1}) + 1 ≤ m ≤ n.

Let us consider the case of k = 2 and the cyclic group Zp of prime order p. As we
observed, the ‘middle third’ of the elements forms a sum-free set in Zp of maximum
size µ(Zp, {2, 1}) = d(p − 1)/3e. For d(p − 1)/3e + 1 ≤ m ≤ p, we may enlarge the set to

A(p,m) = {d(p − m)/2e + i | i = 0, 1, . . . ,m − 1}.

Then A(p,m) is the ‘middle’ m elements of Zp and a short calculation yields

P(Zp, 2, A(p,m)) = b(3m − p)2/4c.

Recently, Samotij and Sudakov proved that we cannot do better and that, in fact,
A(p,m) is essentially the only set achieving the minimum value.

Theorem 4.4 (Samotij and Sudakov, 2016; see [11, 12]). For every positive prime p
and integer m with d(p − 1)/3e + 1 ≤ m ≤ p,

P(Zp, 2,m) = b(3m − p)2/4c.

Furthermore, if P(Zp, 2,m) = P(Zp, 2,A) for some A ⊆G, then there is an element b of
Zp for which A = b · A(p,m).

Soon after, Chervak et al. generalised Theorem 4.4 for other values of k, while still
remaining in cyclic groups of prime order p. As they showed in [5], the answer turns
out to be more complicated, but at least in the case when k − 1 is not divisible by p,
the value P(Zp, k,m) is still given by intervals (though there are other sets A that yield
the same value). The general problem of finding P(G, k,m) is largely unsolved.
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