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Abstract

A class of abelian topological groups was previously defined to be a variety of topological groups with
coproducts if it is closed under forming subgroups, quotients, products and coproducts in the category of
all abelian topological groups and continuous homomorphisms. This extended research on varieties of
topological groups initiated by the second author. The key to describing varieties of topological groups
generated by various classes was proving that all topological groups in the variety are a quotient of a
subgroup of a product of groups in the generating class. This paper analyses generating varieties of
topological groups with coproducts. It focuses on the interplay between forming products and coproducts.
It is proved that the variety of topological groups with coproducts generated by all discrete groups contains
topological groups which cannot be expressed as a quotient of a subgroup of a product of a coproduct
of discrete groups. It is proved that the variety of topological groups with coproducts generated by any
infinite-dimensional Hilbert space contains all infinite-dimensional Hilbert spaces, answering an open
question. This contrasts with the result that a variety of topological groups generated by a topological
group does not contain any infinite-dimensional Hilbert space of greater cardinality.

2010 Mathematics subject classification: primary 22A05; secondary 18A30, 20E10, 20K25, 54G10,
54H11.

Keywords and phrases: varieties of abelian topological groups, coproducts.

1. Introduction

In the 1930s, G.D. Birkhoff and B.H. Neumann defined varieties of groups as the
classes of groups satisfying certain laws or equivalently as classes of groups closed
under the operations of forming subgroups (S ), quotient groups (Q) and arbitrary
cartesian products (C). Moreover, H. Neumann in [15] noted that if Ω is any
nonempty class of groups and V(Ω) is the smallest variety of groups containing Ω,
then V(Ω) = QS C(Ω). Denote by Ab the variety of all abelian groups. In the next
theorem we summarise relevant results on varieties of groups from [14] (where Z is
the additive group of integers).
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Theorem 1.1. Let Ω be any nonempty class of abelian groups. Then:

(i) V(Ω) = QS C(Ω);
(ii) Ab = V(Z), that is, the variety Ab is singly generated;
(iii) the number of distinct varieties of abelian groups is ℵ0.

The second named author [10, 12] defined a variety of topological groups to be
a nonempty class V of topological groups closed under the operations of forming
subgroups (S ), (not necessarily Hausdorff) quotient topological groups (Q) and
arbitrary cartesian products (C) (with the Tychonoff product topology). For example,
the class of all abelian topological groups is a variety of topological groups and
will be denoted by TopAb. The varieties generated by the most important classes
of topological groups (for instance, by the class of locally compact abelian groups,
Banach spaces, groups having a subgroup topology and so on) were intensively studied
during the last 40 years (see [4, 5, 9–13]). We summarise a few important results for
our purposes in the next theorem.

We denote the topological group of all real numbers with the euclidean topology
by R, the multiplicative topological group of all complex numbers with modulus
one and compact topology induced from the euclidean plane by T, the class of all
discrete abelian topological groups by D, the class of all finite abelian topological
groups by F , the class of all topological groups underlying Banach spaces by B, the
class of all abelian topological groups with a subgroup topology, that is, a basis of
open neighbourhoods of the identity being subgroups, by S and the topological group
underlying the Banach space `1 by `1.

Definition 1.2. Let X be a completely regular Hausdorff space and FA(X) an abelian
topological group which contains X as a subspace such that X contains the identity
element of FA(X). The topological group FA(X) is said to be the Graev free abelian
topological group on X if for every continuous map φ of X into any abelian topological
group G such that the identity element of FA(X) maps onto the identity element of G,
there is a unique continuous homomorphism of FA(X) into G which extends the map φ.

It is well known [10] that for every completely regular Hausdorff space X, FA(X)
exists and is unique up to topological group isomorphism. Denote by s the convergent
sequence 0, 1

2 ,
1
3 , . . . ,

1
n , . . . .

Theorem 1.3. Let Ω be any nonempty class of abelian topological groups. Then:

(a) V(Ω) = QS C(Ω) [2];
(b) the variety TopAb is not generated by any set of abelian topological groups or,

equivalently, is not singly generated [11];
(c) there is a proper class of distinct varieties of abelian topological groups [11, 12];
(d) V(B) = TopAb [9, 13];
(e) V(F ) $ V(T) $ V(R) $ V(FA(s)) $ V(`1) $ TopAb [9];
(f) V(Z) $ V(D) = S $ TopAb [9];
(g) V(R) $ V(R,D) $ TopAb [9].
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For a nonempty family {Gi}i∈I of groups, the direct sum of Gi is denoted by⊕
i∈I

Gi :=
{
(gi)i∈I ∈

∏
i∈I

Gi : gi = ei for almost all i
}
,

and we denote by jk the natural embedding of Gk into
⊕

i∈I Gi; that is,

jk(g) = (gi) ∈
⊕

i∈I

Gi, where gi = g if i = k and gi = ei if i , k.

If {Gi}i∈I is a nonempty family of topological groups, the final group topology T f on⊕
i∈I Gi with respect to the family of canonical homomorphisms jk : Gk →

⊕
i∈I Gi is

the finest group topology on
⊕

i∈I Gi such that all jk are continuous.

Definition 1.4. Let G = {(Gi,Ti)}i∈I be a nonempty family of abelian (topological)
groups. The (topological) group (G,T ) is the coproduct of the familyG in the category
of abelian (topological) groups and (continuous) homomorphisms if:

(i) for each i ∈ I, there is an embedding ji : Gi → G;
(ii) for any abelian (topological) group H and each family {pi}i∈I of (continuous)

homomorphisms pi : Gi→ H, there exists a unique (continuous) homomorphism
p : G→ H such that pi = p ◦ ji for every i ∈ I.

The underlying group structure of the coproduct (G,T ) is the direct sum
⊕

i∈I Gi.
The coproduct topology T on G coincides with the final group topology T f with
respect to the family of canonical homomorphisms ji : Gi → G. Note that a
coproduct of a family of abelian topological groups is unique up to topological group
isomorphism.

Since the coproduct of a family of abelian groups in the category of all abelian
groups and homomorphisms is just a subgroup of the cartesian product of those groups,
abelian coproducts do not feature in the study of varieties of abelian groups. Noting
that the operation (K) of forming coproducts of topological groups in the category
of all abelian topological groups and continuous homomorphisms is natural from the
categorical point of view, we have the following definition.

Definition 1.5 [8]. A nonempty class C of abelian topological groups is called a variety
of abelian topological groups with coproducts if it is closed under the operations of
forming subgroups (S ), (not necessarily Hausdorff) quotient topological groups (Q),
arbitrary cartesian products (C) (with the Tychonoff product topology) and arbitrary
coproducts (K) in the category of all abelian topological groups and continuous
homomorphisms.

We denote by C(Ω) the smallest variety of abelian topological groups with
coproducts generated by a class Ω of abelian topological groups.

Following [8], a topological group G is called quasilinear if there is a basis of
open neighbourhoods at the identity, N(G) = {Uα : α ∈ A}, such that the subgroup 〈g〉
generated by any g ∈ Uα is contained in Uα, in other words,

Uα =
⋃
{〈g〉 : g ∈ Uα}.
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We denote by QL the class of all quasilinear abelian topological groups. It is clear that
R < QL and T < QL. Every discrete group is quasilinear and, more generally, S ⊆ QL.

Theorem 1.6 [8].

(α) If Ω is a class of abelian topological groups, then

C(Ω) =
⋃
n∈N

QS [C1K1.C2K2 . . .CnKn](Ω). (1.1)

(β) C(F ) $ C(T) $ C(R) $ C(FA(s)) = C(`1) = TopAb; in particular, TopAb is
singly generated.

(γ) C(Z) = C(S) ⊆ C(QL) = QL $ TopAb.

If Ω is a class of abelian groups or abelian topological groups, it is significant that
each of the operations (Q), (S ) and (C) needs to be used only once for the forming of
V(Ω) and V(Ω) by Theorems 1.1(i) and 1.3(a). For the variety C(Ω) with coproducts,
we have only the equality (1.1), which is useful but not as much as we might hope.
The next question is posed in [8]: will a finite union suffice in (1.1)? Clearly, the
answer depends on the interplay between operations (C) and (K), which is considered
in Section 2.

2. Interplay between operations (C) and (K)

The minimal number of operations for C(Ω) (see (1.1)) depends on the interplay
between operations (C) and (K). In this section we consider the next two natural
questions.

Question 2.1. Let Ω be a class of abelian topological groups.

(i) Is KC(Ω) ⊆ QS CK(Ω)?
(ii) Is CK(Ω) ⊆ QS KC(Ω)?

In Theorem 2.3 below, we show that there is a negative answer to Question 2.1(i),
in particular for the class D of all abelian discrete groups. However, Question 2.1(ii)
has a partial positive answer (see Proposition 2.6).

We need the following description of the coproduct topology T f given in [3,
Proposition 5] (see also [16]).

Proposition 2.2 [3]. Let (G,T f ) be the coproduct of a nonempty family {(Gi, τi)}i∈I of
abelian topological groups and let jk : Gk → G be the canonical isomorphisms. For
any countable sequence of open neighbourhoods (Ui,n)n of the identity in Gi, we define

U f =
⋃
N∈N

⋃
(i1,...,iN )∈IN

∑N

n=1
jin (Uin,n).

Then the family of all sets of the form U f is a basis of open neighbourhoods at the
identity in (G,T f ).

The next theorem is the main result in this section.
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Theorem 2.3. Let {Gi,n : i ∈ I, n ∈ N} be a family of nontrivial discrete groups, where
I is an uncountable set of indices. Set

G :=
(⊕

i∈I

∏
n∈N

Gi,n,T f

)
.

Then G is a quasilinear group whose topology is not a subgroup topology and hence
S $ QL. In particular, KC(D) 1 QS CK(D) and

QS CK(D) = S $ QS KC(D) ⊆ C(D).

Proof. Clearly, for each i ∈ I and for every sequence {Vi,s}s∈N of neighbourhoods of
zero in

∏
n∈NGi,n, there exists a sequence ki

1 < ki
2 < . . . such that Ui,s ⊆ Vi,s, where

Ui,s := {0} × · · · × {0}︸           ︷︷           ︸
ki

s

×
∏
n>ki

s

Gi,n. (2.1)

So, any neighbourhood of zero in G contains an open neighbourhood U f of zero of the
form (see Proposition 2.2)

U f =
⋃
N∈N

⋃
(i1,...,iN )∈IN

∑N

s=1
jis (Uis,s), (2.2)

where Ui,s satisfy (2.1). Clearly, the subgroup 〈U f 〉 of G generated by U f is

〈U f 〉 =
⊕

i∈I

ji(Ui,1).

So, to prove the theorem it is enough to show that each neighbourhood V f of the
form (2.2) does not contain any subgroup of the form 〈U f 〉.

Let V f be defined by sequences ti
1 < ti

2 < . . . , i ∈ I. Since I is uncountable, there are
m ∈ N and indices a1, . . . , am such that:

(i) ta1
j = · · · = tam

j = t j, for every 1 ≤ j ≤ m, and ka1
1 = · · · = kam

1 = k1;
(ii) ta1

m = · · · = tam
m = tm > k1.

Set A := {a1, . . . , am}. Denote by πA the projection of G onto Ga1 × · · · ×Gam , and let
πi denote the projection of G onto Gai . Clearly,

πA(〈U f 〉) =
⊕
i∈A

ji(Ui,1).

For every 1 ≤ l ≤ m, by (ii), take an element gl ∈ Ual,1\Val,m and set

h := ja1 (g1) + · · · + jam (gm).

Taking into account that {Vi,s}s∈N decreases, (2.2) implies that

πA(V f ) =
⋃

(i1,...,im)∈Am

∑m

s=1
jis (Vis,s). (2.3)
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Denote by Sm the set of all permutations of the set A. Since Vi,s are subgroups
by (2.1), (2.3) yields

πA(V f ) =
⋃

(i1,...,im)∈Sm

∑m

s=1
jis (Vis,s).

This means that for each element g ∈ πA(V f ) there is al ∈ A such that im = al and the
al-coordinate of g belongs to jal (Val,m). As gl ∈ Ual,1\Val,m, this means that h < πA(V f ).
Thus, πA(〈U f 〉) 1 πA(V f ) and hence 〈U f 〉 1 V f .

The last assertion of the theorem follows from the first one and the following
equalities:

QS CK(D) = QS C(D) = V(D) = S. �

Theorem 2.3 suggests the following question.

Question 2.4. Is QS KC(D) = C(D)?

Remark 2.5. Theorem 2.3 shows that neither (C) nor (K) can be dropped in general
from the forming of varieties with coproducts. Indeed, for the variety C(D),

QS K(D) = QKS (D) = KQS (D) = KS Q(D) = S KQ(D) = S QK(D) =D $ C(D)

and, by Theorems 1.3(a,f) and 2.3,

QS C(D) = V(D) = S $ C(D).

A remark on notation: if Ω is a class of abelian topological groups, then Cc and Kc
denote the classes of all abelian topological groups isomorphic to a countable product
or a countable coproduct respectively of members of Ω. The operation (Cc) is very
useful for varieties V(Ω); see [5, Section 4].

The next proposition partially answers Question 2.1(ii) in the positive.

Proposition 2.6. Let Ω be a class of abelian topological groups. Then

CcKc(Ω) ⊂ QKCc(Ω).

Proof. Throughout the proof of this proposition only, if {Gi, i ∈ I}, is a set of abelian
topological groups for some index set I,

⊕
i∈I Gi will denote the coproduct of those

topological groups in the category of all abelian topological groups and continuous
homomorphisms.

Let {Ga,b : a, b ∈ N} be an arbitrary family in Ω and let

G :=
∏
a∈N

(⊕
b∈N

Ga,b

)
.

We have to show that G ∈ QKCc(Ω).
Let pa,b : Ga,b →

⊕
b∈N Ga,b be the natural embedding for each a, b ∈ N. Set

L := NN and, for each function L ∈ L, define:

• HL(a) :=
⊕

b≤L(a) Ga,b;
• pL(a) : HL(a) →

⊕
b∈NGa,b is the natural embedding;
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• HL :=
∏

a∈N HL(a);
• pL : HL → G, pL((ha)a∈N) := (pL(a)(ha))a∈N.

So, pL is also a natural embedding. Set

X1 :=
⊕
L∈L

HL, X2 :=
⊕
a∈N

(⊕
b∈N

Ga,b

)
and X = X1 ⊕ X2

and define
p : X → G, p :=

⊕
L∈L

pL ⊕

(⊕
a∈N

(⊕
b∈N

pa,b

))
.

Clearly, p is a continuous surjective homomorphism. We claim that p is open. To this
end, it is enough to show that for any neighbourhood U f of zero in X1 there is m ∈ N
such that the subgroup

Tm :=
∏
a≤m

{0a} ×
∏
a>m

⊕
b∈N

Ga,b

is contained in p(U f ).
We shall use proof by contradiction. Suppose that for every m ∈ N there is an

element
tm := (01, . . . , 0m, gm

m+1, g
m
m+2, . . . ) ∈ Tm\p(U f ),

where gm
a ∈ psm

a (Hsm
a ) for a ≥ m + 1 and sm

a ∈ N. We can assume that the neighbourhood
U f is defined by a decreasing sequence {VL,s}s∈N of neighbourhoods of zero in HL for
each L ∈ L (see Proposition 2.2). For every m ∈ N, define L ∈ L by L(1) = 1 and

L(a) := max{s1
a, . . . , s

a−1
a } for a > 1.

Then gm
a ∈ pL(a)(HL(a)) for every m ∈ N and each a > m. So, tm ∈ pL(HL) for every

m ∈ N. Choose q ∈ N such that

S :=
∏
a≤q

{0a} ×
∏
a>q

HL(a) ⊆ VL,1.

Then tm ∈ p(S ) ⊂ p(U f ) for every m > q, which contradicts the choice of elements tm.
Thus, p is open. �

Corollary 2.7. Let Ω be a class of abelian topological groups. Then, for every n ∈ N,

QS [Cc,1Kc,1.Cc,2Kc,2 . . .Cc,nKc,n](Ω) ⊆ QS KCc(Ω).

Proof. By Proposition 2.6 and [8, Proposition 2.5],

QS [Cc,1Kc,1.Cc,2Kc,2 . . .Cc,nKc,n](Ω) ⊆ QS (QK′C′c,1)[Cc,2Kc,2 . . .Cc,nKc,n(Ω)]

⊆ QS (K′C′c,2)[Kc,2 . . .Cc,nKc,n(Ω)]

⊆ QS K′(C′c,2Kc,2)[Cc,3Kc,3 . . .Cc,nKc,n(Ω)]

⊆ QS K′(QK′′C′c,3)[Cc,3Kc,3 . . .Cc,nKc,n(Ω)]

⊆ QS Q(K′K′′)(C′c,3Cc,3Kc,3)[Cc,4 . . .Cc,nKc,n(Ω)] ⊆ QS KCc(Ω). �
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Corollary 2.8. Let Ω be a class of abelian topological groups. Then

(CcKc)n(Ω) ⊆ QKCc(Ω) for all n ∈ N.

Proof. We prove the corollary for n = 2. One has

(CcKc)CcKc(Ω) ⊆ QKCcCcKc(Ω) = QK(CcKc)(Ω)
⊆ QKQKCc(Ω) ⊆ QQKKCc(Ω) = QKCc(Ω). �

3. Embedding of topological groups into direct sums

It is known that if a Banach space B embeds into the product of a family G of
topological groups, then B embeds also into the product of a finite subfamily of G
(see [5]). In this section we consider a similar question for coproducts.

Let (G, τ) be a topological group. The filter of all open neighbourhoods of the
identity e is denoted by N(G). The sets of the form

V l
U = {(x, y) ∈ G ×G : x−1y ∈ U} and Vr

U = {(x, y) ∈ G ×G : yx−1 ∈ U},

where U ∈ N(G), form respectively a base of the left Ul and the right Ur uniform
structures on G. A subset A of G is called left (respectively right) uniformly discrete
if there is a U ∈ N(G) such that aU ∩ bU = ∅ (respectively Ua ∩ Ub = ∅) for distinct
elements a, b ∈ A. The left uniformly discrete number udl(G) of a subset A of X is
defined as follows (see [1]):

udl(A) = sup{|D| : D is a left uniformly discrete subset of A}.

The right uniformly discrete number udr(G) is defined analogously. Clearly, udl(A) =

udr(A). So, we can define the uniformly discrete number of A by ud(A) := udl(A).
Let {Gi}i∈I be a nonempty family of groups. The natural projection of

∏
i∈I Gi onto

Gk is denoted by πk, that is, πk((gi)i∈I) = gk. If A is a subset of
∏

i∈I Gi, denote by
supp(A) the set of all indices k ∈ I for which there exists a ∈ A such that πk(a) , ek.

Let {(Gi, τi)}i∈I be a nonempty family of (Hausdorff) topological groups. For every
i ∈ I, fix Ui ∈ N(Gi) and put∏

i∈I

Ui :=
{
(gi)i∈I ∈

∏
i∈I

Gi : gi ∈ Ui for all i ∈ I
}
.

Then the sets of the form
∏

i∈I Ui, where Ui ∈ N(Gi) for every i ∈ I, form a
neighbourhood basis at the unit of a (Hausdorff) group topology Tb on

∏
i∈I Gi that

is called the box topology. Clearly, Tb ≤ T f on
⊕

i∈I Gi.
The next theorem is the main result in this section.

Theorem 3.1. Let {(Gi, τi)}i∈I , where I is a nonempty index set, be a family of Hausdorff
topological groups and let τ be an arbitrary group topology on G =

⊕
i∈I Gi which is

finer than the box topology, that is, Tb ≤ τ. Then every infinite subset A of G has a left
uniformly discrete subset of cardinality |supp(A)|.
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Proof. If |supp(A)| is finite, the theorem is trivial because A is infinite and τ is
Hausdorff. So, we will assume that κ := |supp(A)| is infinite.

Step 1. Let us show that there are a subset D = {dα}α<κ of A and a subset I0 = {iα}α<κ ⊆
supp(A) such that

iα ∈ supp(dα)
∖ [⋃

ξ<α

supp(dξ)
]

for every α < κ. (3.1)

Indeed, let J be the set of all ordinals α such that their cardinals |α| are strictly less
than |supp(A)|. It is well known that J is well ordered and |J| = |supp(A)|.

For α = 0, let d0 be an arbitrary nonzero element of A and choose arbitrarily
i0 ∈ supp(d0). Set D0 = {d0} and J0 = {i0}.

Fix a nonzero ordinal α < κ and assume that for every ordinal ξ < α we built
Dξ = {dζ}ζ≤ξ ⊂ A and Jξ = {iζ}ζ≤ξ ⊂ supp(A) such that

iξ ∈ supp(dξ)
∖ [⋃

ζ<ξ

supp(dζ)
]
. (3.2)

Since supp(dξ) is finite for every ξ < α, (3.2) implies that∣∣∣∣∣⋃
ζ<α

supp(dζ)
∣∣∣∣∣ = |α| < κ.

Hence, there exist dα ∈ A and iα ∈ supp(dα) for which (3.1) is fulfilled. Set Dα :=
{dζ}ζ≤α and Jα := {iζ}ζ≤α. Finally, we set

D :=
⋃
α<κ

Dα = {dα}α<κ and I0 = {iα}α<κ.

By construction, D and I0 are as desired.

Step 2. For each ordinal α < κ, choose a symmetric Uiα ∈ N(Giα) such that πiα(dα) <
Uiα · Uiα . Set

U =
∏
i∈I

Ui, where Ui = Uiα if i = iα for some α < κ, and Ui = Gi otherwise.

To prove the theorem, it is enough to show that dαU ∩ dβU = ∅ for every β < α.
By (3.1),

πiα(dαU) = πiα(dα)Uiα and πiα(dβU) = πiα(dβ)Uiα = Uiα .

Hence, πiα(dαU) ∩ πiα(dβU) = ∅ by the choice of Uiα . Thus, dαU ∩ dβU = ∅ as well. �

Corollary 3.2. Let p be a continuous homomorphism of a Hausdorff topological
group X into the direct sum (

⊕
i∈I Gi, τ) of a family {(Gi, τi)}i∈I of Hausdorff

topological groups, where Tb ≤ τ. Then |supp(p(X))| ≤ ud(X).
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Proof. We use proof by contradiction. Suppose that |supp(p(X))| > ud(X). By
Theorem 3.1, we can find a left U-uniformly discrete subset D of p(X) of cardinality
|supp(p(X))|. For every d ∈ D, choose an arbitrary element ad ∈ p−1(d). Clearly, the
set A = {ad}d∈D has cardinality |supp(p(X))| and it is p−1(U)-left separated. But this
contradicts the definition of ud(X). Thus, |supp(p(X))| ≤ ud(X). �

Corollary 3.3. Let p be a continuous homomorphism of a separable infinite
Hausdorff topological group X into the direct sum (

⊕
i∈I Gi, τ) of a family {(Gi, τi)}i∈I

of Hausdorff topological groups, where Tb ≤ τ. Then |supp(p(X))| ≤ ℵ0. Moreover, if
X has the Baire property (in particular, if X is a Polish group), then there exists a finite
set of indices J ⊂ I such that

p−1
(⊕

i∈J

Gi

)
is a clopen subgroup of X.

Proof. Clearly, ud(X) = ℵ0 and the assertion follows from Corollary 3.2. Assume
additionally that X has the Baire property. Let {in}n∈N be an arbitrary enumeration of
supp(p(X)). Then

X =
⋃
n∈N

p−1
( n⊕

k=1

Gik

)
.

Since X is Baire, there exists n ∈ N such that p−1(
⊕n

k=1 Gik ) is an open subgroup of
X. �

Corollary 3.4. Let p be a continuous homomorphism of a separable Banach space X
into the direct sum (

⊕
i∈I Gi, τ) of Hausdorff topological groups (Gi, τi), i ∈ I, where

Tb ≤ τ. Then there exists a finite set of indices J ⊂ I such that p(X) ⊆
⊕

i∈J Gi.

Proof. Since X has the Baire property and is connected, the assertion immediately
follows from Corollary 3.3. �

We do not know whether the separability of X in this corollary can be omitted.

4. On varieties C(`p) for 1 ≤ p < ∞

The variety C(`1) contains all abelian topological groups by [8, Corollary 3.2].
In particular, C(`1) contains Banach spaces of arbitrary dimension. Noting that `1

is a nonreflexive separable Banach space, it was asked in [8, Question 7]: can the
variety C(B) generated by a reflexive Banach space B contain Banach spaces of higher
dimension? We note that the answer to the similar question for the variety V(B) is
negative by [5, Theorem 4.1]. However, for varieties with coproducts the situation
changes, as the next theorem shows (recall that `p(Γ) is reflexive for every 1 < p <∞
and each set Γ).

Theorem 4.1. For each 1 ≤ p <∞ and each set Γ, `p(Γ) ∈ C(`p).
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Proof. For each x = (xγ)γ∈Γ ∈ `p(Γ), set supp(x) := {γ ∈ Γ : xγ , 0}. For each γγγ =

(γn)n∈N ∈ Γ≤N, set Lγγγ = `p and define πγγγ : Lγγγ → `p(Γ) by (xγγγ = (xn)n∈N ∈ Lγγγ)

πγγγ(xγγγ) = (xγ)γ∈Γ, where xγ =

xn if γ = γn,

0 otherwise.

Clearly, πγγγ is an embedding of Lγγγ onto its image in `p(Γ). Set

G =

(⊕
γγγ∈Γ≤N

Lγγγ,T f

)
and π : G→ `p(Γ), π((xγγγ)) =

∑
γγγ∈Γ≤N

πγγγ(xγγγ).

Then π is a continuous epimorphism. For the sake of simplicity, we shall identify Lγγγ
with its image in G.

We show that π is open. Suppose for a contradiction that there is an open
neighbourhood U f of zero in G such that π(U f ) is not a neighbourhood of zero 0
in `p(Γ). As `p(Γ) is metrisable, there is a sequence {xk} ⊂ `p(Γ) such that xk <
π(U f ), k ∈ N, and xk → 0. Set γγγ :=

⋃
k∈N supp(xk). Then γγγ ∈ Γ≤N. So, there is an

open neighbourhood Uγγγ of zero in Lγγγ such that Uγγγ ⊂ U f . Clearly, xk ∈ πγγγ(Uγγγ) ⊂ π(U f )
for all sufficiently large k. This contradicts the choice of xk. Thus, π is open and
`p(Γ) ∈ C(`p). �

Denote byH the class of all Hilbert spaces. It is well known that any Hilbert space
has the form `2(Γ) for some set Γ. So, Theorem 4.1 implies the following result.

Corollary 4.2. C(`2) = C(H) = C(H) for any infinite-dimensional Hilbert space H.

In the next proposition we show that, for the two generators FA(s) and `1 of TopAb,
it is enough to use each of the operations (Q), (S ), (C) and (K) only once to generate
TopAb.

Proposition 4.3. QS CK(FA(s)) = QS CK(`1) = TopAb.

Proof. The first equality repeats the proof of [8, Theorem 3.1]: since any metrisable
abelian topological group X belongs to QK(FA(s)) by [6, Theorem 1.14] and [7,
Theorem 1.18],

TopAb = QS C(B) = QS C(QK(FA(s))) = QS CK(FA(s)).

To prove the second equality, let us recall that any Banach space is a quotient space of
`1(Γ) for some set Γ (see [17, Proposition 11.4.6]). So, Theorem 4.1 implies that

TopAb = QS C(B) = QS C(QK(`1)) = QS CK(`1). �

This proposition motivates the following question.

Question 4.4. Let Ω be a class of abelian topological groups. Is QS (CK ∪ KC)(Ω) =

C(Ω)? Is QS CKCK(Ω) = C(Ω)?
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