We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We provide a complete classification of the singularities of cluster algebras of finite type with trivial coefficients. Alongside, we develop a constructive desingularization of these singularities via blowups in regular centers over fields of arbitrary characteristic. Furthermore, from the same perspective, we study a family of cluster algebras which are not of finite type and which arise from a star shaped quiver.
We consider a quiver with potential (QP)
$(Q(D),W(D))$
and an iced quiver with potential (IQP)
$(\overline {Q}(D), F(D), \overline {W}(D))$
associated with a Postnikov Diagram D and prove that their mutations are compatible with the geometric exchanges of D. This ensures that we may define a QP
$(Q,W)$
and an IQP
$(\overline {Q},F,\overline {W})$
for a Grassmannian cluster algebra up to mutation equivalence. It shows that
$(Q,W)$
is always rigid (thus nondegenerate) and Jacobi-finite. Moreover, in fact, we show that it is the unique nondegenerate (thus rigid) QP by using a general result of Geiß, Labardini-Fragoso, and Schröer (2016, Advances in Mathematics 290, 364–452).
Then we show that, within the mutation class of the QP for a Grassmannian cluster algebra, the quivers determine the potentials up to right equivalence. As an application, we verify that the auto-equivalence group of the generalized cluster category
${\mathcal {C}}_{(Q, W)}$
is isomorphic to the cluster automorphism group of the associated Grassmannian cluster algebra
${{\mathcal {A}}_Q}$
with trivial coefficients.
Recently Ovsienko and Tabachnikov considered extensions of Somos and Gale-Robinson sequences, defined over the algebra of dual numbers. Ovsienko used the same idea to construct so-called shadow sequences derived from other nonlinear recurrence relations exhibiting the Laurent phenomenon, with the original motivation being the hope that these examples should lead to an appropriate notion of a cluster superalgebra, incorporating Grassmann variables. Here, we present various explicit expressions for the shadow of Somos-4 sequences and describe the solution of a general Somos-4 recurrence defined over the
$\mathbb{C}$
-algebra of dual numbers from several different viewpoints: analytic formulae in terms of elliptic functions, linear difference equations, and Hankel determinants.
Let $f:R\to S$ be a ring homomorphism and J be an ideal of S. Then the subring $R\bowtie ^fJ:=\{(r,f(r)+j)\mid r\in R$ and $j\in J\}$ of $R\times S$ is called the amalgamation of R with S along J with respect to f. In this paper, we characterize when $R\bowtie ^fJ$ is a Hilbert ring. As an application, we provide an example of Hilbert ring with maximal ideals of different heights. We also construct non-Noetherian Hilbert rings whose maximal ideals are all finitely generated (unruly Hilbert rings).
We continue the work started in parts (I) and (II) of this series. In this paper, we classify which continuous quivers of type A are derived equivalent. Next, we define the new
${\mathcal {C}(A_{{\mathbb {R}},S})}$
, which we call weak continuous cluster category. It is a triangulated category, it does not have cluster structure but it has a new weaker notion of “cluster theory.” We show that the original continuous cluster category of [15] is a localization of this new weak continuous cluster category. We define cluster theories to be appropriate groupoids and we show that cluster structures satisfy the conditions for cluster theories. We describe the relationship between different cluster theories: some new and some obtained from cluster structures. The notion of continuous mutation which appears in cluster theories (but not in cluster structures) appears in the next paper [20].
For a not-necessarily commutative ring $R$ we define an abelian group $W(R;M)$ of Witt vectors with coefficients in an $R$-bimodule $M$. These groups generalize the usual big Witt vectors of commutative rings and we prove that they have analogous formal properties and structure. One main result is that $W(R) := W(R;R)$ is Morita invariant in $R$. For an $R$-linear endomorphism $f$ of a finitely generated projective $R$-module we define a characteristic element $\chi _f \in W(R)$. This element is a non-commutative analogue of the classical characteristic polynomial and we show that it has similar properties. The assignment $f \mapsto \chi _f$ induces an isomorphism between a suitable completion of cyclic $K$-theory $K_0^{\mathrm {cyc}}(R)$ and $W(R)$.
We show that the dimer algebra of a connected Postnikov diagram in the disc is bimodule internally
$3$
-Calabi–Yau in the sense of the author’s earlier work [43]. As a consequence, we obtain an additive categorification of the cluster algebra associated to the diagram, which (after inverting frozen variables) is isomorphic to the homogeneous coordinate ring of a positroid variety in the Grassmannian by a recent result of Galashin and Lam [18]. We show that our categorification can be realised as a full extension closed subcategory of Jensen–King–Su’s Grassmannian cluster category [28], in a way compatible with their bijection between rank
$1$
modules and Plücker coordinates.
The purpose of this paper is to investigate the properties of spectral and tiling subsets of cyclic groups, with an eye towards the spectral set conjecture [9] in one dimension, which states that a bounded measurable subset of
$\mathbb {R}$
accepts an orthogonal basis of exponentials if and only if it tiles
$\mathbb {R}$
by translations. This conjecture is strongly connected to its discrete counterpart, namely that, in every finite cyclic group, a subset is spectral if and only if it is a tile. The tools presented herein are refinements of recent ones used in the setting of cyclic groups; the structure of vanishing sums of roots of unity [20] is a prevalent notion throughout the text, as well as the structure of tiling subsets of integers [1]. We manage to prove the conjecture for cyclic groups of order
$p^{m}q^{n}$
, when one of the exponents is
$\leq 6$
or when
$p^{m-2}<q^{4}$
, and also prove that a tiling subset of a cyclic group of order
$p_{1}^{m}p_{2}\dotsm p_{n}$
is spectral.
Let $f\colon Y \to X$ be a proper flat morphism of locally noetherian schemes. Then the locus in $X$ over which $f$ is smooth is stable under generization. We prove that, under suitable assumptions on the formal fibers of $X$, the same property holds for other local properties of morphisms, even if $f$ is only closed and flat. Our proof of this statement reduces to a purely local question known as Grothendieck's localization problem. To answer Grothendieck's problem, we provide a general framework that gives a uniform treatment of previously known cases of this problem, and also solves this problem in new cases, namely for weak normality, seminormality, $F$-rationality, and the ‘Cohen–Macaulay and $F$-injective’ property. For the weak normality statement, we prove that weak normality always lifts from Cartier divisors. We also solve Grothendieck's localization problem for terminal, canonical, and rational singularities in equal characteristic zero.
We introduce a notion of embedding codimension of an arbitrary local ring, establish some general properties and study in detail the case of arc spaces of schemes of finite type over a field. Viewing the embedding codimension as a measure of singularities, our main result can be interpreted as saying that the singularities of the arc space are maximal at the arcs that are fully embedded in the singular locus of the underlying scheme, and progressively improve as we move away from said locus. As an application, we complement a theorem of Drinfeld, Grinberg and Kazhdan on formal neighbourhoods in arc spaces by providing a converse to their theorem, an optimal bound for the embedding codimension of the formal model appearing in the statement, a precise formula for the embedding dimension of the model constructed in Drinfeld’s proof and a geometric meaningful way of realising the decomposition stated in the theorem.
Let R be an integral domain with $qf(R)=K$, and let $F(R)$ be the set of nonzero fractional ideals of R. Call R a dually compact domain (DCD) if, for each $I\in F(R)$, the ideal $I_{v}=(I^{-1})^{-1}$ is a finite intersection of principal fractional ideals. We characterize DCDs and show that the class of DCDs properly contains various classes of integral domains, such as Noetherian, Mori, and Krull domains. In addition, we show that a Schreier DCD is a greatest common divisor (GCD) (Greatest Common Divisor) domain with the property that, for each $A\in F(R)$, the ideal $A_{v}$ is principal. We show that a domain R is G-Dedekind (i.e., has the property that $A_{v}$ is invertible for each $A\in F(R)$) if and only if R is a DCD satisfying the property $\ast :$ For all pairs of subsets $\{a_{1},\ldots ,a_{m}\},\{b_{1},\ldots ,b_{n}\}\subseteq K\backslash \{0\}, (\cap _{i=1}^{m}(a_{i})(\cap _{j=1}^{n}(b_{j}))=\cap _{i,j=1}^{m,n}(a_{i}b_{j})$. We discuss what the appropriate names for G-Dedekind domains and related notions should be. We also make some observations about how the DCDs behave under localizations and polynomial ring extensions.
We show that the additive higher Chow groups of regular schemes over a field induce a Zariski sheaf of pro-differential graded algebras, the Milnor range of which is isomorphic to the Zariski sheaf of big de Rham–Witt complexes. This provides an explicit cycle-theoretic description of the big de Rham–Witt sheaves. Several applications are derived.
In his work on modularity theorems, Wiles proved a numerical criterion for a map of rings $R\to T$ to be an isomorphism of complete intersections. He used this to show that certain deformation rings and Hecke algebras associated to a mod $p$ Galois representation at non-minimal level are isomorphic and complete intersections, provided the same is true at minimal level. In this paper we study Hecke algebras acting on cohomology of Shimura curves arising from maximal orders in indefinite quaternion algebras over the rationals localized at a semistable irreducible mod $p$ Galois representation $\bar {\rho }$. If $\bar {\rho }$ is scalar at some primes dividing the discriminant of the quaternion algebra, then the Hecke algebra is still isomorphic to the deformation ring, but is not a complete intersection, or even Gorenstein, so the Wiles numerical criterion cannot apply. We consider a weight-2 newform $f$ which contributes to the cohomology of the Shimura curve and gives rise to an augmentation $\lambda _f$ of the Hecke algebra. We quantify the failure of the Wiles numerical criterion at $\lambda _f$ by computing the associated Wiles defect purely in terms of the local behavior at primes dividing the discriminant of the global Galois representation $\rho _f$ which $f$ gives rise to by the Eichler–Shimura construction. One of the main tools used in the proof is Taylor–Wiles–Kisin patching.
We determine the metric dimension of the annihilating-ideal graph of a local finite commutative principal ring and a finite commutative principal ring with two maximal ideals. We also find bounds for the metric dimension of the annihilating-ideal graph of an arbitrary finite commutative principal ring.
Let
$\mathsf {C}$
be a symmetrisable generalised Cartan matrix. We introduce four different versions of double Bott–Samelson cells for every pair of positive braids in the generalised braid group associated to
$\mathsf {C}$
. We prove that the decorated double Bott–Samelson cells are smooth affine varieties, whose coordinate rings are naturally isomorphic to upper cluster algebras.
We explicitly describe the Donaldson–Thomas transformations on double Bott–Samelson cells and prove that they are cluster transformations. As an application, we complete the proof of the Fock–Goncharov duality conjecture in these cases. We discover a periodicity phenomenon of the Donaldson–Thomas transformations on a family of double Bott–Samelson cells. We give a (rather simple) geometric proof of Zamolodchikov’s periodicity conjecture in the cases of
$\Delta \square \mathrm {A}_r$
.
When
$\mathsf {C}$
is of type
$\mathrm {A}$
, the double Bott–Samelson cells are isomorphic to Shende–Treumann–Zaslow’s moduli spaces of microlocal rank-1 constructible sheaves associated to Legendrian links. By counting their
$\mathbb {F}_q$
-points we obtain rational functions that are Legendrian link invariants.
We calculate the integral equivariant cohomology, in terms of generators and relations, of locally standard torus orbifolds whose odd degree ordinary cohomology vanishes. We begin by studying GKM-orbifolds, which are more general, before specializing to half-dimensional torus actions.
In this paper, we study a family of binomial ideals defining monomial curves in the n-dimensional affine space determined by n hypersurfaces of the form
$x_i^{c_i} - x_1^{u_{i1}} \cdots x_n^{u_{1n}}$
in
$\Bbbk [x_1, \ldots , x_n]$
with
$u_{ii} = 0, \ i\in \{ 1, \ldots , n\}$
. We prove that the monomial curves in that family are set-theoretic complete intersections. Moreover, if the monomial curve is irreducible, we compute some invariants such as genus, type and Frobenius number of the corresponding numerical semigroup. We also describe a method to produce set-theoretic complete intersection semigroup ideals of arbitrary large height.
The (tree) amplituhedron $\mathcal {A}_{n,k,m}(Z)$ is a certain subset of the Grassmannian introduced by Arkani-Hamed and Trnka in 2013 in order to study scattering amplitudes in $N=4$ supersymmetric Yang–Mills theory. Confirming a conjecture of the first author, we show that when $m$ is even, a collection of affine permutations yields a triangulation of $\mathcal {A}_{n,k,m}(Z)$ for any $Z\in \operatorname {Gr}_{>0}(k+m,n)$ if and only if the collection of their inverses yields a triangulation of $\mathcal {A}_{n,n-m-k,m}(Z)$ for any $Z\in \operatorname {Gr}_{>0}(n-k,n)$. We prove this duality using the twist map of Marsh and Scott. We also show that this map preserves the canonical differential forms associated with the corresponding positroid cells, and hence obtain a parity duality for amplituhedron differential forms.
We prove first-order definability of the prime subring inside polynomial rings, whose coefficient rings are (commutative unital) reduced and indecomposable. This is achieved by means of a uniform formula in the language of rings with signature $(0,1,+,\cdot )$. In the characteristic zero case, the claim implies that the full theory is undecidable, for rings of the referred type. This extends a series of results by Raphael Robinson, holding for certain polynomial integral domains, to a more general class.
We introduce the notion of a $Y$-pattern with coefficients and its geometric counterpart: an $\mathcal {X}$-cluster variety with coefficients. We use these constructions to build a flat degeneration of every skew-symmetrizable specially completed $\mathcal {X}$-cluster variety $\widehat {\mathcal {X} }$ to the toric variety associated to its g-fan. Moreover, we show that the fibers of this family are stratified in a natural way, with strata the specially completed $\mathcal {X}$-varieties encoded by $\operatorname {Star}(\tau )$ for each cone $\tau$ of the $\mathbf {g}$-fan. These strata degenerate to the associated toric strata of the central fiber. We further show that the family is cluster dual to $\mathcal {A}_{\mathrm {prin}}$ of Gross, Hacking, Keel and Kontsevich [Canonical bases for cluster algebras, J. Amer. Math. Soc. 31 (2018), 497–608], and the fibers cluster dual to $\mathcal {A} _t$. Finally, we give two applications. First, we use our construction to identify the toric degeneration of Grassmannians from Rietsch and Williams [Newton-Okounkov bodies, cluster duality, and mirror symmetry for Grassmannians, Duke Math. J. 168 (2019), 3437–3527] with the Gross–Hacking–Keel–Kontsevich degeneration in the case of $\operatorname {Gr}_2(\mathbb {C} ^{5})$. Next, we use it to link cluster duality to Batyrev–Borisov duality of Gorenstein toric Fanos in the context of mirror symmetry.