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Abstract

We produce a large class of generalized cluster structures on the Drinfeld double of GL,, that are compatible
with Poisson brackets given by Belavin—Drinfeld classification. The resulting construction is compatible with the
previous results on cluster structures on GL;,.
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1. Introduction

The present article is a continuation in a series of papers by Misha Gekhtman, Misha Shapiro and Alek
Vainshtein that aim at proving the following conjecture:

Any simple complex Poisson—Lie group endowed with a Poisson bracket from the Belavin—Drinfeld
classification possesses a compatible generalized cluster structure.

For conciseness, we refer to the above conjecture as the GSV conjecture and to Belavin—Drinfeld
triples as BD triples. The conjecture was first formulated in [16] assuming ordinary cluster structures of
geometric type, and later it was realized in [ 18] that a more general notion of cluster algebras is needed.
Cluster algebras were invented by Fomin and Zelevinsky in [14] as an algebraic framework for studying
dual canonical bases and total positivity. The notion of generalized cluster algebra suitable for the GSV
conjecture was first introduced in [18] as an adjustment of an earlier definition given in [6].

Progress on GSV conjecture

As the recent progress shows, the GSV conjecture might be extended beyond simple groups and brackets
compatible with the group structure. At present, we know that

o Any simple complex Poisson-Lie group endowed with the standard Poisson bracket possesses a
compatible cluster structure; see [16];

o For any Belavin—Drinfeld data, the existence of a compatible cluster structure for SL,, for all n < 5
was shown in [16]; for SLs, the conjecture was proved by Eisner in [8];

o For a large class of the so-called aperiodic oriented BD triples, the conjecture was proved for SL,,
in [20];

o For other Poisson—Lie groups, the conjecture was established for the Drinfeld double of SL,, in [18]
for the standard Poisson structure, as well as for SLI,, which is an image of the dual group SL, in
SL,. An alternative construction on the Drinfeld double of SL,, was also given in [19, 21].

The above results naturally extend to GL,. The present paper combines the cluster structures from
[20] for aperiodic oriented BD triples with the generalized cluster structure from [18] for the Drinfeld
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double endowed with the standard bracket. As a result, we derive generalized cluster structures on the
Drinfeld doubles of GL,, and SL,, compatible with Poisson brackets from the aperiodic oriented class
of Belavin—Drinfeld triples.

Belavin—Drinfeld triples

Let IT := [1,n — 1] be a set of simple roots of type A,, identified with an interval [1,n — 1]. Recall
that a Belavin—Drinfeld triple is a triple (I'},I2,y) such that I';,I’; € IT and y : '} — I% a nilpotent
isometry; we say that the triple is #rivial if I'| = I'; = 0. As Belavin and Drinfeld showed in [1, 2], such
triples (together with some additional data) parametrize factorizable quasitriangular Poisson structures
on connected simple complex Poisson—Lie groups (for details, see Section 2.2). As in [20], however, we
consider even more general Poisson brackets that depend on a pair I := (I'",I'“) of Belavin—Drinfeld
triplesI'" := (I'], 7, y,) and ' := (I}, 'S, y.). A Belavin-Drinfeld triple (I';, I'2, y) is called oriented
if forany i,i+ 1 € I't, y(i + 1) = y(i) + 1; a pair of Belavin—Drinfeld triples is called oriented if both
I and T are oriented. The pair is called aperiodic if the map y-'wqy, wq is nilpotent, where wy is
the longest Weyl group element. Given a Cartan subalgebra } of sl,,(C) and a Belavin—Drinfeld triple
(Fl, FZ’ 7)7 set

br = {h € | a(h) = B(h). ¥/ (a) = B for some ),

and let Hr be the connected subgroup of SL,,(C) with Lie algebra hr. The dimension of Hr is given by
kr :=|[IT\T}|.

Main results and the outline of the paper

In this paper, we consider generalized cluster structures in the rings of regular functions of GL, x GL,,
and SL,, X SL,, (for the precise definition, see Section 2.1). Roughly, the difference between generalized
cluster structures and ordinary cluster structures of geometric type (in the sense of Fomin and Zelevinsky)
is that the former allows more than two monomials in exchange relations. In fact, there is only one
generalized exchange relation in the initial seeds that we study in this paper (more generalized exchange
relations appear in the case of nonaperiodic BD pairs; see [19]). Recall that an extended cluster
(x1,...,xN4pm) is called log-canonical (relative some Poisson bracket {-,-}) if {x;,x;} = w;jx;x; for
some constants w;; and all 1 < i, j < N+M; a generalized cluster structure is called compatible with the
Poisson bracket if all extended clusters are log-canonical. An extended cluster (xi, ..., xy+a) is called
regular if all x;’s are represented as regular functions on the given variety (GL, x GL, or SL,, X SL,
in our case); the generalized cluster structure is called regular if all extended clusters are regular. The
main part of the paper is devoted to proving the following theorem.

Theorem 1.1. Let I = (I'",I'°) be a pair of aperiodic oriented Belavin—Drinfeld triples. There exists a
generalized cluster structure GC(I') on D(GL,,) = GL,, X GL,, such that

(i) The number of stable variables is kyr + kye + (n + 1), and the exchange matrix has full rank;
(ii) The generalized cluster structure GC(I') is regular, and the ring of regular functions O(D(GL,,))
is naturally isomorphic to the upper cluster algebra Ac(GC(I));
(iii) The global toric action of (C*)¥+kree+2 op GC(T) is induced by the left action of Hyr, the right
action of Hre and the action by scalar matrices on each component of GL, X GL,,;
(iv) Any Poisson bracket defined by the pair T on D(GL,,) is compatible with GC(TI).

For the trivial I'" and I', the theorem was proved in [18] (we refer to the corresponding generalized
cluster structure GC(I'",T'°) as the standard one). When I'" = T'°, the group D(GL,) together with
its Poisson structure is the Drinfeld double of GL,,. By default, we work over the field of complex
numbers C (however, the results hold over R for the same class of Poisson brackets). The initial seed is
described in Section 3 (a rough description is available below). The proof of Theorem 1.1 is contained
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in Sections 4-8. In Section 4, we prove that all cluster variables in the seeds adjacent to the initial one
are regular functions. In Section 5, we prove Part (ii) by induction on the size |I'[| + |T'{|. The step
of the induction employs the construction of certain birational quasi-isomorphisms introduced in [20]
(i.e., quasi-isomorphisms in the sense of [12] that are also birational isomorphisms of the underlying
varieties). Section 6 is devoted to Part (iii), and in Sections 7 and 8 we prove Part (iv) via a direct
computation. A similar result holds in the case of D(SL,,):

Theorem 1.2. Let I' = (I'",I°) be a pair of aperiodic oriented Belavin—Drinfeld triples. There exists a
generalized cluster structure GC(I') on D(SL,,) = SL,, X SL,, such that

(i) The number of stable variables is kyr + kre + (n — 1), and the exchange matrix has full rank;
(ii) The generalized cluster structure GC(I') is regular, and the ring of regular functions O(D(SL,,))
is naturally isomorphic to the upper cluster algebra Ac(GC(T));
(iii) The global toric action of (C*)*+kr¢ on GC(T) is induced by the left action of Hy- and the right
action of Hre on D(SLy);
(iv) Any Poisson bracket defined by the pair I on D(SLy,) is compatible with GC(T).

In Section 9, we show how to derive Theorem 1.2 from Theorem 1.1, and in Section 10 we provide
a few examples of the generalized cluster structures studied in this paper.

A rough description of the initial extended seed

The construction of the initial quiver consists of two parts: First, we construct the initial quiver for the
case of the trivial I' (this was described in [18]); second, for each root in Ff and l"; , we add three
additional arrows (see Figure 12). The initial extended cluster consists of five types of regular functions:
c-functions, ¢-functions, f-functions, g-functions and A-functions. The c-, ¢- and f-functions were
constructed in [18] and are the same for any choice of I'. More specifically, the c-functions comprise
n — 1 Casimirs' of the given Poisson bracket which also serve as isolated frozen variables, and the ¢-
and f-functions are (n—1)n/2 and (n—1)(n—2)/2 cluster variables that satisfy the following invariance
properties:

f(X,Y) = f(NJXN_,N,YN'), ¢(X.Y)=G(AXN_,AYN_),

where (X,Y) are the standard coordinates on D(GL,), N, is any unipotent upper triangular ma-
trix, N_ and N’ are unipotent lower triangular matrices, A is any invertible matrix and ¢(X,Y) =
(det X)™@(X,Y) for some number m that depends on ¢. Furthermore for any BD data, the initial seed
also contains the g-functions det X [’ "]] and the h-functions detY ,1 <i < n(detX and detY are
both frozen variables). All the other g- and A-functions are constructed via a combinatorial procedure
based on the given root data I' (there are n(n + 1)/2 g-functions and n(n + 1)/2 h-functions). As in
[20], we construct a list of so-called £-matrices, and then we set the g- and A-functions to be the trailing
minors of the £-matrices. The determinants of £-matrices are declared to be frozen variables. If we let
¥ to be any g- or h-variable, then it satisfies the following invariance properties:

¢(N+X7 ’}7r(N+)Y) = lﬁ(X’j’/Z(N*)’YN*) = W(X, Y)’

where ¥, and 7 are group lifts of the Belavin—Drinfeld maps vy, and 7y associated with I'"" and I'°,
respectively. The combinatorial construction relies on the nilpotency of the map ' woy, wo, where wq
is the longest Weyl group element. When y_!wqy,wy is not nilpotent, the £-matrices become infinite,
so a different procedure has to be applied (one such example was studied in [19]). See Section 10 for
some examples of £-matrices and initial quivers.

1To be more precise, the c-functions are Casimirs on D (GL,,) if an only if Ry(7) = (1/2)1; see a discussion in Section 3.3.
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Future work

As explained in Remark 3.7 in [20], the authors of the conjecture have already identified general-
ized cluster structures in type A for any Belavin—Drinfeld data. However, there is a lack of tools for
producing proofs. One new tool was introduced in [20], which consists in considering birational quasi-
isomorphisms between different cluster structures and which significantly reduced labor in showing
that the upper cluster algebra is naturally isomorphic to the algebra of regular functions. However,
there’s yet no better tool for proving the compatibility with a Poisson bracket except a tedious and direct
computation. We hope that the constructed birational quasi-isomorphisms might be used for proving
log-canonicity as well, but this idea is still under development. Furthermore, Schrader and Shapiro re-
cently in [25] have embedded the quantum group U, (sl,) into a quantum cluster X'-algebra introduced
by Fock and Goncharov in [10]. As noted in [25], one should be able to embed U, (sl,,) into a quantum
cluster A-algebra in the sense of Berenstein and Zelevinsky [4], which is suggested by the existence
of a generalized cluster structure on the dual group SL; from [18]. We plan to address the question
about A-cluster realization of Uy (sl,), as well as the question of existence of other generalized cluster
structures on SL;, in our future work.

Software

During the course of working on this paper, we have developed a Matlab application that is able to
produce the initial seed of any generalized cluster structure presented in the paper and which provides
various tools for manipulating the quiver and the associated functions. It also presents some tools for
working with Poisson brackets. The software is freely available under MIT license on the author’s
GitHub repository: https://github.com/Grabovskii/GenClustGLn.

2. Background
2.1. Generalized cluster structures

In this section, we briefly recall the main definitions and propositions of the generalized cluster algebras
theory from [18], which constitute a generalization of cluster algebras of geometric type invented by
Fomin and Zelevinsky in [14]. Throughout this section, let F be a field of rational functions in N + M
independent variables with coefficients in Q. Fix an algebraically independent set xn 41, ...,XN+ps € F
over Q and call its elements stable (or frozen) variables.

Seeds
To define a seed, we first define the following data:

o Let B = (b; j) be an N x (N + M) integer matrix whose principal part B is skew-symmetrizable (recall
that the principal part of a matrix is its leading square submatrix). The matrices B and B are called
the exchange matrix and the extended exchange matrix, respectively;

o Let x1,...,xy be an algebraically independent subset of F over Q such that the elements
Xls...sXN,...,Xn+p generate the field F. The elements x1, . . ., xn are called cluster variables, and
the tuples x := (x1,...,xn5) and X := (xq,...,xn+p) are called a cluster and an extended cluster,
respectively;

o For every 1 < i < N, let d; be a factor of gcd(b;; | 1 < j < N). The ith string p; is a tuple
pi = (Pir)o<r<d;,» Where each p;, is a monomial in the stable variables with an integer coefficient
and such that p;o = pigq, = 1. The ith string is called rrivial if d; = 1. Set P :={p; | 1 <i < N}.

Now, a seed is X := (x, B, P) and an extended seed is £ := (X, B, P). In practice, one additionally
names one of the seeds as the initial seed.
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Generalized cluster mutations
Let ¥ = (x, B,P) be a seed constructed via the recipe from the previous paragraph. A generalized
cluster mutation in direction k produces a seed £’ = (x’, B/, P’) that is constructed as follows.

o Define cluster T-monomials uy.» and uy.<, 1 < k < N, via

. bild - —byi [di
uk;> L 1_[ xi K k’ uk;< - 1_[ xi ! ’

1<i<N, 1<i<N,
by;i>0 bri<0

and stable T-monomials v,l:_i and v,[:i, 1<k<N,0<r<d,as

._ rbii/dk ] [r] ._ |~7rbgi/dk ]
Vis = X > Vi< T X ’
N+1<i<N+M, N+1<i<N+M,

bk,'>0 bk,'<0

where the product over an empty set by definition equals 1 and |m ] denotes the floor of a number
m € Z. Define x; via the generalized exchange relation

d
XX, o= prb ]y yli=r] @.1)
and set X’ := (x\ {xx}) U {x; }.
o The matrix entries bl’. i of B’ are defined as
—b;; ifi=korj=k;
bl. = birlbr:+b:|br:
Y bij + biklbr; > ik[bi| otherwise.

o The strings p € P’ are given by the exchange coefficient mutation

r ._ )Pidi-r ifi = k;
pir R .
Dir otherwise.

The seeds X and X’ are also called adjacent. A few comments on the definition:

1) Call a cluster variable x; isolated if b;; = Oforall 1 < j < N + M. The definition of blfj implies that
a mutation preserves the property of being isolated;

2) Since gcd{b;;j |1 < j <N} = gcd{b | 1 < j < N}, the numbers dy, . .., dy retain their defining
property after a mutation is performed

3) Ifastring py is trivial, then the generalized exchange relation in equation (2.1) becomes the exchange
relation from the ordinary cluster theory of geometric type:

XkX) = l_[ xf”“'+ 1_[ xl._b“. (2.2)

1<i<N+M 1<i<N+M
brio bri<o

In fact, the generalized cluster structures studied in this paper have only one nontrivial string, hence
all exchange relations except one are ordinary.
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4) The generalized exchange relation can also be written in the following form. For any i, denote
[d:] pldil.
set

Vl>'_vl>9vi; l<’

r Vdi*r pd,'
;> 0,< A ir .

iy = —, iy =—, 1 <i<N,0<r<d,.
qir (V[r]v[di—r])di Pir Gir l r i

> i<

v

Note that the mutation rule for p;, is the same as for p;,. Now, equation (2.1) becomes

r _ A r di—r\1/dy ,,r di-r
xkxk—Z(pkrvk>vk< ) Mur u Ui -

The expression (P, v k: >vZ" "!/dk js a monomial in the stable variables.

Generalized cluster structure

Two seeds X and X’ are called mutation equivalent if there’s a sequence X, ..., X, such that ¥ = X,
Y, = X’ and such that X, | and Z; are adjacent for each i. For a fixed seed X, the set of all seeds that are
mutation equivalent to X is called the generalized cluster structure and is denoted as GC(X) or simply

gc.

Generalized cluster algebra
Let GC be a generahzed cluster structure constructed as above. Define A := Z[xN+1, ..., XN+Mm] and

A = Z[xt Xy +1, N +M] Choose a ground ring A, which is a subring of A that contains A. The
A-subalgebra of F given by
A = A(GC) := A[ cluster variables from all seeds in GC | 2.3)
is called the generalized cluster algebra. For any seed ¥ := ((x1,...,Xn), B, P), set
L(Z) = At xE] 24

to be the ring of Laurent polynomials associated with X, and define

1:=A(GC) := ﬂ L(Z). (2.5)

YegC

The algebra A is called the generalized upper cluster algebra. The generalized Laurent phenomenon
states that A C A.

Upper bounds

Let Ty be alabeled N-regular tree. Associate with each vertex a seed so that adjacent seeds are adjacent
in the tree,” and if a seed X’ is adjacent to Z in direction £, label the corresponding edge in the tree with
number k. A nerve N in Ty is a subtree on N + 1 vertices such that all its edges have different labels
(for instance, a star is a nerve). An upper bound A(N) is defined as the algebra

AWN) = ﬂ L(Z) (2.6)
ZeV (N)

2Multiple vertices might receive the same seed, and for this reason the tree is considered labeled. Identifying the vertices with
the same seeds (up to permutations of cluster variables), one obtains an unlabeled N-regular graph, which encodes all mutations
between distinct seeds.
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where V(N) stands for the vertex set of . Upper bounds were first defined and studied in [3]. Let L
be the number of isolated variables in GC. For the ith nontrivial string in P, let B(i) be a (d; — 1) X L
matrix such that the rth row consists of the exponents of the isolated variables in p;, (recall that p;, is
a monomial in the stable variables). The following result was proved in [18].

Proposition 2.1. Assume that the extended exchange matrix has full rank, and let rank B(i) =d; -1 for
any nontrivial string in ‘P. Then the upper bounds AQ\/' ) do not depend on the choice of N and hence
coincide with the generalized upper cluster algebra A.

Generalized cluster structures on varieties

Let V be a Zariski open subset of CN*M  (O(V) be the ring of regular functions, and let C(V) be the
field of rational functions on V. As before, let GC be a generalized cluster structure, and assume that
fi,---» fn+p is a transcendence basis of C(V) over C. Pick an extended cluster (x, . ..,xy+p) in GC,
and define a field isomorphism 6 : Fc — C(V) via6 : x; — f;, 1 <i < N+ M, where F¢c := FQCis
the extension by complex scalars of F. The pair (GC, 6) (or sometimes just GC) is called a generalized
cluster structure on V. It’s called regular if 6(x) is a regular function for every variable x. Choose a
ground ring as

o +1 +1
A= Z[XN.H’ s s XNsM o XNAM 15 - - - 9xN+M]7

where 0(xy+;) does not vanish on V if and only if 1 <i < M’. Set Ac := A® C and Ac := A® C.

Proposition 2.2. Let V be a Zariski open subset of CN*M and (GC, 0) be a generalized cluster structure
on Vwith N cluster and M stable variables. Suppose there exists an extended cluster X = (X1, ..., XN+Mm)
that satisfies the following properties:

(i) Foreach1 <i < N+ M, 0(x;) is regular on'V, and for each 1 <i # j < N + M, 0(x;) is coprime
with 0(x;) in O(V);

(ii) For any cluster variable x; obtained via the generalized exchange relation (2.1) applied to X in
direction k, 8(x; ) is regular on 'V and coprime with 0(xy) in O(V).

Then (GC, 0) is a regular generalized cluster structure on V. If additionally
(iii) each regular function on V belongs to 8( Ac(GC)),
then 0 is an isomorphism between Ac(GC) and O (V).

In the case of ordinary cluster structures, the proof of Proposition 2.2 is available in [15] (Proposition
3.37) and in a more general setup in [13] (Proposition 6.4.1). As explained in [18], Proposition 2.2 is
a direct corollary of a natural extension of Proposition 3.6 in [11] to the case of generalized cluster
structures. When 6 is an isomorphism between Ac(GC) and O(V), these algebras are also said to
be naturally isomorphic. A practical way of verifying Condition 2.2 of Proposition 2.2 is based on
Proposition 2.1.

Poisson structures in GC

Let {-, -} be a Poisson bracket on F (or on F¢), and let X be any extended cluster in GC. We say that X
is log-canonical if {x;,x;} = w;jx;xj forall 1 <i,j < N+ M, where w;; € Q (or w;; € C for F¢).
We call the generalized cluster structure compatible with the bracket if any extended cluster in GC is
log-canonical. Let Q := (w; J)l]\;ﬂ}” be the coefficient matrix of the bracket with respect to the extended
cluster X. The following proposition is a natural generalization of Theorem 4.5 from [15].

Proposition 2.3. Let £ = (X, B, P) be an extended seed in F that satisfies the following properties:

(i) The extended cluster X is log-canonical with respect to the bracket;

(ii) For a diagonal matrix with positive entries D such that DB is skew-symmetric, there exists a
diagonal N x N matrix A such that BQ = [A 0] and such that DA is a multiple of the identity
matrix;

(iii) The Laurent polynomials p;, are Casimirs of the bracket.
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Then any other seed in GC satisfies properties i, ii (with the same A) and iii. In particular, GC is
compatible with {-, -}.

Condition ii has the following interpretation, which is used in practice. For each 1 < i < N, define

Vi = H;\:M X2 Then ii is equivalent to {logy;,logx;} = &;;A;;, where d;; is the Kronecker symbol.
The variable y; is called the y-coordinate of the cluster variable x;. Note that Condition ii implies that

B has full rank.

Toric actions
Given an extended cluster (x1, . ..,xny+a) in GC, a local toric action (of rank s) is an action F¢ v (C*)*
by field automorphisms given on the variables x;’s as

s
Xi.(ll,...,ls) l—))Cil_[l;U[j, t; € Cc,
J=1

where W := (w;;) is an integer-valued (N + M) x s matrix of rank s called the weight matrix of the
action. We say that two local toric actions of rank s defined on some extended clusters X and X’ are
compatible if the composition of mutations that takes X to X’ intertwines the actions. A collection of
pairwise compatible local toric actions of rank s defined for every extended cluster is called a global toric
action. We also say that a local toric action is GC-extendable if it belongs to some global toric action.

Proposition 2.4. A local toric action with a weight matrix W is uniquely GC-extendable to a global toric
action if BW = 0 and the Laurent polynomials p;, are invariant with respect to the action.

As noted in [18], this proposition is a natural extension of Lemma 5.3 in [15]. For the purposes of
this paper, it suffices to assume that p;, are invariant with respect to the action; however, in the case of
ordinary cluster structures of geometric type, the statement of the proposition is if and only if.

Quasi-isomorphisms that arise from global toric actions
Let GC{(Z) and GC,(Z,) be generalized cluster structures with initial extended seeds X := (%, By, Py)
and X, := (f, B», P»), and let F; and F, be the corresponding ambient fields. Assume the following:

o There is the same number of cluster and stable variables in % and f;

o The numbers dj, ..., dy from the definition of the generalized cluster structure are equal for both
GCy and GCy;

o The strings P; and P, are the same in the following sense: If one picks p;, and substitutes all x;’s
with f;’s, one obtains the rth component of the ith string from P,, and vice versa;

o The extended exchange matrices B and B, are the same in all but the last column, which corresponds
to a stable variable;

o There are integer-valued vectors u = (u1, ..., Unsm)" and v = (vq, ..., V)’ that define local toric
actions (of rank 1) on % and f, respectively, and they are GC-extendable.

UL js an integer for each 1 < i < N + M. Define a field isomorphism

Proposition 2.5. Assume that -
UN+M

0 : F, — F| on the generators as 0(f;) := xixﬁ\ff’l\}’"), 1 <i< N+M IfX = (x],..

’
/ ! S Xnr)
and " == (f/,..., f{ ) are two extended clusters obtained from X and f via the same sequence of
mutations (i.e., the mutations followed the same indices), and (u{ e, u;VJrM)’ and (v{ e, vEWM)t

are the weight vectors of the global toric actions in the extended clusters X' and f', then

i
UN+M

0(f) =XZX,(V+M ) 1<i<N+M.
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The above proposition is a generalization of Lemma 8.4 from [17] to the case of generalized cluster
structures. The map 6 is an instance of a quasi-isomorphism defined by Fraser in [12].

Quiver

A quiver is a directed multigraph with no 1- and 2-cycles. Pick an extended seed (X, B, P), and let
D := diag(d;!,. .., dz_vl) be a diagonal matrix with d;’s defined as above. Assume that DB is skew-
symmetric, where B is the principal part of B. Then the matrix

. DB B[N+1,N+M]
B = _(BIN+L.N+M])T 0

is the adjacency matrix of a quiver Q, in which each vertex i corresponds to a variable x; € X. The
vertices that correspond to cluster variables are called mutable, the vertices that correspond to stable
variables are called frozen and the vertices that correspond to isolated variables are called isolated.
For each i, the number d; is called the multiplicity of the ith vertex. If one mutates the extended seed
(%, B, P), then the quiver of the new seed can be obtained from the initial quiver via the following steps:

1) For each pathi — k — j, add an arrow i — j;
2) If there is a pair of arrows i — j and j — i, remove both;
3) Flip the orientation of all arrows going in and out of the vertex k.

The above process is also called a quiver mutation in direction k (or at vertex k). Instead of describing
the matrix B, we describe the corresponding quiver and multiplicities d;’s.

2.2. Poisson-Lie groups

In this section, we briefly recall relevant concepts from Poisson geometry. A more detailed account can
be found in [5], [9] and [23].

Poisson-Lie groups

A Poisson bracket {-,-} on a commutative algebra is a Lie bracket that satisfies the Leibniz rule
in each slot. Given a manifold M, a Poisson bivector field on M is a section 7 € I'(M, /\2 ™)
such that {f, g} := n(df A dg) is a Poisson bracket on the space of smooth functions on M. A Lie
group G endowed with a Poisson bivector field n is called a Poisson—Lie group if for any g, h € G,
7gh = (dLg ® dLg)my, + (dR), ® dRy) g, where Ly and Ry, are the left and right translations by g and
h, respectively. Let g be the Lie algebra of G and r € g ® g. If G is a connected Lie group, then the
bivector field® my := (dLgy ® dLg)r — (dRg ® dR,)r defines the structure of a Poisson-Lie group on G
if and only if the following conditions are satisfied:

1) The symmetric part of r is ad-invariant;
2) The 3-tensor [r,r] := [ri2,r13] + [r12, 23] + [r13, 23] is ad-invariant, where (a ® b)jp =a®b ® 1,
(a®b)z=a®1®band (a®b)y3=1®a®b,a,beg.

The classical Yang—Baxter equation (CYBE) is the equation [r, r] = 0. For simple complex Lie algebras
g, Belavin and Drinfeld in [1, 2] classified solutions of the CYBE that have a nondegenerate symmetric
part. The classification was partially extended by Hodges in [22] to the case of reductive complex Lie
algebras (however, Hodges required the symmetric part of r to be a multiple of the Casimir element).
A full classification of solutions of the CYBE with an arbitrary nondegenerate ad-invariant symmetric
part in the case of reductive complex Lie algebras was obtained by Delorme in [7].

3If G is simple and complex, then any bivector field 7 that yields the structure of a Poisson—Lie group on G is of this form for
somer € g ®g.
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The Belavin-Drinfeld classification

Let g be a reductive complex Lie algebra endowed with a nondegenerate symmetric invariant bilinear
form (, ), and let I be a set of simple roots of g. A Belavin—Drinfeld triple (for conciseness, a BD triple)
is a triple (I';, I, y) with I';, I, c IT and y : T’} — I'; a nilpotent isometry. The nilpotency condition
means that for any @ € I'y there exists a number j such that y/ () ¢ I'j. Decompose g asg = n, @hon_,
where 1, = @a>0 ge and n_ = @0>0 d-o are nilpotent subalgebras, g, are root subspaces and f) is a
Cartan subalgebra. For every positive root a, choose e, € g, and e_, € g_, such that {e4,e_q) = 1,
and set /1, := [eq,e_q]. Let gr, and gr, be the simple Lie subalgebras of g generated by I'y and I';.
Extend ¥ to an isomorphism ZI'| — ZI',, and then define 7 : gr, — Or, via y(eq) = ey(q) and
Y(ha) = hy(a). Let ¥* : gr, — gr, be the conjugate of y with respect to the form on g. Extend both y
and y* by zero to [g, g]. For an element r € g ® g, set Ry, R_ : ¢ — g to be the linear transformations
determined by (R.(x),y) = {(r,x ® y) and (R_(y),x) = —(r,x ® y), x,y € g. Let n~, 7 and 7 be the
projections onto 1., n_ and b, respectively. In terms of R, and R_, the CYBE assumes the form

[R+(x), Re ()] = Re([Re(x), y] + [x, R-(y)]), x,y €g. 2.7

Let Ry : h — b be a linear transformation that satisfies the following conditions:
Ro + Ry = idy; (2.8)
Ro(a-y(a)) =a, acly, (2.9)

where idyy : ) — b is the identity and R is the adjoint of Ry. If g is simple, then the solutions Ry of
equations (2.8)—(2.9) form an affine subspace of hom(b, §) (linear maps) of dimension kr(kp — 1)/2.

Theorem 2.6. (Belavin, Drinfeld) Under the above setup, if

1 y*
7T>_

R, =
Y -y

< + Romo, (2.10)

where Ry is any solution of the system (2.8)—(2.9), then R.. satisfies the CYBE (2.7). Moreover,
R, —R_=idg. (2.11)

Conversely, if Ry : @ — g is any linear transformation that satisfies equation (2.11), then R, assumes
the form (2.10) for a suitable decomposition of g, for some Belavin—Drinfeld triple and some choice of
100t vectors e q.

The matrix R, from the theorem is called a classical R-matrix. In this form, the theorem follows
from Theorem 6.3 in [22]. It is important that the form on g is fixed; however, if g is simple, then all
nondegenerate symmetric invariant bilinear forms are multiples of one another, so the theorem yields a
full classification of solutions r € g ® g of the CYBE with nondegenerate ad-invariant symmetric parts.

The Drinfeld double
Let G be a reductive complex connected Poisson—Lie group endowed with a nondegenerate symmetric
invariant bilinear form on g and with a Poisson bivector field defined as

ng = (dLg ® dLg)r — (dRg ® dRg)r

for some r € g ® g that satisfies the conditions of Theorem 2.6. Let R, and R_ be defined from r as in
the previous paragraph, and set d := g @ g to be the direct sum of Lie algebras. Define a nondegenerate
symmetric invariant bilinear form on b as

((x1,y1)s (x2,¥2)) = (x1,%2) = {y1,y2)» X1, X2, Y1, Y2 € Q.

https://doi.org/10.1017/fms.2023.44 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.44

12 D. Voloshyn

As a vector space, d splits into the direct sum of the following isotropic Lie subalgebras:
S = {(xx) [xeg), "= {(Re(x),R-(x)) | x € g}.

Set RY := Py, where Py is the projection of d onto g*, and let r* € d®Db be the 2-tensor that corresponds
to RY. Then R® yields the structure of a Poisson-Lie group on the Lie group D(G) := G X G via the
Poisson bivector field n?g’h) := (dL(g,n) ® dL(g.n))r® — (dR(g.n) ® dR(g.1))r", (g, h) € D(G). The
Poisson—Lie group D (G) is called the Drinfeld double of G.

The Poisson bracket on D(G) can be written in the form

{fi. o} = (Re(ELf1), EL ) = (Re(ER 1), ER o) + (Ve f1, VE o) = (VX 1, VE fo),

where VL f; = (V fis— VLf,) and VRf, = (V fis VRﬁ) are the left and the right gradients, respec-
tively, Ep fi = V Lf4+vL yJiand ERf; = ﬁ + VR y fi.- We define the gradients on G as*

(VEflgsx) = —li=0f (gexp(ix)), (VX flg,x) = d —li=0f(exp(1x)g), g € G, x €g.

The group G can be identified with the connected Poisson—Lie subgroup G° of D(G) that corresponds
to the Lie subalgebra g°. The Poisson bracket {-, -} on G can be expressed as

{fi. ot = (Re(VEF), VE LY = (R (VR £1), VR o).

Additionally, the connected Poisson—-Lie subgroup G* of D(G) that corresponds to g* is called the dual
Poisson—Lie group of G. The Poisson structure on G* (which is induced from D(G)) can be modeled
locally in the group G via the map

G*>(g,h)—gh'eG

The image of this map is an open dense subset of G denoted as G (however, the map is not injective in
general).

Following [20], we consider a more general Poisson bracket on G x G that is defined by a pair of
classical R-matrices R{ and R’ (the meaning of the upper indices is unveiled later in the text). For such
a pair, the Poisson bracket is defined as

{fi. o} = (RE(ELA), ELf) — (Ro(ERf1), ER o) + (VR f1. Vi o) = (V& 1, Vi fo). (2.12)

We will frequently abuse the terminology and call G X G endowed with bracket (2.12) the Drinfeld
double of G. However, bracket (2.12) yields the structure of a Poisson-Lie group on G x G if and only
if RS = R%,

Symplectic foliation and Poisson submanifolds

Let (M, ) be a Poisson manifold. An immersed submanfiold S C M is called a Poisson submanifold
if 7|s € T(S, A>TS). Examples of Poisson submanifolds include nonsingular parts of the zero loci of
frozen variables (see Section 3.8). Let 7 : TM* — TM be a morphism of vector bundles defined as
(7 (€),n) = (n,EAD), &1 € T,M, p € M. The Poisson bivector r is called nondegenerate if a*is
an isomorphism of vector bundles. A symplectic leaf is a maximal (by inclusion) connected Poisson
submanifold S of M for which n|g is nondegenerate. It is a theorem that any Poisson manifold M is a
union of its symplectic leaves.

4This convention is opposite to the one in [20] and [23], but in this way the left gradient is the gradient in the left trivialization,
and the right gradient is the gradient in the right trivialization of the group.
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(@T7 ={1,2}, T = {4,5}; (b)TT ={1,2,3}, T} = {2,3,4};
7 =1{2,3,5}, I ={1,2,4}. ¢ ={1,3}, TS = {3,5}.

Figure 1. Examples of BD graphs. The vertical directed edges coming from I'" and T'° are painted in
red and blue, respectively.

2.3. Desnanot-Jacobi identities

We will frequently use the following Desnanot—Jacobi identities, which can be easily derived from short
Pliicker relations:

Proposition 2.7. Let A be an m X (m + 1) matrix with entries in an arbitrary field. Then for any
I1<i<j<k<(m+1)and1 < a < m, the following identity holds:

det A det Af;k + det AF detAl;j = det A/ detA‘;f,

where the hatted upper (lower) indices indicate that the corresponding column (row) is removed.

Proposition 2.8. Let A be an m X m matrix with entries in an arbitrary field. If 1 <i < j < m and
1 < k <1 < m, then the following identity holds:

det A det A, = det AL det A7 — det Al det A” .
ki k l [ k

3. Description of D(GL,,) and GC(I'",I'°)
3.1. BD graphs in type A

In this section, we describe BD graphs that are attached to pairs of BD triples; the material is drawn
from [20]. Let us identify the positive simple roots of sl,(C) with an interval [1,n — 1]. We define
" = (I],T7,y,) and I'° := (I'{,T5, y.) to be a pair of BD triples for s, (C), and we name the first
triple a row BD triple and the other one a column BD triple. Furthermore, if Flr = Flc = 0, we call
(I'",I'°) the standard or trivial BD pair.

BD graph for a pair of BD triples

The graph G - re) is defined in the following way. The vertex set of the graph consists of two copies
of [1,n — 1], one of each is called the upper part and the other one is the lower part. We draw an edge
between vertices i and n — i if they belong to the same part (if i = n — i, we draw a loop). If y, (i) = J,
draw a directed edge from i in the upper part to j in the lower part; if y. (i) = j, draw a directed edge
from j in the lower part to i in the upper part. The edges between vertices of the same part are called
horizontal, between different parts vertical. Figure | provides two examples of BD graphs.

Paths in G (- r) and aperiodicity

There is no orientation assigned to horizontal edges, hence we allow them to be traversed in both
directions. An alternating path in G- re) is a path in which horizontal and vertical edges alternate.
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A path is a cycle if it starts where it ends. Now, we call the pair (I'", I'“) aperiodic if G - ey has no

alternating cycles (equivalently, the map y_'wqy, wy is nilpotent, where wy is the longest Weyl group

X .Y
element of [1,n — 1]). In examples in this paper, we denote alternating pathsas --- — i — i’ , j—
J’ RENFTN , where X and Y indicate whether an edge is in the upper or the lower part of G (- re),
respectively, and 7y, and ;. indicate a vertical edge directed downwards or upwards.

Oriented BD triples

LetI" = (I';, I, y) be aBD triple. Since vy is an isometry, if y(i) = jandi+1 € ', theny(i+1) = j+ 1.
We call the BD triple I oriented if y(i + 1) = j + 1 forevery i € I'; such thati + 1 € I'j. A pair of BD
triples (I'",I'“) is called oriented if both I'" and I'“ are oriented.

Runs
LetI' = (I'1,I2,y) be a BD triple. For an arbitrary i € [1, n], set

i :=max{j € [0,n]\T1|j<i}, i :=min{j € [L,n]\ T |j >i}.

An X-run of i is the interval A(7) := [i- + 1,i4]. Replacing I'} with I"; in the above formulas, we obtain
the definition of a Y-run A (i) of i. The X-runs partition the set [1, n], and likewise the Y-runs. A run is
called trivial if it consists of a single element. Evidently, the map y can be viewed as a bijection between
the set of nontrivial X-runs and the set of nontrivial Y-runs. For a pair of BD triples (I'", '), the runs
that correspond to I and I'“ are called row and column runs, respectively. We will indicate with an
upper index r or ¢ whether a run is from I'" or I'“.

Example 3.1. Consider the BD graphs on Figure 1. Evidently, both are aperiodic and encode pairs of
oriented BD triples. Here’s a list of all runs that correspond to the graph on the right:

o Row runs: AT = [1,4], A} = [5], Ay =[6]: A} =[1], A} =[2,5], A} = [6];
o Column runs: A{ = [1,2], A = [3,4], A = [5], A§ = [6]; Af = [1], Ag =[2], Ag = [3,4],
Az = [5,6].

3.2. Construction of L-matrices

Let X and Y be two n X n matrices of indeterminates, which represent the standard coordinates on
GL,, X GL,,. For this section, fix an aperiodic oriented BD pair I" := (I'",I'“), and let Gr be the BD
graph associated with the pair, which is constructed in Section 3.1. The construction described in this
section follows Section 3.2 from [20].

We associate a matrix £ = £(X,Y) to every maximal alternating path in G - re) in the following
way. If the path traverses a horizontal edge i — i’ in the upper part of the graph, we assign to the edge
a submatrix of X via®

x (181 B = the right endpoint of A° (i) = i, (I7);
[a.n] @ := the left endpoint of A" (i" + 1) = (i" + 1)-(I']) + .

Similarly, we assign a submatrix of Y to every horizontal edge j’ — j in the lower part of the graph
that appears in the path via

= the left endpoint of A°(j +1) = (j + 1)_(T5) + 1;

Y[B,"] _
La the right endpoint of A" (j") = j,(I'}).

[1.a]

[ ™
’

Note: if j € TS, then A€(j) = A€ (j+1), and similarly, if i’ € I, then A" (i") = A" (i’ +1). Adding the ones in the formulas
matters only for the beginning and the end of the path.

https://doi.org/10.1017/fms.2023.44 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.44

Forum of Mathematics, Sigma 15

We call these submatrices X- and Y-blocks, respectively. Now, the first block in the path becomes the
bottom right corner of the matrix £. As we move along the path, we collect the X- and Y-blocks and
align them together according to the following patterns:

Yin

Yj_+ln|Xi_+1,1

X . LYo
I D1 > Yijn Xil

yj+n xi+,]
Xnl
Tnl Tnyi_+1 Tni Tniy
Y Ye X
., . . "
el Y1,j_+1 Y1j Y154 Yin

The lower plus and minus in the first scheme correspond to I'" (aligning along rows), and in the second
scheme they correspond to I'“ (aligning along columns). In other words, once the first block is set in the
bottom right part of £, the algorithm of adding the blocks as one moves along the path can be described
as follows:

1) If the X-block that corresponds to an edge i’ — i is placed in £ and vy, (i) = j, proceed to the edge
Jj — j’ in the lower part of the graph and put the corresponding Y-block to the left of the X-block
so that y ;, and x;; are adjacent and belong to the same row;

2) If the Y-block that corresponds to an edge j’ — j is placed in £ and . (j) = i, proceed to the edge
i — i’ in the upper part of the graph and put the corresponding X-block on top of the Y-block so
that x,,; and y; are adjacent and belong to the same column;

3) Repeat until the path reaches its end.

Example 3.2. Letn = 4 and I and I'° be Cremmer—Gervais triples. In other words, y, (i) = y. (i) = i+1
for i € {1,2} (see the BD graph below).

The runs in the upper part are A} = [1,3] and A, = [4]; in the lower part,

10/26\3 A1 = [1] and A, = [2,4] (we don’t leave an upper index, for I = I'°).

There are two maximal alternating paths:

35 120502153

1532, 5,230,

Denote by £, and £, the matrices that correspond to these paths. For the first one, the blocks
that correspond to the edges are X [[11 ’j]], Y[[12 ’:]], X [[11 f]], in the order in the path. Aligning these blocks

according to the algorithm, we obtain £; (see below). In a similar way one can obtain £,.
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X41 X2 x43 0 0 O yeysys 0 0 0
y2yiyis 0 0 O Y22 Y23 Y24 X11 X12 X13
L1(X,Y) = Y22 Y23 Y24 X11 X12 X13 . Lo(X.,Y) = Y32 Y33 Y34 X21 X22 X23 .
Y32 ¥33 Y34 X21 X22 X23 V42 Y43 Y44 X31 X32 X33
V42 Y43 Y44 X31 X32 X33 0 0 0 x41 xg2 x43
0 0 0 x41 x42 xa3 0 0 0 yi2yi3yu

Properties of £-matrices
Observe the following:

o The blocks are aligned in such a way that the indices in the blocks that correspond to the runs A" and
A" (or A€ and A€) are in the same rows (columns);

o For any variable x;; or y;; withi > j, there is a unique £(X,Y) that contains it on the diagonal;

o Ifi; — ip — - -+ — iy, is the maximal alternating path that gives rise to £, then the size N (L) XN (L)
of £ can be determined as

n

N(L) = Z k-1

k=1

3.3. Initial cluster and GC(T')

In this section, we describe the initial extended cluster of the generalized cluster structure GC(I') on
GL,, x GL,, induced by an aperiodic oriented BD pair I = (I'", I'“), as well as the choice of the ground
ring.

Description of ¢-, f- and c-functions
Set U := X~'Y and define

Fi(X,Y) = | Xttt ylntebnl| s kel 1 k+l<n=1;
le(Xr Y) — [(UO) [n—k+1,n] U[n—l+1,n] (U2)[n] L. (Un—k—l+1)[n]]’ kil>1, k+1<n;

set @ (X,Y) :=det®y;(X,Y) and

fu(X,Y) i=det Fiy (X, Y), @u(X,Y) = sp(det X)" g (X,Y), 3.1)
where
=Dk n is even,
Ski = (=1)(1=D/2+k(k=D/241(=D/2 i odd.

All f- and p-functions are considered as cluster variables. The c-functions are defined via

n
det(X + 1Y) = Z Aisici(X,Y),
i=0

where 5; = (—l)i("’l). Note that c¢g = det X and ¢,, = detY. The functions cy, ..., c,_; are considered
as isolated stable variables, and the only nontrivial string, which is attached to ¢, is given by the tuple

(laclv"~7cn*17 1)
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Description of g- and k-functions
For i > j, let £ be an L-matrix such that Ly, (X,Y) = x;; for some s, and let N(L) be the size of L.

Set g;j = detﬁ[‘;’xgg Similarly, if £ is such that Lys(X,Y) = y;, we set hj; := det L ;%281
[i,n]

addition, we let g;; := det X[ nl and h;; := det Y[[l ol , 1 <i < n. The functions &;; and g1, as well as
the determinants of the £-matrices, are considered as stable variables.

In

Conventions
The following identifications are frequently used in the text:

Sn-1,1 = On-11 l<l<n-1;
Jou = huppin-ie1, 121<n-1; (3.2)
Si.0 = 8n-kstn—k+1» 1 <k <n—1.

The above equalities are set in concordance with the defining formulas for the variables, for which one
simply extends the range of the allowed indices. Furthermore, for g-functions we set

et iy 1= A e V(D =h g 1y (D) =, (33)
it 1 otherwise; ’ 1 otherwise; '
and for A-functions we set
gi+1,1 ify (i) =/, g ifyi(j) =i,
hj n = ’ ho ;= 3.4
J+lntl {1 otherwise; hJ 1 otherwise. S

The meaning of these identifications follows from the following observation: If g,; = detﬁ[Y N (0]

[s.N(£)]
vy . LN(O)]. o . N(L)] .
and y:(j) = i, then hy 4 = detEE:l,NELH; similarly, if hj, = detL SNEL; and y, (i) = j, then
LN (L
8iv1,1 = det L :1 xﬁaﬂ
Description of GC(T')
The description of the initial quiver is given later in Section 3.6. The initial extended cluster is given by
the union

{gij’ ]’lji|1SjSiSn}U{fkl|k,lZI,k+l$l’l—1}U
U{ori |k, 1= 1, k+1<n}U{c; |1 <i<n-1}.

Let £1(X,Y), ..., Lm(X,Y) be the list of all £-matrices in GC(T'). The ground ring A = A(GC(T)) is
set to be

~

A = C[Cl, - ’C"—l’hll’gll ,detLq, ... ,detﬁm].

All mutation relations are ordinary except the mutation at ¢1;. It is given by

n

Pt = ergh @ty 3.5)
r=0

A variable i is frozen if and only if either = ¢; for 0 < i < n,ory = g4y, fori € [T\ I7, or
lﬁ = hl,j+1 fOI‘j ell \ Fg
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3.4. Operators and the bracket

In this section, we describe various operators and their properties used throughout the text, especially
in sections on compatibility.

The operators y,y* : gl, (C) — gl (C)

Let I' := (I'},I2,y) be an oriented BD triple. Let Ay, ..., A be the list of all nontrivial X-runs, and
set Ay, ..., Ay to be the list of the corresponding Y-runs, where y(A;) = A;, 1 <i < k. Set gl(A;) to
be a subalgebra of gl, (C) of the matrices that are zero outside of the block A; X A; (and similarly for
gl(A;)). Define y; : gl (A;) — gl,(A;) to be the map that shifts the A; x A; block to A; x A;. Then
the map y : gl,(C) — gl,(C) is defined as the direct sum y := EBZ.(:I vi extended by zero to gl, (C).
Similarly, one sets y: : gl (A;) — gl,,(A;) to be the map that shifts the A; x A; block to A; X A;. The
map y* : gl,,(C) — gl,,(C) is obtained as the direct sum y* := @f;l y; extended by zero to gl (C).

Remark 3.3. The resulting maps were denoted in [20] as y and y*, in order to distinguish them from
their sl,-counterparts that were constructed in Section 2.2 (note: |, (c) may be different from the map
constructed in Section 2.2 on the Cartan subalgebra of sl,, (C)).

Example 3.4. Let us consider a BD pair defined by its BD graph below (note: 'y = 0):

Let y := y,. Its action on gl5(C) is given by

1 E ap app a3 ais ais ag ass 0 0 0
a1 ax a3 Az ass ass ass 0 0 O

v|asz1 axn azz ass azs|=| 0 0 ai ap az|.
1 4 a4] G4 A43 Q44 Q45 0 0 a2 ax ax
as) asy ds3 ds4 ass 0 0 a3 axn ass

Similarly, the action of y* is given by

ail aix a3 ais a a3 azs azs 0 0

W

a| axp ax ax ass as3 ag4 ags 0 0
v*|asz1 ax asz ass ass| = |as3 ass ass 0 0
a4] G42 G43 G44 445 0 0 0 ay an
as| asy ds3 das4 ass 0 0 0 az axn

The group homomorphisms 7 and 7*

The maps v, y* : gl,,(C) — gl,(C) are not Lie algebra homomorphisms; however, their restrictions
to the Borel subalgebras b, and b_ are Lie algebra homomorphisms, hence we can define group
homomorphisms ¥, ¥* : B, — B, where B, and B_ are the corresponding Borel subgroups. Notice
that if the BD triple is oriented and N. is a unipotent (upper or lower) triangular matrix, then ¥(N.) =
v(Nz — I) + I, where [ is the identity matrix, and similarly for ¥*. Likewise, let GL(A) — GL,
be the group of invertible |A| X |A| matrices viewed as a block in GL,, that occupies A X A; since
y : gl(A) — gl(A) is an isomorphism of Lie algebras, it can be integrated to an isomorphism of groups
¥ : GL(A) — GL(A) (and similarly for y*).

Remark 3.5. The maps 7 and ¥* were denoted in [20] as exp(y) and exp(y*). We have changed the
notation to avoid a possible confusion with the matrix exponential.
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Differential operators
For a rational function f € C(GL,, x GL,,), set

Vi f = (a_f) V= (@_f)

Ox i 9Yji )i, i1

ij=1

Define
ELf = fo'X+Vyf'Y, ERf = XVXf+YVYf,
Enf =y (Vxf-X)+Vyf- Y, ErRf =XVxf+y,(YVy[f),
nef =Vxf-X+y.(Vyf-Y), nrf =y (XVx f)+YVyf.

Let ¢ denote r or c. Define subalgebras

k k
ore = @gl(Af), 8¢ = @ gl(&f),
i=1 i=1

where gl(Af) and gl(&f) are constructed above. Let e and 7 be the projections onto 8re and are>
respectively; also, let mpe and mpe be the projections onto the orthogonal complements of grc and 8re
1 2 1

with respect to the trace form. There are numerous identities that relate the differential operators among
each other and with the projections; they are easily derivable and extensively used in the paper. Let us
mention some of them:

Ep =&+ (1-v:)(VxX), Egr=ér+(1-y,)(YVy),
Ep=nr+(1-y.)(VyY), Egr =nr + (1 —y,)(XVX),
&L =ve (L) + mpe (VyY), ér =7, (R) + 7pr (XVx),
L = Ye(L) + e (Vx X), MR = yr(€r) + 7y (Y Vy).
The bracket and R
For any choice of (R}, R(‘)' ) on SL,, X SL,,, the variables cg, ¢y, . .., cn—1, ¢, are Casimirs of the Poisson

bracket. However, there is only one choice of (Rf, Rj) for which these variables are Casimirs on
GL, xGL,:

a) The functions ¢y, c¢1, ..., cu-1,c, are Casimirs if and only if the identity matrix is an eigenvector of
both R{ and R{ (in this case, R{,(I) = R{(I) = (1/2)1 from Ry + R} = idy).

However, there is an important alternative choice of (R, R{):

b) For a BD triple (I'}, I, y), a solution Ry of equations (2.8) and (2.9) is such that

Ro(1—=7y) =nr, + Romp, Ro(1-7y") =—=y"+ Ronp, 3.6)
Ry(1—7y) = —7+R87rﬁ1 Ry(1 —v") = 7, +R(";7rﬁ2 '
(the identities are viewed relative the Cartan subalgebra b of gl,,).

Note that these conditions do not follow from the system (2.8) and (2.9). For instance, if Ip := };cp €iis
the first condition specifies the value of Ry on Ip — I as

Ro(Iy —I5) = Ip.

Choosing R and Rj that satisfy equation (3.6) eases some of the computations with Poisson brackets,
so this choice is employed in the proofs; however, in Section 8.2 we show that the results of the paper
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hold regardless of the choice of (R, Rf). Moreover, when Ry := Rj = R{ and R satisfies equation
(3.6), the connected Poisson dual GL; of GL, can be viewed as a subgroup of the direct product of
certain parabolic subgroups modulo a relation (see Section 3.8 for details). Lastly, the Poisson bracket
(2.12) attains the following form on GL,, X GL,;:

{fi, LY =(RS(ELN),ELfr) = (RL(ERf1), ER2) + (XVx f1,YVy /o) = (Vx fi - X, Vy fo - ¥).

3.5. Invariance properties

In this section, we describe the invariance properties of the functions from the initial extended cluster.
Invariance properties of f- and ¢-functions

Let f be any f-function and ¢ be any @-function (recall that ¢ differs from ¢ by a factor of det X; see

equation (3.1)). Pick any unipotent upper triangular matrix N,, a pair of any unipotent lower triangular
matrices N_ and N’, and let A be any invertible matrix. Then

F(X,Y) = f(N.XN_,N,YN"), @(X.,Y)=@FAXN_, AYN_). (3.7

Let b, and b_ be the subspaces of upper and lower triangular matrices. The infinitesimal version of
equation (3.7) is

fo-X, Vyf-YEb,, ERf€b+; (3 8)
E g eb_, Er@ =0. '
Moreover,
moEr log f = const, moER log f = const, (3.9)
noEy log ¢ = const, noER log ¢ = const, '

where 7 is the projection onto the space of diagonal matrices; by const we mean that the left-hand
sides (LHS) of the formulas do not depend on (X,Y). For the c-functions,

moEploge; =mgERloge; =1, 0<i<n,
where [ is the identity matrix.
Invariance properties of g- and k-functions
Let ¢ be any g- or h-function, and let N, and N_ be any unipotent upper and lower triangular matrices.
Then
YN X, 7 (NY) = g (XFe(N-),YN2) = y(X, ). (3.10)

Let T be any diagonal matrix; then we also have

Y(XTe(T),YT) = EL(TyY(X.Y), Y(TX,7,.(1)Y) =Er(T)Y(X.Y),

3.11

where é R, § L, Tr and 7, are constants that depend only on T and ¢ (they can be viewed as characters
on the group of invertible diagonal matrices). The infinitesimal version of equation (3.10) is

Ly € b, EryYy €y, (3.12)
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Figure 2. The neighborhood of ¢y for k,1 # 1, k+1 < n.

1l+

@

and the infinitesimal version of equation (3.11) is

moér logy = const, moér logy = const,

(3.13)
monr logy = const, monr logy = const.

Finally, let us mention the results of Lemma 4.4 and Corollary 4.6 from [20]. If A", A€, A" and A€ are
any X- and Y- row and column runs (trivial or not), then

tr((Vx logy - x)gj) = const, tr((XVy log w)gf) = const, 1)
tr((Vy logy - Y)éz) = const, tr((YVy logy)2") = const; .
also,
tr(Vx logy - X) = const, tr(XVx logy) = const, (3.15)
tr(Vy logy - Y) = const, tr(YVy logy) = const.

Remark 3.6. Notice that there are four identities (3.11) for diagonal elements and only two (3.10) for
unipotent ones. The other two identities for unipotent matrices that one might think of do not hold.

3.6. Initial quiver

In this section, we describe the initial quiver for GC(I") defined by an aperiodic oriented BD pair
' = (I",I'¢). We first describe the quiver for the trivial BD pair (based on [18]), and then we explain
the necessary adjustments for a nontrivial BD pair. For particular examples of quivers, see Section 10.
Throughout the section, we assume that n > 3 (the case n = 2 is described in [18]).

3.6.1. The quiver for the trivial BD pair
Below one can find pictures of the neighborhoods of all variables in the initial quiver in the case of the
trivial BD pair. A few of remarks beforehand:

o The circled vertices are mutable (in the sense of ordinary exchange relations (2.2)), the square vertices
are frozen, the rounded square vertices may or may not be mutable depending on the indices and the
hexagon vertex is a mutable vertex with a generalized mutation relation (see equations (2.1) and (3.5));

o Since cy,...,cu—1 are isolated variables, they are not shown on the resulting quiver;

o For k =2 and n > 3, the vertices ¢ and ¢x_1 > coincide; hence, the pictures provided below suggest
that there are two edges pointing from ¢5 to ¢12 (however, there is only one arrow in n = 3).
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(a) Case2 <1 <n-2.

Figure 3. The neighborhood of ¢ for2 <l <n-1.

(a) Case2 < k <n-2.

(b) Case k =n — 1.

Figure 4. The neighborhood of g for2 <k <n-1.

(a) Case k =1=1.

hll

(b) Case k +1 =n.

Figure 5. The neighborhood of ¢y for (a) k =1=1and (b) k+1=n.

hiy
(b) Casel =n—1.
([1)171,1 (pl.n—l
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Figure 6. The neighborhood of fx; for k +1 < n (convention (3.2) is in place.).

gi,j+1

&9 B e

(a) Casei < n. (b) Case i =n.

Figure 7. The neighborhood of g;; for 1 < j <i < n (convention (3.3) is in place).

}

(a) Casei = 1. (b) Casei < n. (c) Casei = n.
Figure 8. The neighborhood of g;1 for 1 <i < n.
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hi+1,n \hly

(a) Case j < n. (b) Case j =n.

Figure 9. The neighborhood of h;j for 1 <i < j < n.

(a) Case 1 <i=j<n. (b) Casei=j=n.
Figure 10. The neighborhood of h;j for 1 <i=j < n.

(%) @7%

(a) Case j = 1. (b) Case 1 < j <n. (c) Case j =n.
Figure 11. The neighborhood of hy;.
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ji=r®

(a) Casei € F'l'. (b) Case j € Fg.

Figure 12. Additional arrows for gi.1,1 and hy j.1.

3.6.2. The quiver for a nontrivial BD pair (algorithm)

If ' = (I'",I°) is nontrivial, one proceeds as follows. First, draw the quiver for the case of the trivial
BD pair, employing the neighborhoods as described above. Second, add new arrows as prescribed by
the following algorithm:

1) If i € I'7, unfreeze g;,1,; and add additional arrows, as indicated in Figure 12(a);
2) If j € T'S, unfreeze hy_j,1 and add additional arrows, as indicated in Figure 12(b);
3) Repeat for all roots in I'l and I'5.

Note that the algorithm does not depend on the order of the roots of I'{ and I';. Indeed, adding new
arrows corresponds to adding a certain matrix (determined by the figure) to the current adjacency matrix
of the quiver; since addition of matrices is commutative, the order of the roots is irrelevant.

3.6.3. The quiver for a nontrivial BD pair (explicit)

As an alternative to the algorithm described in the previous paragraph, we provide explicit neighborhoods
of the variables g;1, 17, ni, hin, | < i < ninthe case of anontrivial BD pair. All the other neighborhoods
are the same as in the case of the trivial BD pair.

(a) Case 1 ¢ F{. (b) Case 1 € FT.
Figure 13. The neighborhood of g11.

https://doi.org/10.1017/fms.2023.44 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.44

26 D. Voloshyn

(a) Case i — l,iél"{. (b) Casei—1¢T", i€ Ff, J =y ().

hjn gLZ hjn 'giz
(c)Casei—1€TI”,i¢l”, j—1:=y-(i—-1). (d) Casei—1,i €], j =y, ().
Figure 14. The neighborhood of g1 for 1 <i < n.
@ - ®
(a) Case 1 ¢T{,n—1¢T7. (b) Case 1 eT¢, n—1¢T7, j:=y(1)

9,
(c)CaseleZF",n—leFf,i—l::yr(n—l). i

d) Case1 eT¢, n—1¢€ l"lr,
Ji=ve(l),i-1:=yr(n-1).
Figure 15. The neighborhood of gy1.
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(c) Case j—1¢TY, jelf, i:=yc(j) (d) Case j—1,j €T, i=vc()).

Figure 16. The neighborhood of g,,; for2 < j < n.

@ 9, () T,
o &, @ (9,)

(a) Casen—1¢T7. (b) Casen—1€I7, j—1:=yi(n—1).
Figure 17. The neighborhood of hy,.
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(c) Casei—1¢ 17, ie€T), i:=y;()) (d) Casei—1,i € T3, i :=y}(j).

Figure 18. The neighborhood of h;, for2 < j <n-—1.

( ::: ) > hln

(a)CaselséFr,n—lél"g. (b)CaselEl"r,n—lsél"g,i—l::y’;(l).

th \hy g nj th

(c)CaseléFE,n—lel";,j—l::yf.(n—l).

(d)Caselel“r,n—lel"g,
i—1l=yi(1),j-1=yin-1).
Figure 19. The neighborhood of hyy,.
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(b) Case j— 1¢I5, jels.

th

(c)Casej—1€I5, jels, i—1:=y:(j-1). (d) Case j—1,j€l5, i:= vE().
Figure 20. The neighborhood of hyj for 1 < j < n.

A

h11

(a) Case 1 ¢ 1"5. (b) Case 1 € 1"5.
Figure 21. The neighborhood of hy.

Remark 3.7. Once the initial quiver is constructed for a BD pair I' = (I'", T'°), one can obtain the initial
quiver for the cluster structure C(I') on GL,, described in [20], in the following way: 1) remove all f-
and ¢-vertices; 2) for each 1 < i < n, merge the vertex h; with the vertex g;; (but retain the edges); 3)
in the resulting quiver, remove the loop at the vertex g,,.
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3.7. Toric action

LetI' = (I'",T) be an aperiodic oriented BD pair that defines the generalized cluster structure GC(T'),
and let h*'» be the Cartan subalgebra of sl,,. For each ¢ € {r, ¢}, define a subalgebra

bre := {h € b | a(h) = B(h) ifyj;(oz) = B for some j}.
Notice that its dimension is
dim hpe = kpe = |IT\ T,

where I1 is the set of simple roots. Let Hy- and Hre be the connected subgroups of SL,, that correspond
to hrr and bre, respectively. We let Hypr act upon D(GL,,) on the left and Hre to act upon D(GL,,) on
the right; that is,

H.(X,Y) = (HX,HY), H € Hyr;
(X,Y).H = (XH,YH), H € Hre.

We also let scalar matrices act upon D(GL,,) via
(al,b).(X,Y) = (aX,bY), a,beC".

As we shall see in Section 6, the left-right action of Hr- X Hre together with the action by scalar
matrices induces a global toric action on GC(I') of rank kpr + kpe + 2.

3.8. Poisson-geometric properties of frozen variables

As we explained above, if (R{j, R{) is chosen in such a way that Rj (/) = R{ (1) = 1/2, then the frozen
variables cg, c1, ..., cn_1, ¢, are Casimirs of the Poisson bracket (for the case of D(SL,,), the statement
is true for any (R, R()). In particular, the symplectic leaves of the Poisson bracket are contained in the
level sets of these Casimirs. The other frozen variables are given by the determinants of £-matrices.
Given such a frozen variable ¥ (X, Y) := det L(X,Y), the proposition below, which was proved in [20],
implies that the nonsingular part of the zero locus of ¢ is a Poisson submanifold; hence, it foliates into
a union of its own symplectic leaves. However, we do not know if those symplectic leaves are also
symplectic leaves of D(GL,,).

For a Belavin-Drinfeld triple I' = (I';,I%,7y), let P.(I'1) and P_(I;) be the upper and lower
parabolic subgroups of GL,, determined by the root data I'; and I';, respectively. Define a subgroup
D C P.(I'1) x P_(I',) via

D :={(g1,82) € P:(I'1) x P_(I2) | (I, (g1)) = I, (g2)},

where I, : Py(T';) — Ia GL,(A) and I, : P_(T2) — [1x GL,(A) are group projections (A and
A are nontrivial X- and Y-runs, respectively), and GL, (A) are invertible |A| x |A| matrices embedded
into GL,, as a A x A block (and likewise GL,,(A)). Given a Belavin—Drinfeld pair (I'",I'°), denote the
respective groups D as D" and D¢.

Proposition 3.8. For any L-matrix in GC(I'), the following statements hold:

(i) Forany (g1,g2) € D", det L(g1X, g2Y) = x" (g1, 82) det L(X,Y), where x" is a character on D" ;
(ii) Forany (g1,g2) € D¢, det L(Xg1,Yg2) = x (g1, g2) det L(X,Y), where x€ is a character on D;
(iii) det L(X,Y) is log-canonical with any x;; or y;;.

Remark 3.9. Assume thatI" =T and Ry := R = R(‘)' is chosen so that equation (3.6) is satisfied. Then
the connected dual Poisson group GL;,, viewed as a subgroup of D(GL,,) = GL,, X GL,,, is a subgroup
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of D as well. In the case of D(SL,,), such an issue with the choice of Ry does not arise, so SL; C D
(hence, the determinants of the L-matrices are semi-invariant with respect to the action of SL;, on the
right and on the left).

4. Regularity

LetI' = (I'",I'“) be a BD pair that defines a generalized cluster structure GC(I') on D(GL,,) with the
initial seed described in Section 3. In this section, we show that the mutation of any cluster variable
from the initial seed in GC(I") produces a regular function. We will prove in Section 5.5 that GC(I")
satisfies coprimality conditions 2.2 and 2.2 of Proposition 2.2, which implies that GC(T') is a regular
generalized cluster structure on D (GL,,).

Proposition 4.1. The mutation of the initial cluster of GC(I') in any direction yields a regular function.

Proof. The regularity at g;; and hj; for i > j follows from Theorem 6.1 in [20]; for ¢- and f-functions,
the regularity follows from Section 6.4 in [18]. Therefore, all we need to prove is that the mutation at
any g;; or h;; in the case of an aperiodic oriented BD pair yields a regular function.

Mutation at h;;. First of all, note thatif n —1 ¢ I'}, then, according to the construction in Section 3.2, the
functions h;_1 ; for 2 < i < n coincide with the ones in the case of the standard BD pair. This situation
was already studied in [18], so let us assume that n — 1 € T 5 . For i < n, the mutation at /;; can be
written as

hiih}; = hi je1 fin—is1 + fin-ihi-1,i- 4.1

Let £ be the £-matrix that defines the functions /;_; ;, 2 < i < n, and let H;_; ; be a submatrix of £
such that h;_; ; = det H;_ ;. Then H;_; ; can be written as a block-diagonal matrix

[i,n]
Hi—l,i = [i_olsn]

*

C

s

where C is some (m — 1) X m matrix and the asterisk denotes the part of H;_;; that’s not relevant to the
proof. Recall that Fy ,,_;41 = |X["’"] ylin] [[i=1,n]- Define a block-diagonal matrix A as

| Fip—iv *
A"[ 0 C]’

and let N be the index of the last column of A. According to the Desnanot—Jacobi identity from
Proposition 2.7, we see that

det Al det A2V + det AV det Al” = det AV det A%, (4.2)

Now, notice that
det A = hi_y;, det A2V = fi,_; det €™, det AN = fi i1 det C™,
AR = by a1, det AN = by der ™,
hence equation (4.2) becomes

hitifini det C™ + fi y_ip det C™ = hy; det C™ det A2,

Dividing both sides by det C"* and comparing the resulting expression with equation (4.1), we see that
hi; = det A?. Hence, h’; is a regular function.
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Now, let’s study the mutation at 4,,,,. Since we assumen—1 € l"; ,lety, (i) = n—1. Then the mutation
reads

’
hnnhnn = fllgi+1,l +gnnhnfl,n-

Set H := H,_1 . Then hy_1 n = Yn—1.n8i+1.1 — Ynn detHQi and

i
hnnh;m = (ynnxn,n—l - ))n—l,nxnn)giﬂ,l +xnn(yn—1,ngi+1,1 — Ynn detHﬁ) =

= hnn (xn,n—lgi+l,l — Xnn det Hﬁl)

Therefore, h,,,, = X5, n-18i+1,1 — Xnn det H 21 is a regular function.

Mutation at g;;. As in the previous case, if n — 1 ¢ I f , then the functions g;,1; coincide with the ones
in case of the standard BD pair, which was already treated in [18]. Therefore, assume n — 1 € I'{, which
implies there is a Y-block attached to the bottom of the leading X-block of the functions g; ;. For
i < n, the mutation at g;; is given by

!
8ii8ii = Jn-i,18i-1,i-18i+1,i + fni+1,18i+1,i+18i,i-1-

Define F,,_; ; := [Y["n] X1in1]; ). Note that det(F,—;, 2= (=1)"" f,_i.1. Let G; ;—1 be a submatrix
of the £-matrix such that det G; ;_; = g; ;—1; it can be written as

[i-1,n]
xlen o

Gii1= v

s

where C is some m X (m — 1) matrix. Define

A=Al-1) = [F"“'“’l 0]

* C
Let N be the index of the last row of A. The Desnanot—Jacobi identity from Proposition 2.8 tells us that

detA - det Al = detAl detA% - detAl deta?.
Deciphering the last identity yields

detA - gii detCpy = gii—1 (1) "™ fo_is1,1 det Cpiy — gi—1,i-1 det C det A%
or
det A - gii = giiot (1" fuiivi1 — gic1ici detA?. (4.3)

Let B:= A(i) = A? The Desnanot—Jacobi identity from Proposition 2.8 for B yields

det B gist.iv1 = Gist.i (1) fu-int — gii det B? (4.4)
Now, multiply equations (4.3) by g;+1,;+1 and (4.4) by g;_,;—1, substitute det A% “ 8i+l,i+l * 8i-1,i—1 1IN

equations (4.3) with the right-hand side (RHS) of equation (4.4) and combine the terms. These algebraic
manipulations result in

i (=) (gis1ie1 det A — gi_y ;1 det B%) = 8ii—1 fa-i+1,18i+1,i+1 + &ir1,i fn-i18i-1,i-1-

Thus, the mutation at g;; for 1 < i < n yields a regular function.
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Now consider the mutation at g,,,. Since we assume n—1 € I'{, let y.(n — 1) = j. Then the mutation
at g, reads

’
nn&nn = &n—1,n-1hnnh1 jr1 + f118n,n-1-

Since gun = Xun, all we need to check is that the RHS is divisible by x,,. Let G := G, ,—1. Expanding
&n,n—1 along the first row, we obtain g, n—1 = Xpn-1h1,j+1 — x,mG%. Writing out g,,—1,,—1 and fi1, we
see that

!’
8nn8nn = (xn—l,n—lxnn _xn—l,nxn—l,n)ynnhl,j+l
2
+ (xn—l,nynn - yn—l,nxnn)(xn,n—lhl,j+l —Xnn detGi)

After expanding the brackets, it’s easy to see that there are two terms x,,_1 X, n—1Ynnh1, j+1 With opposite
signs, hence they cancel each other out; all the other terms are divisible by x,,,,. Thus, the proposition
is proved. O

5. Completeness

In this section, we prove part 2.2 of Proposition 2.2, which asserts that any regular function belongs to
the upper cluster algebra. Together with the results on regularity from Section 4, we will conclude that
the ring of regular functions on D(GL,,) can be identified with the upper cluster algebra.

5.1. Birational quasi-isomorphisms U

For this section, let us fix an aperiodic oriented BD pair I := (I'",T), let D (GL,,)r be the corresponding
Drinfeld double, and let GC(T") be the generalized cluster structure on D (GL,,)r. We consider another
BD pair I obtained from I by removing a root from I'{ (or from I'7) and its image in I'] (or in ['S; see
the cases below), and define another Drinfeld double® D (GL,); endowed with the generalized cluster
structure GC (). The objective of this section is to construct a certain rational map

U : D(GLy); --» D(GL,)r,

which we later recognize as a quasi-isomorphism in the sense of Proposition 2.5 and as a birational
automorphism of GL,, X GL,,. In view of these two properties, we refer to the maps U as birational
quasi-isomorphisms.”

Notation

We denote by (X,Y) the standard coordinates on D(GL,,) (regardless of the associated BD pair). If ¢
is a cluster or stable variable in GC(T'), then by i/ we denote the corresponding variable in GC(T'); that
is, ¥ and ¥ are either the variables attached to the same vertices in the initial quivers or in the quivers
that are obtained via the same sequences of mutations. All g-, -, f-, ¢- and c- functions in the initial
extended cluster of GC(I') are marked with a tilde as well.

Removing the rightmost root from a row run B

Let A" = [p+ 1, p + k] be a nontrivial row X-run in I, and let A" = [g + 1,4 + k] := 7, (A") be the
corresponding row Y-run. Define I = (I, ') with I = (I, f;, yr|l=1r) given by ff =IT\{p+k-1}
and I’ 5 =17\ {g+k —1}. Let us examine the difference between the £-matrices in GC(I') and GC (D).

6We loosely refer to D (GL,, )r as the Drinfeld double of GL,, even when I'" # I'“; strictly speaking, it is a Drinfeld double if
and only if I'" =T'“.

7We do not provide a general definition of birational quasi-isomorphisms, but we use this term for any map &/ constructed in
this section. We will give a comprehensive general treatment of these objects in our future publications.
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For any £-matrix £(X,Y) in GC(T'), let E(X ,Y) be a matrix obtained from £(X,Y) via removing the

last row of each Y-block of the form Y (1g+k]" If E(X Y) arises from a maximal alternating path in

Gr that does not pass through the edge (p + k — 1) (g + k — 1), then £(X,Y) is an £-matrix in
GC(I) that arises from the same path in Gr However, if £L*(X,Y) := L(X,Y) is constructed from a

path that does pass through (p + k — 1) (qg+k—1), then £*(X,Y) is a reducible matrix with blocks
that correspond to the remaining two L-matrices in GC(I'). Let us set so to be the number such that
(X,Y) = Xp4k,1. Define a rational map U : D(GL,); --> D(GL,,)r via the following data:

\0 S0

1 - A
Gi(X,Y) = ———_det frlo-N (£

T (K0 S okenutsort v 2 (K ) = L b -1
k-1
Up(X,Y) =1+ ) ai(X,Y)egei gu; (5.2)
i=1
Un(X.Y) = ]_[ (Uo) |Uo: (5.3)
k>1
U(X’Y) = (U+(X9Y)X7U+(X9Y)Y) (54)

Proposition 5.1. Let U : D(GL,); --> D(GL,)r be the rational map given by equation (5.4). Then the
map U acts on the cluster and stable variables via the following formulas:

Z/[*(gl](X,Y)) — gZLJ(X7 Y)gp+k,](X’ Y) l‘f‘cj‘s(X7 Y) =xl'jf()rs < 50, (55)
gij(X,Y) otherwise;
U*(h,](X,Y)) — }:lij(XaY)gp+k,1(X’Y) ifﬁ:s().(,Y)zy[jfors<S0; (56)
hij(X,Y) otherwise;
if W is any -, - or c- function in the initial extended cluster, then
U (Y (X.Y)) = d(X.Y). (5.7)

Note that the first lines in equations (5.5) and (5.9) reflect the fact that £* (X, Y) is a reducible matrix
with blocks equal to a pair of £L-matrices from GC(I"). The proof of the above proposition is exactly the
same as in [20].

Motivation of formulas (5.1)-(5.4)

Though the formulas are complicated, they are designed in concordance with the invariance properties
of the variables. The ¢-, f- and c-variables are the same in the initial extended clusters of GC(I") and
GC(T), and they are all invariant with respect to the left action N,.(X,Y) = (N,X, N,Y) by unipotent
upper triangular matrices. Since U, is such, we see that formula (5.7) holds. Now, if  is a g- or h-
function, recall that one of its invariance properties reads

l//(N+X9 ?F(N+)Y) = d/(X’ Y)
Notice that ¥, (U,) - Uy = Us; therefore,

U (W (X,Y)) =y (UsX, ULY) =y (UL X, 7 (U UoY) = (X, UpY);
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hence, the main part of the proof of Proposition 5.1 is to show that
d/(X’ UOY) = &(X9 Y)g;.;.k,] (X’ Y)
for some & > 0. A similar reasoning explains formulas for ¢/ for other choices of roots below.

The inverse of I/

Though we do not need formulas for the inverse of U in the proofs (except in some simple cases), let
us state them for completeness. Let 6, := vy, |1-lr be the BD map for the triple I'". The verification of the
formulas is similar to the proof of Proposition 5.1 and is based on an application of a series of long
Pliicker relations.

— 1 £y [50.N (£9)] _ .
Bi(X,Y) = D) det(L) N e KD = L k=1 (5.8)
k-1
Oo(X,Y) = 1+ ) Bi(X,Y)equiqui (5.9)
i=1
U.(X,Y) = (1_[ 0y (Oo) |Uo; (5.10)
k>1
U X,Y) = (U(X, V)X, U, (X,Y)Y). (5.11)

The formulas for the inverse of ¢/ in the other cases below are obtained via the same scheme: 1) add an
extra negative sign in front of the coefficients; 2) substitute £* with £* and the frozen variable in the
denominator with the corresponding cluster variable from GC(I'); 3) substitute ¥ with 6.

Removing the leftmost root from a row run )

Asbefore, let A" = [p+1, p+k] be anontrivial row X-runinT andlet A" = [g+1,g+k] :=y,(A") be
the corresponding row Y-run. Define I' = (I, I') with I = (I'7, f;, Yr |flr) givenby I'T =TT\ {p+1}
and f; = I'J \ {¢q + 1}. For an L-matrix £(X,Y) in GC(I), let L(X,Y) be a matrix that is obtained

from L£(X,Y) by removing the first row of each X-block of the form X [Jp+1 e If £(X,Y) arises from

a path that does not traverse the edge (p + 1) RN (g +1), then £(X,Y) is an L-matrix in GC(I); if it
does traverse the latter edge, £(X,Y) is a reducible matrix with blocks that are £-matrices in GC(T).
Let us denote the £-matrix that corresponds to the latter path as £*(X,Y), and let us denote by s the
number for which £ (X,Y) = x,42,2. We define the rational map U : D(GLy)g --> D(GL,,)r via the
following data:

. 1 5 -
a;i(X,Y) = (_1)l_1~—det£*[s(”N(L )

T D) S v ey K T = Lk =1 (5.12)
k-1
Up =1+ ) ai(X,Y)ege grint; (5.13)
i=1
Us o= ([ ] 75 W0 |h: (5.14)
k>1
UX,Y) = (Us(X, V)X, U (X, Y)Y). (5.15)
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The next proposition corresponds to Theorem 7.3 in [20] and can be proved in exactly the same way:

Proposition 5.2. Let U : D(GL,)y --> D(GL,)r be the rational map given by equation (5.15). Then
the map U acts on the cluster and stable variables via the following formulas:

g;:i(X,Y)g X, Y) ifLi(X,Y)=x; ;
U (gi;(X.Y)) = éj]( )8p+2.1( ) lfﬁu(. ) =xij fors < so (5.16)
gij(X,Y) otherwise;
Uy (X, 1)) = | DD (X 1) L5, (X010 = i for s < s (5.17)
h,-j(X, Y) otherwise;
if W is any -, f- or c- function in the initial extended cluster, then
U W(X,Y)) =§(X,Y). (5.18)

Removing roots from column runs

For a BD triple I' = (I';, I'2, ), let us define the opposite BD triple I'°P as T'°P := (I, '}, v*); likewise,
if ' = (I'",T°) is a BD pair, we call I'°P := ((I"°)°P, (I'")°P) the opposite BD pair. As explained in [20],
the L-matrices in GC(I') and GC(I'°P) are related via the involution

L(X,Y)— LT, X"

In particular, the involution (X,Y) +— (¥Y’,X") maps g- and A-functions from GC(T') to k- and g-
functions from GC(I"P). This allows one to translate the construction of the rational maps from the case
of removing a pair of roots from row runs to the case of removing a pair of roots from column runs. In
the latter case, for some unipotent lower triangular matrix Uy := Up(X,Y), we set

U- = U | 70" W)

k>1

and define the rational map U/ : D(GL,); --> D(GL,)r via
UX,Y) = (XU-(X,Y),YU_(X,Y)).

As one can observe in the previous cases, the entries of the matrix Uy belong to the localization
O(D(GL,))[§Z], where the variable ¢/ is a stable variable in GC(I') such that ¢ is a cluster variable
in GC(T') (see the paragraph on notation above). Let A€ = [p + 1, p + k] be a nontrivial column X-run
and y(A€) = [¢q + 1, g + k] be the corresponding column Y-run. Then, if p + 1 and ¢ + 1 are removed,
the variable Y is Yg = hy g42;if p+ k — 1 and g + k — 1 are removed, then g = Ay gek.

The action of I/ upon other clusters

Let I be obtained from I in one of the four ways described above (i.e., by removing a pair of rightmost
or leftmost roots from row or column runs), and let 5 be the variable that is cluster in GC(I') and
such that the corresponding variable i/ is stable in GC(T'). The following proposition corresponds to
Proposition 7.4 in [20] and describes the action of the maps U/ defined above upon an extended cluster
other than the initial one.

Proposition 5.3. If ¢ and s are cluster variables in GC(T) and GC(T) that are obtained via the same
sequences of mutations, then
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deg(y) — deg ()

U W(X.Y) =0 (X, Y)a(X, Y)Y, A:= ——
egio

where deg denotes the polynomial degree.

Proof. The proposition is a straight consequence of Proposition 2.5. The required global toric actions
in GC(T') and GC(T') have their weight vectors formed by the degrees of the cluster and stable variables
considered as polynomials, and the map 6 coincides with the map ¢/. Indeed, if  is any variable from
the initial extended cluster such that deg(y) = deg(i), then 6(¢) = ¢ = U(). However, if ¢ and i/
have different degrees, then the formulas for I/ (see Proposition 5.2 or Proposition 5.1) suggest that
degy — degy = deg g = degy. Therefore,

deg y—deg &

0() =gy “" =gy =UW).

Thus, the maps 6 and U/ are the same (when viewed as maps between the rings generated by the initial
extended clusters), and the conclusion of Proposition 2.5 for the map 6 is exactly the statement of
Proposition 5.3. O

For the next corollaries, if ¥ is any seed in GC (T"), we set L () := L(Z)®C to be the complexification
of the ring of Laurent polynomials associated with the seed X (see equation (2.4) for the definition).
Likewise, £c(Z) denotes the ring of Laurent polynomials associated to a seed 3 € GC(I'). The below
corollaries appeared in [20] in a disguised form in the proof of Theorem 3.12.

Corollary 5.3.1. Let X and £ be seeds in GC(T') and GC(T) obtained via the same sequences of mutations

from the initial seeds, and let Lc(2) and Lc(E) be the corresponding rings of Laurent polynomials. If
O(GL,) € Lc(2), then O(GL,) C Lc(X).

Proof. 1t’s a consequence of Proposition 5.3 that Z/* can be viewed as an isomorphism Lc(Z) —
Lc(2)[¥E". Since U*(O(GL,)) € O(GL,) [¥2E'] € Lc(2)[¥E'], we see that O(GL,) € Lc(T).
O O

Corollary 5.3.2. Let N be a nerve in GC(I') and N be the corresponding set of seeds in GC(T). Set
N =N'"UZy, tobea nerve in GC(I'), where Zy,, is a seed adjacent to any seed of N’ in the direction
of yo. If O(D(GL,)) € Ac(GC(T)) and O(D(GLy)) € Lc(Zy,), then O(D(GLy)) € Ac(GC(T)).

Proof. Since Ac(GC(T) = Nsexr Lc(), it follows from Corollary 5.3.1 that
OGLy) € (] La(®);
YeN’
since in addition O(D(GL,)) € Lc(Zy,), we conclude that

O(GL) € () Le(®) = Ac(N) = Ac(GC(D)).0
SeN

]

The conclusion of Corollary 5.3.2 corresponds to Condition 2.2 of Proposition 2.2. Hence, if the other
two conditions of the proposition are satisfied, then O (D (GL,,)) is naturally isomorphic to Ac(GC(T)).

5.2. Auxiliary mutation sequences

As in [20], we will use the same inductive argument on the size |I'{| + [[']| in order to prove that Ais
naturally isomorphic to O(D(GL,)). The step of the induction is simple and relies upon Corollary 5.3.2
and the existence of at least two different birational quasi-isomorphisms (i.e., arising from a removal of
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h

Figure 22. The initial quiver of the standard GC in n = 5. The vertices of the sequence By for s = 3 are
highlighted.

different roots). However, for the base of the induction, which is [I']| +[I'{| = 1, we will need to express
manually the standard coordinates x;; and y;; as elements of Lc(Zy,), where the seed X, is adjacent
to the initial one in the direction of ¥y (see the previous section). This, in turn, will be substantially
based on the Laurent phenomenon: If we know that a certain polynomial p(X,Y) is a cluster variable,
then p(X,Y) € Lc(Zy,), and therefore p(X,Y) can be used in the production of Laurent expressions®
for x;; or y;; even if we do not know a precise Laurent expansion of p(X,Y) in terms of the variables
of X, . Thus, the objective of this section is to enrich our database of cluster variables, which will be
used in manufacturing Laurent expressions of the standard coordinates x;; and y;;.

5.2.1. Sequence B; in the standard GC
For this section, let us consider only one generalized cluster structure on D(GL,) induced by the
standard BD pair. For 2 < s < n, define a sequence of mutations B; as

hsn — hs,n—l — hs,s+1 -
- hss - fl,n—s - f2,n—s—l — fn—s,l -
— Zss 7 8s,5-1 7> 0 T 82

The pathway of the sequence is illustrated in Figure 22.

Lemma 5.4. Apply the mutation sequence Bg to the initial seed. Then the resulting seed contains the
following cluster variables:

h = dety!" "] iel,n-sl; (5.19)

s,n—i+1 {s=1}U[s+1,s+i]’

8Note that the only invertible elements of L¢(Zy,) are monomials in the invertible frozen variables and cluster variables of
Zyq. soif p(X,Y) does not belong to Xy, , we cannot divide by p(X,Y'), but we can add it and multiply by it in the process.
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Fcoin = det[ XUl y bt bl renge i€ [0.n = s]; (5.20)
’ _ [s—i,n—i] .
8 sinn =detX T e [Ls = 1] (5.21)

Proof. The mutation at kg, reads
hsnh;n = hs+l,nhs—l,n—1 + hs,n—lhs—l,n9
which is simply

Ysnhin = Ys+in det[y N Yoot

Ys,n-1 Ysn ]

+ ys_1.n det
Ys-1m [ys+1,n—1 Ys+1,n

s,n—1 Ysn

hence, h, = det Y{[‘:‘_"ll;ljl}. Once we’ve mutated along the sequence hs, — - -+ — hg »—i+1, the mutation
at hy ,—; reads

’ ’
hs,n—ihs,n_i = hs,n—i—lhs’”,i_;,] + hs—l,n—i—lhs+l,n—i~

This is a Desnanot—Jacobi identity from Proposition 2.7 applied to the matrix

- Ys—1,n-i-1 Ys-1,n-i Ys—-l,n—i+1 --- Ys—-l,n
- Ys,n—-i—1 Ys.n—i Vs, n—i+1 cee Ys.n
— YVs+l+i,n—i—1 Ys+l+i,n—i Ys+l+i,n—i+l - -+ Ys+l+i,n

with rows and columns chosen as indicated by arrows (the first two rows, the last row and the first

column). We obtain i, | = detY {[:__1’ }Z][s+1,s+i - Next, the mutation at hg; is given by

’ ’
hss hss = fl,n—shs’ﬁ_] + fl,n—s+lhs+1,s+l .

This is a Desnanot—Jacobi identity from Proposition 2.8 applied to the matrix

— Xs—1,n Ys-1,5 Ys—l,s+1 -+ Ys—1,n
—  Xsn Yss Ys,s+1 -+ Ysn ;
Xnn Yns  Yn,s+1 -+ Ynn

hence, hy, = det[ X[ Y[“]’”]]{S,I}U[Hl,n]. Next, assuming the conventions fy,—; = hj41 ;41 and
Jn—j,0 = &j+1,j+1 (see equation (3.2)), the subsequent mutations along the path fi ,,_y — -+ = fu_s1
yield

ﬁ,n—s—i+1 il,nfsfi+l = fi+1,n—s—i+lfi,n—s—i + fi+1,n—s—if,'/,]’nfs,i+2’ i€[l,n-s].
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Assuming by induction that f/ | .. = det[ X [n=i+1.n] Y[S+i’n]]{s—1}u[s+1,n], the latter relation be-
comes a Desnanot-Jacobi identity from Proposition 2.8 for the matrix [X [n—i.n] y [5”_2’”]]{ s—1}U[s+1,n]
applied as indicated:

— Xs—1,n—i Xs—1,n—i+l -+ Xs—1,n Ys—l,i+s Ys—1,i+s+1 -+ Ys—1,n
— Xsn—i  Xs,n—i+l -+ Xsn Vs,i+s  YVs,i+s+l -+ Ysn
Xn,n—i  Xnn—i+l -+ Xnn  Yn,i+s  Yn,i+s+l --- Ynn-

Therefore, f/ .., = det[ X [n-t-n] Y[”"”’"]]{S_l}U[Hl,n] (note that f,,_s,1 consists entirely of vari-
ables from X). Lastly, the mutations along the path gg; — - -+ — g4 read

7’ ’ .
8s,s—i+18¢ g—i+1 = 85,5185, 5—i+2 T 8s—1,5-i8s+l,s-i+1,1 € [1,s—1].

Assuming by induction g, , = detX {lz:ﬁu:; LJ] , apply the Desnanot—Jacobi identity to the matrix

> Xs—1,5—i Xs—1,s—i+1 -+ Xs—1,n—i+l
— Xs,s—i Xs,s—i+l -+ Xgn—i+l
Xn,s—i Xn,s—i+l -+ Xn,n—i+l-
At last, we obtain that g/ . =detX {[j:’l’}"u_[lslﬂ nl’ O

5.2.2. Sequence B;_; — ... — By in the standard GC

Lemma 5.5. Let us apply the mutation sequence Bs_j — - -+ — By to the initial seed. Then the resulting
seed contains the following cluster variables:

’ _ [n—i,n] : .
hs,n—i+1 = detY{?—ii—n1}u[s+1,s+i]’ i€[ln—s]; (5.22)
F s = det[XUOm Y B e, i € [0,n = s]; (5.23)
’ _ [s—i,n—i] .
8hypn =det X0 el 1] (5.24)

Proof. We prove by induction on k. For k = 0, the formulas coincide with formulas (5.19)—(5.21). Let
us apply the sequence By_y — -+ — By_| to the initial seed and assume that the formulas hold. We
will show that the same formulas hold after a further mutation along the sequence B;. The mutation at
hy,, reads

’ ’
hsnhsn =h -_1’nhs+1,n + hs—k—l,nhs,n—l'

S

This is a Desnanot—Jacobi identity for the matrix

1

— Ys—k-1,n-1 Ys—k-1,n,
- Ys,n—1 Ysn ’
- Vs+1,n-1 Ys+1,n
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, [n—-1,n] .
hence, A}, = det Y{S_ Kols+1} The subsequent mutations are
’ !’ 4
hs,n—ihs,nﬂ' = hs+l,n_ihs_1’n_i + hs,n—i—lhs’n_i+1~

These are Desnanot—Jacobi identities applied to the matrix

— YVs—k-1,n—i-1 Ys—k-1,n—i -+ Ys—k—1,n
- Ys,n-i-1 Ys,n—i cee Ysn
Ys+1,n—-i-1 Ys,n—i ceo Ys+ln
— Vs+i+l,n—i-1 Ys+i+l,n—i --- Ys+i+l,n-
’ _ [n—i-1,n] .
Therefore, hx,n_l. =detY (s—k—1JU[s+1s+i41]" Next, the mutation at /g for s < n reads

’ ’ ’
hsshss = s—l,s—lhs"'lss"’l + hs’s+1fl,n—s~

This is a Desnanot—Jacobi identity applied to the matrix

— Xs—k-1,n Ys—k-1,s Ys—k-1,s41 -+ Ys—k—1,n
—  Xsn Yss Vs,s+1 S Ysn
Xs+1,n Ys+l,s Ys+l,s+41 -+ Ys+l,n °’
Xnn Yns Yn,s+1 e Ynn

hence, hyg = det[ X -] Y[”l’"]]{s_k_l}u[ﬁlyn]. If s = n, then the mutation is
hnnh;m = h;:—l,n—l +gnnhn7k—l,n,
which expands as

r Xn—k-1,n Yn-k-1,n
hy,,, = det

Ynn
'xI’LI’l ynn

+ XnnYn—k-1,n = Xn—-k-1,nYnn,

hence 5, = Xn—k-1,,. The subsequent mutations along fj ,—s — -+ — fu—s.1 read

ﬁ’”_s_i’rlfi/,n—s—iﬂ = fi/,n—s—i+2fiv"—s_i + ﬁ"‘l’"—S—ifil—l,n—s—HZ’ i€ [1’ n- S]'

These are Desnanot—Jacobi identities applied to the matrices of the form

— Xs—k—-1,n—i Xs—k—1,n—i+l *** Xs—k—1,n Ys—k—1,i+s Ys—k—1,i+s+1 *°° Ys—k—1,n
- Xs,n—i Xs,n—i+1 o Xsn YVs,i+s Vs,i+s+1 te Ysn :
Xn,n—i Xn,n—i+1 tt Xnn Yn,i+s Ynji+s+1 " Ynn
hence, f/ (.., = det[ X =il ylstirbnl] 41y Gs+1.0- Lastly, consider the consecutive mutations

along the path g¢¢ — --- — g42. The mutation at g ;41 yields

’ ! /7 .
8s,5-i+18 s—i+1 = 8s—k-1,s-i+18541,5—i+1 T 8s,5-i8s s—iv2> L € [1,s—1].
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Figure 23. The result of mutating the initial quiver along the sequence By — B3 (n =5, the standard

Ge).

This is a Desnanot—Jacobi identity for the matrix

— Xs—k—-1,5—i Xs—k—-1,s—i+1 """ Xs—k—1,n—i Xs—k—1,n—i+1
- Xs,s—i Xs,s—i+1 e Xs,n—i Xs,n—i+l
Xs+1,s—i Xs+1,s—i+1 ' ° Xs+l,n—i Xs+1,n—i+1
Xn,s—i Xn,s—i+1 o Xpon—i Xn,n—i+1-
Thus, the lemma is proved. O

Remark 5.6. Applying the sequence B,,_x — --- — B, to the initial seed, we obtain

’ ’ .
hnn = Xs—k-1ns 8pp—i+1 = Xs—k-lLn-i> 1€ [1,n—1].

Therefore, this mutation sequence provides an alternative way of showing that x;;’s are cluster variables
(another sequence is shown in [18], but it doesn’t translate well to a nontrivial BD pair). Figure 23
illustrates the quiver in n = 5 obtained after applying B, — Bs.

5.2.3. Sequence B;_; — ... — B;in the case [[']| + |I]| =1

Lemma 5.7. Let T := (I'",I'°) be a BD pair such that T'] = {p}, I’} = {q}, and T'{ = 0, and let GC(T)
be the corresponding generalized cluster structure on D(GL,,). Let s and k be nonnegative numbers
that satisfy2 < s—k <n,2 <s <n, s—k # q+ 1. Apply the mutation sequence Bs_j — --- — By to
the initial seed of GC(I'). Then the resulting seed contains the following cluster variables:

’ _ [n—i,n] . .
b vt = detY{s—k—l}U[S+l,s+i]’ ie[l,n—s]\{qg—-s} (5.25)
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fucominy = det[ X0y s bmly oy lstn)s @ €[00 = ] (5.26)
_ [s—i,n-i] .
85 smivl = detX{j_;:] Vst L€ [Ls =11 (5.27)

Proof. Let T' be the standard BD pair. Let I/ : D(GL,); --» D(GL,)r be the birational quasi-
isomorphism from Section 5.1. In this case, it is given by

[1,n-p]
det Xy )uip+2n]
UX,Y) = (UoX,UpY), Up(X,Y) :=1+a(X,Y)eg 441, a(X,Y):= —
det x!1n=p]
[p+1,n]
Now, notice that if I C [1,n] and J C [1,2n] are two sets of indices of the same size, and if either
{g,q+1} CTorlIn{q}=0,then

U (det[X Y]7) = det[X Y]7.

Therefore, if p(X, Y) is any polynomial from equations (5.25)—(5.27), U*(p(X,Y)) = p(X,Y); butsince
U is invertible and p(X,Y) is a cluster variable in GC(I") (see Lemma 5.5), it follows from Proposition
5.3 that p(X,Y) is a cluster variable in GC(I') as well. O

Lemma 5.8. Let I' := (I'",T°) be a BD pair such that T'| = 0, I'{ = {p}, I'S = {q}. Let s and
k be nonnegative numbers that satisfy 2 < s —k < n, 2 < s < n. Apply the mutation sequence
Bs_y — --- — By to the initial seed of GC(T'). Then the resulting seed contains the following cluster

variables:
R neinr = dety{[:—_li,—nl]}u[sﬂ,sﬂ]’ ie[l,n-sl; (5.28)
fi,,n—s—i+1 = det[ X"~ Y[s+i+1’n]]{s—k—1}u[s+1,n], ie[0,n-s]; (5.29)
8y =detxPmd e[ s =11\ {n-p}. (5.30)

Proof. The proof proceeds along the same lines as the proof of Lemma 5.7. In this case, the birational
quasi-isomorphism is given by

dety{q}u[qﬂ,n]

UX.Y) = (XU, YUp), Ug(X.Y) = I+a(X.Y)eporp a(X.Y) = —d o

[g+1,n]
detY[l’n_q]

5.2.4. Sequence W in the standard GC
Let I be the trivial BD pair and GC(TI") be the corresponding generalized cluster structure on D (GL,,).
For2<s<n-1land1 <t <n-s,define a sequence of mutations Vs ; by
hen — hs,n—l A hs,s+t’
and define a sequence W; ; as
Vst = Vo1 > -+ — Vn—t,t‘

An illustration of the sequences is shown in Figure 24.

https://doi.org/10.1017/fms.2023.44 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.44

44 D. Voloshyn

Figure 24. An illustration of the sequence Wy and Wy — Vay in n = 6. Vertices hj; are frozen for
convenience, and the vertices that do not participate in mutations are removed.

Lemma 5.9. Apply the mutation sequence Wy 1 — Ws2 — -+ — W, ,_1 — Vi, to the initial seed of
GC(I'). Then the resulting seed contains the following cluster variables:

A = dety (0] , ie[0,n—s—1],

s,n—i [s=1,s+t=2]U[s+t,s+1+i ]

where the upper index indicates the number of times the corresponding vertex of the quiver was mutated
along the sequence.

Proof. Notice that Vi ;| is a part of By sequence. Moreover, the cluster variables obtained along the
sequence Wy 1 can be as well collected from the sequence By — --- — B,_1. More generally, if we’ve
already mutated along the sequence

W1 —>Wsp— o> Wi 0>V = Vi = = Vegro1,m1 —

(2-2) . (1-2)
- hs+k,n - - hs+k,n7i+l’

h(f—2)

the mutation at &, foni

yields a cluster variable

-1y [n—(t—1+i),n]
Rgen—i = QY [ (o) 2210 s+ (1= 1)k s (=1 4] (5.31)

Proceeding with the proof, the mutation of h§’,,‘” can be written as

hgtn_l) hgit) = hif;i)l hs—l,n—t+1 + hi:_l},)lhs—l,n—ts
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which is a Desnanot—Jacobi identity applied to the matrix

Ys-l,n-t Ys—l,n—t+1 **° Ys—1,n
Vs,n—-t Ys,n—t+1 e Ysn
Ys+t-3,n—t Ys+t-3,n—-t+1 " Ys+t-3,n
— YVs+t-2,n—t Ys+t-2,n—t+1 ' YVs+t-2.n
— Ys+t—l,n—t Ys+t—l,n—t+1 " Ys+t—l,n
—  YVs+t,n—t Ys+t—l,n—t+l " Vs+t—1,n-
Proceeding along 4" — ... = A"V the subsequent mutation at £"~") reads
g & fls,n s,n—i+l? q s,n—i
(=1, () _ () (t=1) (t=1) )
Pyonilts i = Mg poiwt Mg iy F Py poiPis—tin—1-i-
This is again a Desnanot—Jacobi identity applied to the matrix
Vs—1,n—(t+i) Ys—l,n—(t+i)+1 *°° YVs—-l,n
= Vs+r-2,n—(t+i) Ys+r-2,n—(t+i)+1 ' Ys+t-2,n
= Ys+t—1,n—(t+i) Ys+t—1,n—(t+i)+1 " Ys+t—1,n
= Vs+t+in—(t+i) Ys+t+in—(t+i)+1 " Ys+t+in-

As for the variable hi:(lil in equation (5.31) for k > 0, the mutation relation is

h(f) h(f—l) — h(f—l) hs—l,n—t +h(t—1) h(t)

s+k,n’ “s+k,n s+k,n—1 s+k+1,n""s+k—1,n"

This is a Desnanot—Jacobi identity applied to the matrix

l
Ys—1,n—t Ys—1,n—-t+1 cee Ys-1,n
Ys,n—t Ys,n—t+1 e Ysn
Vs+(t-1)-2,n—t Ys+(t-1)-2,n—-t+1 -+ Ys+(t-1)-2,n
- Ys+t-2,n—t Ys+t-2,n—t+1 e Ys+t-2,n
= Vs+(t-D)+k,n—t Ys+(t-1)+k,n—t+1 « -+ Ys+(t—1)+k,n
= YVs+t+k,n—t Ys+t+k,n—t+1  «++  Ys+t+k,n-

h(l—l)

Lastly, fori > 0 and k£ > 0, the mutation at _is
s+k,n—i

h(’) ./’l<t_1) — h(f) ./’l<t_1) +h(’) h(f—l)

s+k,n—i""s+k,n—i s+k—1,n—i “s+k+1,n—i s+k,n—i+1""s+k,n—-i—1"
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Figure 25. Quiver Qg forn = 5.

This is a Desnanot—Jacobi identity for

Ys—1,n—(t+i) Vs—1,n—(t+i)+1 e Ys—1,n
= Ys+1-2,n—(1+i) Vs+t-2,n—(1+i)+1 o Ys+t-2n
= Vs+(t-D)+k,n—(t+i)  Ys+(t=1)+k,n—(t+i)+1 " Vs+(t=1)+k,n
Ys+t+k,n—(t+i) Ys+t+k,n—(t+i)+1 te Ys+t+k,n
Ys+(t=1)+i+k,n—(t+i) Ys+(t=1)+i+k,n—(t+i)+1 **°° Vs+(t=1)+i+k,n
= YVs+t+itvk,n—(t+i) Vs+t+itk,n—(t+i)+1  °° YVs+t+itk,n-
Thus, the lemma is proved. m]

5.2.5. Sequence S in the standard GC

Let us briefly recall a special sequence of mutations from [18] denoted as S. The sequence was used in
order to show that the entries of the matrix U = X~'¥ belong to the upper cluster algebra, as well as to
produce a generalized cluster structure on the variety GLT, (see Section 2.2 for the definition).

Quiver Qg

Let Q be the initial quiver of the standard generalized cluster algebra GC. Let us define a quiver Qg
that consists of the vertices that contain all g- and f-functions, as well as all h;; for 2 < i < n and all
@i n-i for 1 <i < n—1;forconvenience, let us freeze the vertices ¢; ,—; and h;;. Furthermore, we assign
double indices (i, j) to the vertices of Qq, with i enumerating the rows and running from top to bottom,
and j being responsible for the columns, running from left to right. Figure 25 represents Qg for n = 5.
The quiver Q together with the functions attached to the vertices defines an ordinary cluster algebra of
geometric type.

Sequence S

Let us mutate the quiver Q¢ along the diagonals starting from the bottom left and proceeding to
the top right corner. More precisely: first, mutate at (n,2); second, mutate along (n — 1,2) — (n, 3);
third, mutate along (n — 2,2) — (n—1,3) — (n,4) and so on. The last mutation in the sequence is
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h14-

Figure 26. An application of the sequence S to the initial quiver of the standard GC, n = 4.

at the vertex (2, n). Let us denote the resulting quiver as Q| and the resulting cluster variables as )(il I
2 <1, j < n. They are given by

[1TJU[j+1,n+j—i+1] e .
. detX[l._l’n] ifi > j (5.32)
ij det[x[l]U[jH,n] Y[n+i7j,n]][i_l nl ifi < ] .

Sequence Sy

Once we’ve mutated along the sequence Sg_1, the sequence Sk is defined as follows. First, freeze all
the vertices in the kth row and in the (n — k + 2)th column of the quiver Q_;. Then Sy is defined as a
sequence of mutations along the diagonals: First, mutate at (n, 2); then mutate along (n—1,2) — (n, 3),
and so on. The resulting cluster variables are denoted as )(fj and are given by

o [detx [ ifi—k+1>j
Xii = i~k.n] . .
tj det[x[l,k]u[j+k,n] Y[n+l—j+1—k,n]][l__k nl ifi—k+1<j.

Sequence S
The sequence S is defined as the composition S;,—; © S;—» o - - - o §j. The result of its application to
the initial quiver is illustrated in Figure 26 for n = 4. Notice that

XI]:+1,j =detX - (1)K i (U), 2<j<n—k+1.

It was shown in [18] that the entries of U in the standard GC can be written as Laurent polynomials in
terms of the following variables: c-functions, ¢-functions and the functions X’k‘ Ry, obtained from the
sequence S.

5.2.6. Sequence S in the case [['[]|+ [I']| =1

Lemma 5.10. Let I' := (I'",I) be a BD pair such that T'] = {p}, I’} = {q} and T'{ = 0, and let GC(T)
be the corresponding generalized cluster structure on D (GL,,). Apply the sequence S to the initial seed
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of GC(I). Thenfor 1 <k <n-1,2<j <n-—k+1, the resulting seed contains the cluster variables
Xiopj = det X - (=10 kg o (U). (5.33)

Proof. The proof is similar to Lemma 5.7 and Lemma 5.8. O

Remark 5.11. Though not needed in this paper, a similar lemma can be proved for the case I'{ = 0 and
[T = {p}, I'] = {q}. Then the resulting seed also contains the cluster variables (5.33) except for k = p.

The case of a nontrivial I'“ will require a different result.

Lemma 5.12. Let T := (I'",I'°) be a BD pair such that T’y = 0, I'{ = {p} and T'S = {q}, and let
GC(T) be the corresponding generalized cluster structure on D(GLy,). There exist extended clusters
W= (Y1,...,¥0n) and ¥ := (§1, ..., 02,) in GC(T) and GC(T), respectively, such that y;(X,Y) =
Ui (X,Y) if and only if i # gn-ps1.1-

Proof. Indeed, if p = 1, then the initial extended clusters of GC(T') and GC(I') satisfy the requirement;
if p > 1, then let W5, and ‘i’sl be the extended clusters in GC(T') and GC(T), respectively, that are
obtained from the initial extended clusters via an application of S;. Let U : D(GL,,); --» D(GL,,)r be
the birational quasi-isomorphism described in Section 5.1. It is given by

det Y{lq JUlg+2,n]
UX,Y) := (XU, YUy), Up(X,Y) =I1+a(X,Y)eps1,p, a(X,Y):= %
detY, (gl
It follows that 2/ ( )(l.lj (X,Y)) = Xilj (X,Y), where )(l.lj are defined in equation (5.32); therefore, Proposition
5.3 implies that )(ilj are cluster variables of ¥, . Since all the other variables (except g,,—p+1,1(X,Y) and
&n-p+1,1(X,Y)) are equal as elements of O(D(GL,,)), we conclude that ¥, and ‘i‘g, are the required
extended clusters. O

5.3. Completeness for |I'[| = Land |[I'{| =0

Let GC(T') be a generalized cluster structure on D(GL,,) defined by a BD pair with I'] = {p}, I} = {¢}
and Ff =0, and let gC(f‘) be the standard generalized cluster structure.

Lemma 5.13. The entries of U = X~'Y in GC(T) belong to the upper cluster algebra.

Proof. It was shown in [18] that the entries of U can be expressed as Laurent polynomials in terms
of the ¢-variables, c-variables and the variables /\(,'(‘ L (see Section 5.2.5), as well as in terms of any
mutations of these variables. By Lemma 5.10, all of these variables are present in GC(I'); thus, the
entries of U belong to A(GC(I)). O

Proposition 5.14. Under the setup of the current section, the entries of X and Y belong to the upper
cluster algebra.

Proof. Due to Corollary 5.3.2, it suffices to show that the entries of X and Y can be expressed as Laurent
polynomials in the cluster ¥ adjacent to the initial one in the direction of g1 1. It follows from Lemma
5.7 and Remark 5.6 that all the entries of X except the gth row belong to the upper cluster algebra, for
they are themselves cluster variables. Due to Lemma 5.13 and the relation XU =Y, all the entries of
Y except the gth row also belong to the upper cluster algebra. Therefore, we only need to find Laurent
expressions for the gth rows of X and Y.
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The mutation at g 41,1 yields

Ygqn  Xp2 Xp3 ... Xpn-p+l
Yg+l,n Xp+1,2 Xp+1,3 - .. Xp+l,n—p+l

por (X,¥) =det| O Tpi22 Xpi2s - Xpanoput |, (5.34)
0 Xn,2 Xn,3 -+« Xnn-p+l

which can be seen via an appropriate application of a Pliicker relation. Expanding g;) +1.1(X,Y) along
the first column yields

’ _ [2,n—p+1]
8t 1 (X.Y) = ygngpi12(X.Y) = ygrindet X 00070

X {[Z;'J [11)9 :12]’1] is a Laurent polynomial in terms of the

variables of ¥. Together with the above relation, we see that y, is a Laurent polynomial in terms of
the variables of ¥ as well.
Let us assume by induction that for i > g the variables y,; are already recovered, where j > i.

Since p # g, it follows from Lemma 5.7 that det

Expanding the function A, ;1 (Y) = detY [[;_ql::l]_ i+1] along the first row, we see that

hgi-1(Y) = yg,i-1hg+1,i(Y) + P1(Y),

where P (Y) is a polynomial in all entries of Y, [[;_qul]_ i+1] CXCEPt Vg1, and hence, P (Y) is a Laurent

polynomial in the variables of . Therefore, we’ve recovered all y,; for i > g. To proceed further, we
make use of f-functions. The variable x,,, can be recovered via expanding fi ,—4(X,Y) along the first
row:

fl,n—q(X,Y) = anhq+l,q+1(Y) + Py (X,Y),

where P, is now a polynomial in all entries of [ X "] Y[q“’"]][q,nj except xg4,, and therefore P> (X,Y)
is a Laurent polynomial in V. If for some i > ¢ + 1 the variables x, ; are already recovered, where j > i,
then x, ;1 can be recovered via expanding fy,—;+1,i-4(X,Y) along the first row:

Jn-irticg(X,Y) = xg i1 frirt,ieg-1(X,Y) + P3(X,Y),

where P3(X,Y) is again a polynomial in entries that are already known to be Laurent polynomials in
terms of ¥. We conclude at this moment that the variables x; 441, . . ., X4n are Laurent polynomials in
W¥. Using the same idea, we recover the variables x4, . . . , X44 consecutively starting from x,, and using
the g-functions: Each x; is recovered via the expansion along the first row of the function g,;(X,Y).
Lastly, since x41, . . . , X4, are recovered as Laurent polynomials in terms of 'Y, the remaining variables
Yqls---sYq,q-1 are recovered via XU =Y. Thus, all the entries of X and Y are Laurent polynomials in
the variables of W. O

5.4. Completeness for |I'[| = 0and |I'{| =1

Similarly to the previous section, let GC(I') be a generalized cluster structure on D(GL,,) defined by
a BD pair with I'{ = {p}, I'§ = {¢q} and '] = 0, and let GC(I') be the standard generalized cluster
structure. We need the following abstract result:
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Lemma 5.15. Let F be a field of characteristic zero, and let & and (8 be distinct transcendental elements
over F and such that F (a) = F(B). If there is a relation

D (@ = B5pi=0 (5.35)

k=1

for pr € F, then all py = 0.

Proof. Let us set x := a for convenience. Since F(a) = F(f8), we can express 8 as 8 = Zﬁz with
ad — bc # 0. Now, if ¢ = 0, each py in equation (5.35) must be zero due to the linear independence
of the polynomials x* — ((a/d)x + (b/d))*. Otherwise, if ¢ # 0, we can look at the order of the pole
x = —d/c and show that p,, = 0, and then, via a descending induction starting at m, that all py = 0.

Thus, the statement holds. O

Contrary to Lemma 5.13, in the case of a nontrivial column BD triple we first treat the entries of
Yx:

Lemma 5.16. The entries of YX~! belong to the upper cluster algebra of GC(T).

Proof. By Lemma 5.12, there exist extended clusters ¥ := (41, ...,02,) and ¥ := (§1,...,¥2,) in
GC(T) and GC(T), respectively, that differ only in the variable g,,_ p+1,1. LetU : D(GL,); --» D(GL,)r
be the birational quasi-isomorphism defined in Section 5.1. Let ¥ be the extended cluster adjacent to
¥ in the direction of & 4.1. By Corollary 5.3.2, it suffices to show that the entries of Y X -1 belong to
the ring of Laurent polynomials L£c(¥’). Let us fix an entry v := (YX!); j: since v € Lc(P), we can
write v as

v=po+ Y (@Enpe1,) pis (5.36)
k>1

where p; are elements of £ (W) that do not contain 8n-p+1,1 (in other words, we view Lc(P) as a
polynomial ring in one variable g,,_,1,1). Since L[(YX") = YX~! and due to the choice of ¥ and P,
we see that an application of (/*)~! yields

v—p0+2(g;; "*”) P (5.37)
k=1 l,g+1
hence subtracting equation (5.37) from equation (5.36), we arrive at
k
~k 8n-p+1,1

Z(gn—ml,l - (—h ) )Pk =0.

k=1 1,g+1
By Lemma 5.15, px = 0 for all k > 1. Therefore, there exists a Laurent expression for v in terms of
Lc(¥) that does not involve a division by Ay 441 (for iy g4 is not invertible in Lc(W¥)); therefore, if

hy q+1h1 g = = M is an exchange relation for /1 4.1, substituting /11 441 with M/ h1 g+l in the Laurent
expression for v yields an expression in the ring Lc(W’). Thus, the lemma is proved. O

Proposition 5.17. In the setup of the current section, all entries of X and Y belong to the upper cluster
algebra of GC(T).
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Proof. Tt follows from Lemma 5.8 that all entries of X except the pth column are cluster variables in
GC(I). Since the entries of YX~! belong to the upper cluster algebra due to Lemma 5.16 and since
Y = (YX~1)X, we see that all entries of ¥ except the pth column also belong to the upper cluster algebra.
The mutation at sy 44+1(X,Y) yields

Xnp Xn,p+l 0 cee 0
Y2q Y2,q+1 Y2,q+2 " Y2n
hi,q+1(Xa Y) = . . . . ) (538)
Yn—q+l,q Yn—qg+l,q+1 Yn—qg+1,q+2 *°° Yn—q+l,n
and the expansion along the first row yields
’ 2,
B} gt (X,Y) = Xpho gt (X,¥) = i o det Y L0 (5.39)

Y{q HUlg+2,n]

A further expansion of the minor det
[2,n—g+1]

along its first column yields

+1

Yig detY

e
{q}ulg+2,n] _
det Y[Z,n—q+1] -

_Q

[g+2,n]
[2,k=1]U[k+1,n-g+1]"

~
||
(S5}

[g+2,n]

[2.k—1]U[k+1.n—g+1] 3T€ known to be cluster variables:

In turn, the minors detY,

h3 g2 k=2,
[g+2,n] _ (k=2)
detY ) ) " Utkstnget] = (Pagee 2<k<n-g+1,

h27q+2 k=n—q+1,

where the variables hgkq_flz come from the W-sequences studied in Lemma 5.9 (they are applicable in
ITY| = 1 as well, for the h-functions are the same as in the standard structure). It follows from equation
(5.39) that x,,,, belongs to the upper cluster structure. Now, the rest of the proof is similar to Proposition

5.14: To recover the variables x,_; , for 1 < i < p, one uses the functions g,_; ,; due to the relation

Y = (YX )X and Lemma 5.16, these variables together with Xnp yield yup,...,ypp. To proceed
further, one recovers consecutively y,, ,4; from h,, ,,;, and then one can obtain x, ,,; back from the
relation X = (YX~1)~1Y. Thus the proposition is proved. O

5.5. Coprimality

Let GC(T') be the generalized cluster structure on D (GL,,) induced by an aperiodic oriented BD pair
I'. In this section, we prove that all cluster and frozen variables from the initial extended cluster are
irreducible as elements of O(D(GL,,)), as well as (for cluster variables) coprime with their mutations
in O(D(GL,)). Together with Proposition 4.1, we will conclude that GC(T') is a regular generalized
cluster structure.

Lemma 5.18. Assume that T is nontrivial and T is obtained from T by the removal of a pair of roots. Let
Wy be the cluster variable from the initial cluster of GC(T') such that Jg is frozen in GC(T') (see Section
5.1). Let\y # g be a cluster or frozen variable in GC(T) and  be the corresponding variable in GC(T).
Suppose that y and g are irreducible as elements of O(D(GL,,)). Then there exist f € O(D(GL,))
and A > 0 such that f is coprime with W and ¢ = fyd; moreover,  is irreducible in O(D(GL,)) if
and only if yr is not divisible by .
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Proof. Indeed, let Y : D(GL,); --» D(GLy)r be the birational quasi-isomorphism constructed in
Section 5.1. By Proposition 5.3, U* () = € for some & > 0. Assume that = f; - f> for some regular
coprime functions f; and f>. Set

Fdl =U (), ie{l,2}, 4 €Z,

where f; € O(D(GL,)) and ¢ are coprime (by the assumption, i is irreducible, so we can find such
fi). Applying U* to , we arrive at

GuE = fifis .

Since ¥, is coprime with ¢, f; and f>, we see that & = 1| + 1»; since i is irreducible by the assumption,
without loss of generality /> is a unit in O(GL,,); that is, f» = a det X* det Y’ for some k,! € Z and
a € C. Since (U*)"' (o) = fo, we see that = f}fn//éz. Setting f := f>f1 and A := A, proves the first
claim. Moreover, if ¢ is not divisible by /5, then 4> = 0, hence f; is a unit and thus ¢ is irreducible. O

Proposition 5.19. All cluster and frozen variables in the initial extended cluster of GC(I') are irreducible
polynomials.

Proof. For the standard BD pair, it’s the statement of Theorem 3.10 in [18]. For other BD pairs, let
us use an induction on the size |I'7| + [[7|. If [I]| + [T'{| = 1, then the only variables from the initial
extended cluster that differ from the case of the standard BD pair are g- and h-functions; these are
irreducible by Frobenius theorem [24, p. 15]. From now on, assume that |['7| + [T'{] > 2.

Let I be obtained from I' by removing a pair of leftmost or rightmost roots, and let ¢/ be the variable
that is cluster in GC(T') but such that ¢ is frozen in GC(T). Let U : D(GLy)f --» D(GL,)r be the
associated birational quasi-isomorphism. Since |[']| + [T'{| > 2, we can find yet another pair of roots
from I' to remove; let us denote by ¢, the corresponding variable.

The variables Y\ and Yy are irreducible. Indeed, let us write ; = fw;z and Y = gc,bfl for some

A1,42 = 0and f,g € O(D(GL,)) coprime with ¢, and v, respectively. Applying U to | = ft,b;z,
we see that there exists f coprime with i; and numbers 6 € Z, > 0 such that

b = a0

It follows from the assumption of the induction that 1 = 6 + 571, and that 1 = f 1,5;2 Since i is not
invertible in O(D(GL,)), we conclude that 1, = 0. A similar argument shows that 1; = 0 (here, one
applies the other birational quasi-isomorphism). By Lemma 5.18, both ¥/ and i, are irreducible.

Any cluster or frozen variable from the initial extended cluster is irreducible. Indeed, let  be such.
If ¥ is not divisible by | or i, then it follows from Lemma 5.18 that i is irreducible; otherwise, since
Y1 and ¥, are irreducible, we can find f € O(D(GL,)) coprime with both i and i, and numbers
61,6, > 1 such that

=y
Applying U] to the above identity, we arrive at
o F=11 =0 70y 76
Gt = Fo g,

where f is coprime with ¢, 1, € Z and £ > 0. We see that &; = i + 0 + 62, hence iy = fc,lrzez. But
since both ¢ and i, are coprime irreducible elements of O(D(GL,)), we conclude that §, = 0. By
Lemma 5.18, y is irreducible. O

Proposition 5.20. Any cluster variable ¥ from the initial cluster of GC(I') is coprime with ¥’.
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Proof. As in the previous proposition, let us run an induction on the size |[I']| + |['{|. For the standard
BD pair, the statement was proved in [18]. For [[']| + |[[']| > 1, let I be obtained from I by the removal
of a pair of leftmost or rightmost roots, and let 5 be the cluster variable such that ¢4 is frozen in
GC(I). For any variable  # g, since i is irreducible (see Proposition 5.19), we can write " = p - "
for some A > 0 and some p coprime with ¢. Applying the corresponding birational quasi-isomorphism,
we find &,17 > 0, @ € Z and an element j coprime with /5 such that

77 ~50 71 7nA
U = pYouus”.
Since /' and ¢ are coprime by the assumption of the induction, we see that 1 = 0. Therefore,  is
coprime with .
Now, let us address the case of ¢ = . If |[]| + ]| > 2, the coprimality of ¢5 with ¢/, follows
from the existence of another birational quasi-isomorphism, which is associated with a different pair of

roots. If [ | + |['{ | = 1, we observe from formula (5.34), formula (5.38) and Frobenius theorem [24, p.
15] that ¢/, is irreducible and coprime with 5. Thus, the proposition is proved. O

Combining Proposition 4.1, Proposition 5.19 and Proposition 5.20, we see that GC(T") satisfies the
first two conditions of Proposition 2.2; thus, GC(T') is a regular generalized cluster structure.

5.6. The final proof

Proposition 5.21. Let GC(T') be a generalized cluster structure GC(T') on D(GL,,) that arises from an
aperiodic oriented BD pair I. Then the ring of regular functions on D(GL,,) is naturally isomorphic to
the the upper cluster algebra of GC(I').

Proof. The fact that GC(T') is a regular generalized cluster structure is the content of Section 4 and
Section 5.5, hence we only need to verify the third condition of Proposition 2.2. The proof is based on
an inductive argument on the size [I']| + |T'{|. The base of induction is |I'{| + |I'[| = 1, which is the
content of Proposition 5.14 and Proposition 5.17, and the inductive step is based on Corollary 5.3.2 and
the existence of at least two distinct birational quasi-isomorphisms. The proof can be executed verbatim
as in [20]. ]

6. Toric action

LetI' = (I",I'“) be an aperiodic oriented BD pair that induces the generalized cluster structure GC(I')
on D(GL,,). Let " be the Cartan subalgebra of sl,,. In Section 3.7, we defined subalgebras

bre := {h € b | a(h) = B(h) if y/ (a) = B for some j}

and we let Hr- and Hre be the connected subgroups of SL,, that correspond to hr- and hre, respectively.
Then we let the groups Hyr and Hre act upon D(GL,,) on the left and on the right, respectively, and
we also defined an action by scalar matrices on each component of D(GL,) = GL,, Xx GL,,. Note that
dim Hyr = kpr = [T\ I'| and dim Hye = kre := [T\ I'{|, where IT = [1,n — 1] is the set of simple
roots of type A,. In this section, we show that the cumulative action of the three groups induces a global
toric action on GC(T') of rank kpr + kre + 2.

Lemma 6.1. All cluster and frozen variables from the initial extended cluster are semi-invariant with
respect to the left action by Hyr, the right action by Hre, and the action by scalar matrices.

Proof. The ¢-, f- and c-functions are semi-invariant with respect to the left action 7.(X,Y) = (TX,TY)
and the right action (X,Y).T = (XT,YT), where T is any invertible diagonal matrix (see Theorem 6.1 in
[18]). The g- and f-functions are semi-invariant with respect to the actions by Hy- and Hpe by Lemma
6.2 from [20]. Their semi-invariance relative the action (a, b).(X,Y) = (aX, bY), a,b € C*, follows
from its infinitesimal counterpart (3.15). ]
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How the toric action is induced

If H € Hyr and ¢ is any cluster or stable variable, then (HX, HY) = y (H)y (X, Y) for some character
X on Hr- that depends on . The character is a monomial in kr- independent parameters that describe
the group Hrr, and the exponents of the parameters become the weight vector assigned to ¢. Thus, one
induces a local toric action from the left-right action of Hypr X Hyre and the action by scalar matrices.

Proposition 6.2. The toric action induced by the left action of Hyr, the right action of Hye and the
action by scalar matrices is GC-extendable.

Proof. Let B be the initial extended exchange matrix and W be the weight matrix of the resulting toric
action. The fact that W has the full rank can be proved in exactly the same way as in [20] using the fact
that the upper cluster algebra can be identified with the ring of regular functions on D(GL,,) (which is
proved in Section 5): If we assume that rank W < kr- + kre + 2, then one can construct a toric action of
rank 1 from the given action that leaves all cluster and stable variables invariant, but any x;; and y;; is
a Laurent polynomial in the initial cluster and stable variables, and the constructed action does not fix
them, which leads to a contradiction. Thus, rank W = kpr + kpe + 2.

Now, let us show that BW = 0. This reduces to showing that if (X, Y)y’(X,Y) = M(X,Y) is an
exchange relation in the initial cluster, then M (X,Y) is a semi-invariant of the three actions. For the
exchange relations for g- and A- functions (except h;; and g;;, 2 < i < n), the latter was already shown
in [20]. For ¢- and f-functions, the statement was verified in [18]. Therefore, we need to check that
BW = 0 holds for 4;; and gii when 2 < i < n (i.e., for the rows of B that correspond to these functions).

The mutation at h;; reads

!’
hiihi; = iz i fin—i + fin-is1hi i1

Set H := diag(ty,...,t,) € Hrr and M(X,Y) the RHS of the above mutation relation, and let us
act by H on M(X,Y). If we set h; .1 (HX,HY) = ah;i+1(X,Y), where @ = a(ty,...,t,), then
hi—1,i(HX,HY) = ti_jah;—1;(X,Y); similarly, if we write fi ,—;(HX,HY) = Bfin-i(X,Y), then
fl,n—i+1(HX’ HY) = ti—l,Bfl,n—Hl (X, Y) Overall,

M(HX,HY) = t;_1afM(X,Y),

that is, it’s a semi-invariant of Hpr.
Next, the mutation at g;; is

!
8ii8ii = Gi+li+1 Jnoi+1,180,i-1 + &i-1,i-1 fn—i 18i+1,i-

Let M(X,Y) be the RHS of the latter mutation relation, and let us act by the same H on M (X,Y). If
we write giv1i+1(HX, HY) = agi+1,+1(X,Y), where now we have some different & = a(ty,...,1,),
then g;_1,;_1(HX,HY) = t;_1t;ag;i_1,;-1(X,Y); next, if we write f,,_; 1(HX,HY) = Bfn_i1(X,Y),
then f, i1, 1(HX,HY) = t; 1B fu-is1,1(X,Y); and lastly, if g;y1,;(HX,HY) = ygiy1,:(X,Y), then
8i.i-1(HX,HY) =t;yg;.i-1(X,Y). Overall, the action by H on M (X,Y) yields

M(HX, HY) = t;_1t;afyM(X,Y).

Reasoning along the same lines, one can prove that the RHS of the above mutation relations are also
semi-invariant with respect to the right action by Hyrc and the action by scalar matrices. Lastly, the
Casimirs p, from the statement of Proposition 2.4 are given by p, = Cfg{ 1_nh1_1r ,1 <r <n-1.Their
invariance was shown in [18]. Thus, the toric action is GC-extendable. O
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7. Log-canonicity in the initial cluster

The objective of this section is to prove that the brackets between all functions in the initial extended
cluster are log-canonical. It was proved in [20] that the brackets between g- and h-functions are such,
so the rest is to show that f- and ¢-functions are log-canonical between themselves and each other, as
well as log-canonical with g- and A-functions. The former is straightforward.

Proposition 7.1. The f- and @-functions are log-canonical between themselves and each other.

Proof. Notice that if a function ¢ satisfies 1Eg¢ € by and mgEr ¢ € b_, and if 1o Eg log ¢ = const and
moEr log ¢ = const, then the first two terms of the bracket of two such functions are constant:

(RY(Erlog¢1), ELlog ¢a) = (Rymo(EL log ¢1), noEr log ¢2) = const;
—(RL(ERlog ¢1), Erlog ¢2) = —(Rymo(ER log ¢1), ER log ¢2) = const.
This means that the difference between {log ¢1,log ¢>} and {log ¢, log ¢>}ga (the standard bracket

studied in [18]) is constant. Since f- and ¢-functions enjoy such properties, they are log-canonical
between themselves and each other. m]

Before we proceed to proving the log-canonicity for the remaining pairs, let us derive a preliminary
formula, which is also needed in Section &:

Lemma 7.2. Let ¢ be any f- or ¢-function, and let y be any g- or h-function. Then the following formula
holds:

{¢. ¢} = —~(moELS, VyyY) + (moERG, YVy i) + (RomoELS, ELY) — (RymoER®, ERYr).  (7.1)

Proof. If ¢ is either a ¢- or f-function, then myEr¢ € by and moEr ¢ € b_. Let’s use the following form
of the bracket:

{6y} =(RU(EL®). ELY) — (RL(ER®), ERYr) + (ER¢,YVyy) — (EL¢, VyyY).

Recallthat Epy = Epy+(1—7y,.)(Vx¥ X), where moé .y € b_; with that in mind, rewrite the first term as

*

(REELS), ELY) = ~( 7 omeErd ELY) + (RS moELS, ELY)

= —(n<Er¢,ye(Vxy¥ X)) + (RgmoEL, ELY)
= (n<EL¢, VyyY) + (RymoELg, ELY).

Similarly, applying Ery = Ery + (1 — ¥)) (Y Vy ), we can rewrite the second term of the bracket as

—(R{(ER®), ErY) = —~(n>ERr¢,YVyy) — (RymoER®, ERY).
Combining all together, the result follows. m}

Proposition 7.3. All f- and ¢-functions are log-canonical with all g- and h-functions.

Proof. Let ¢ be any f- or ¢-function, and let ¢ be any g- or A-function. Only for this proof, call two
rational functions log-equivalent (1%; ) if their difference is a multiple of ¢y. Therefore, we aim at proving

that {¢, ¥} 80, Letus pick a pair of solutions (R, R) of the system (2.8) and (2.9) with the properties
(3.6) (as a reminder, in Section 8.2 we show that log-canonicity doesn’t depend on the choice of Ry).
Recall from [20] or from Section 3.3 that all the following quantities

moéRY, ToNRY, To€LYs monLy, momper (XVxy), momer (YVyh), mompe (VxyX), mompe (VyyY)
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are multiples of . Also, recall from [18] or from Section 3.3 that mgEr ¢ and o E ¢ are multiples of ¢.
Therefore, rewriting Epy as Epy = npy + (1 —y2)(VyyY) and using (R()* (1 -y;) = mrg + (R(‘)')*n'f; ,

we see that
lggo
————
% % I
(RSoELd, ELy) = (RSmoELS, niwr) +(moErd, mo(RS)* (1 = y2) (VyyY)) =

log,

20

5 - I
= (noEL$, mre VyyY) + (REmoEL g, e VyyY) ~ (moEL. mre VyyY).

Similarly, rewriting Ery = ég + (1 —y;)Y Vyy and using (R()* (1 -y;) = mry + (RS)*ﬂf; , We arrive at

1
~(Rym0ER®, ERY) =~ —(moER$, 77 Y Vyih).

Now, combining these together with formula (7.1), we see that

lo lo.
{60} ¥ ~(R0EL, VyyY) + (mEr$, YVyth) + (m0EL, nre VyyY) = (m0Er, mrr Y Vy ) =

lo lo

¥ —(mEL9, nﬁ§Vwa) —(moER9, ﬂﬁerVYW 20.

Thus, the result follows. m]

8. Compatibility

The objective of this section is to prove Condition ii of Proposition 2.3. The matrix A from the proposition
is the identity matrix; therefore, we show that {log y;,logx;} = ¢;;, where y; is the y-coordinate of a
cluster variable x;. Together with the results from Section 7, we will conclude, in particular, that any
extended cluster in GC (I, I'“) is log-canonical with respect to the Poisson bracket. If ¢/ is any cluster
g- or h-function that is not equal to g;; or h;;, 1 < i < n, and ¥, is any g- or h-function, then it was
shown in [20] that

1’ =
{logy(¥1),logya} = { Y1 =

0, otherwise.
In this section, we treat all the other pairs of functions from the initial cluster.

8.1. Diagonal derivatives

In this subsection, we state technical formulas that compare the diagonal derivatives of the variables
that are adjacent in the quiver. We remind the reader that when the indices are seemingly out of range,
the conventions (3.2)—(3.4) are in place.

Case of f- and ¢-functions.
Set A(i, j) := Zi:i exk- The following formulas are drawn from the text of [18, p. 25]: for £,/ > 0,

1<k+l<n,

JT()ELlngkl = A(n—k+ 1,n)+A(n—l+ l,n), noER 1ngkl =A(n—k -1+ l,n); (8.1)
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fork,l > 1, k+1 <n,

moEplogpr = (n—k =D +A(n,n)+A(n—k+1,n)+A(n—-1+1,n),

(8.2)
moErlogpry = (n—k—-1+1)1.

Let y(fx;) and y(¢g;) be y-coordinates. Examining the neighborhoods of ¢- and f-functions and applying
the above formulas yield

noEry(fir) = moERy(fir) =0, kI >1, k+1<n-1;

(8.3)
noELy(or1) = moERY (k1) =0, k,I1>1, k+1<n.
Case of g- and h-functions.
For 1 <i < j < n, letus denote
=log gij — log gi+1,j+1,
8 2 8ij g &i+l,j+1 8.4)
h = 10g hjl' — 10g hj+1’i+1.
Then g satisfies the following list of formulas:
noérg =vc(ejj), MoERE = e€iis 85)
ToNLE = €js monrg = ¥r(eii);
ToTpe (Vyg-Y) =0, oM (XVxg) = Tpreiis 56
ﬂoﬂf;:(VXg -X) = ﬂff»(ejj), Mgy (YVyg) =0 )
and for any runs A", A€, A" and A€,
w(VxgX)pe = lac (), w(XVxg)ar = 1ar (i), )
tr(Vng)fAZ =0, tr(YVyg)fx: =0, .
where 1pc and 1- are indicators. Similarly, £ satisfies the following list:
noéLh = ey, moérh =yi(e;;),
oéL : oérh =y, (ej;) 88)
monrh = yi(ei), monrh =ejj;
MM (Vyh-Y) = Mpe€iis  TOMpr (XVxh) =0, 59
ﬂoﬂff:(VXh'X) =0, Mgy (YVyh) =7prejjs )
tr(Vx hX)ae =0, tr(XVxh)s, =0,
(8.10)

w(VyhY)2 = 15(),  w(¥Vyh)2 =15 ().

The above formulas easily follow from a close inspection of the invariance properties from equation
(3.11); the formulas for traces follow from the proof of Lemma 4.4 in [20]. As a corollary, if D €

{éL,€R, L, R}, then
noDy(gij) =moDy(hj;) =0, 1< j<i<n. (8.11)

For i = j, formula (8.11) is true only for D = iy, and D = &1 It follows from equation (8.7) that for any
1<j<i<n,

r(Vxy(gi)X)he = r(XVxy(gi)ar = (Vyy(gi)V)Ee = e (YVyy(gi))ir =0, (8.12)
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and for any 1 < j < i < n, it’s a consequence of equation (8.10) that

r(Vxy(hi) X)he = (X Vxy(hi)ar = e(Vyy(hi)Y)s = (Y Vyy(hj))ir =0.  (8.13)

8.2. Dependence on the choice of Ry

In this subsection, we show that the compatibility of the Poisson bracket with the generalized cluster
structure GC(I'",I') does not depend on the choice of the solutions of the system (2.8) and (2.9).
Specifically, let (R{j, k) and (Rr, I?g ) be solutions that correspond to (I'", '), and let us consider two
Poisson brackets on D(GL,,) that depend on these choices: {-, '}<R5,R5) and {-, '}(RS’R(?)'

Proposition 8.1. If the initial extended cluster of GC(I'",I'°) is log-canonical with respect to
{ '}(RSsRS)’ then it’s also log-canonical with respect to {-, '}(RSS,RS(()‘).

Proof. Indeed, let | and ¥, be any two variables from the initial extended cluster and let Ty be the
Cartan subalgebra of gl,, (C). Then the difference of the brackets can be written as

Wi ¥t wy.rg) = W1 Y2} gy ke = (somoELY1, moEry2) — (somoERY 1, ToERY2),

where sg : h — b is a skew-symmetric linear transformation such that sg (@ —vye(a)) =0fora e Ff,
¢ € {r,c}. Now, it suffices to prove that” sGmoEy logy = const and s{moEr logy = const, where ¢
is any function from the initial extended cluster. Let us only deal with the case of s, the other case is
similar. If ¢ is a ¢- or f-function, then it follows from equation (3.9) that myEr logy = const; if ¢ is
a g- or h-function, then we write moE Yy = mpépy + mp(1 — y©) X Vx . Recall from equation (3.13)
that mo&y logy = const, hence it’s left to study sgmo(1 — y“)(XVxy). Let us enumerate all nontrivial

column X-runs as Af,...,A{, and let us decompose the space of all diagonal matrices ) as

o=(tb)-

where b; is a subspace generated by the roots A NI, I; := ZjeA,_c ejj, (I;) is the span of I; and
bre is the span of {e;; | 3i € [1,k], j € A}. Now, ﬂf[cﬂ'()XVX logy is constant by (3.13), and the
application of s (1 —.) to XVx logy is zero on the first component of equation (8.14). The projection
of XVx logy onto the second component is equal to

k

P

i=1

@ (hre)*, (8.14)

k
1 A€
; N r(XVx log ), (8.15)
which is constant by equation (3.14) (or by Lemma 4.4 from [20]). Thus, the statement holds. O

Proposition 8.2. If GC(I'",I°) is compatible with the Poisson bracket {-, '}(RS’RS)’ then it’s also
compatible with {-, -}(R(r)ﬁg).

Proof. Lety and ¥, by any two variables from the initial extended cluster with ¢; being non-frozen.
As the proof of Proposition 8.1 shows, we need to prove that

(SoELY(W1),¢2) =0 and (soEry(¥1),¥2) = 0.

If 1 is any ¢- or f-function, then the above identities follow from formulas (8.3). Assume that | = g;;
for1 < j<i<mnory; =hjforl <j<i<n(andy is not frozen). Then we can write

%Let A; := moEy log ;. If we show that s§ A} and s§ A, are constant, then we can write s§ A; = sgfi] for some constant
Aj; hence, (sgAl LAr) =—(A4, sgAz) = const.
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Ep =&+ (1 —y.)(VxX) and recall that moépy(¥1) = 0 by equation (8.11), tr(VXy(x/q))ﬁ_f =0
by equations (8.12) and (8.13); and finally, nonflc(ny(wl)X) = 0 by equation (8.11); thefefore,
(SGELY(W1),¢2) = 0. In a similar way one can prove (sqERY(¥1),¥2) = 0. The only exception is
Y1 = hy; for2 < i < n. In this case, we set h = log h;_1; —log h; ;41 and f = log fi n—; —10g fi,n-i+1 SO
that logy(h;;) = h + f,and let AT, ..., Al be the list of all nontrivial row X-runs; then, by equations
(8.1), (8.8) and (8.10),

(soERlog y(hii),¥2) = (sonr(h), ERY) + (so(1 = v-)XVxh, ERY) + (sGER f, ERY)
1
A

A tr(XVxh)ar (s Ik, ERY) + (so(=ei-1,i-1), ERY)
k

m
= (spei-1,i-1, ERY) +Z
i=1

=0.

8.3. Computation of {y(¢),y} and {y(¥), ¢}

Let ¢ be any f- or p-function, and let  be any g- or h-function. The objective of this subsection is to
show that {y(¢), ¥} = {y(¥), ¢} = 0 (for y(i), we assume that ¢ is a cluster variable).

Proposition 8.3. {y(¢),¥} =0.
Proof. Let us apply formula (7.1):
(8), 4} = ~(roELy(8), Vyy¥) + (moEry(8), Yy i) + (R§moELY(8), ELyr)
—(RymoERY(9), ERYr),
and now recall from equation (8.3) that 7E1y(¢) = 10Ery(¢) = 0. Thus, {y(¢), ¥} = 0. o
Proposition 8.4. {y(y), ¢} = 0.

Proof. Let us pick a pair (R, R) of solutions of equations (2.8) and (2.9) such that both R{, and R{
satisfy the identities (3.6).

Case 1,i # j. Assume first that ¢ is any cluster g;; or h;; for 1 < j <i < n. Similarly to equation (7.1),
we can write

{y(W), ¢} = (moXVxy(¥), Erd) — (moVxy (W) - X, EL¢) + (RymoELY(¥), EL})
—(RymoERY(¥), ER®). (8.16)

Using equation (8.11) and the formula E; = &7 + (1 — y.)(VxX), we can write ELy(y) = (1 —
ve)Vxy(¥)X and e Vxy(¥)X = 0; hence, the second and the third terms combine into

—(moVxy (W) - X, EL¢) + (RGmoELY (), EL¢) =
= —(morre Vxy(¥) - X, EL¢) + (Rymo(1 = ye)mre (Vxy () - X), EL¢) = 0.

Similarly, the first term cancels out with the fourth one if we write Egy(y) = (1 — 7y, )(XVxy(¥)) and
apply R(r)(l — ¥y = momrr + Rgnoﬂflr.

Case 2. = h;;, 2 < i < n. Let us denote ho= log hj—1,; — log h; iv1, f = log fi,n—i — log fi n-i+1,

# =log ¢. Then log y(h;;) = h + f. The bracket {h, #} can be expressed as in equation (8.16):

{h, ¢} = (moXVxh,Erd) — (moVxh - X, EL$) + (RSmoELh, EL§) — (RymoER, ER).
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Using the diagonal derivatives formulas from Section 8.1 and Ef, = &1+ (1 —y,.)(Vx X), we can expand
the second and the third terms as

~(noVxh- X, EL) + (R§moELh, EL§) = —(momreVxch - X, EL) + (RGeii, EL§)+
+(R§(1 = y)(Vxh-X),EL$) = (R§eii, EL);
similarly, using Er = ng + (1 —,)(XVyx), we write

(70X Vxh, Erd) — (RymoERh, ER) = —(Rpei—1i-1, ERP),

hence {h, §} = (RGeii, E Ld)— (Rpei-1,i-1, ER $). Using the invariance properties of f-functions together
with the diagonal derivatives formulas for f, we can write {f, §} as

{f. 6} = —(R§eii, EL$) + (Ryei—1,i-1, ERp) + (XVxf,YVyd) — (Vx fX,VydY).
Altogether, we see that

{logy(y),log ¢} = (XVx f,YVy ) — (Vx fX, Vy dY).

The latter expression depends only on f- and ¢-functions, which stay the same for all oriented aperiodic
BD pairs. Since it was proved in [18] that for the standard pair we have {y(¥), ¢} = 0, we see that the
same is true for any other BD pair.

Case 2. = gii, 2 < i < n. Letus denote & := logg;,i-1 