Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-20T10:26:02.820Z Has data issue: false hasContentIssue false

10 - MOSFET basics

Published online by Cambridge University Press:  05 June 2012

David L. Pulfrey
Affiliation:
University of British Columbia, Vancouver
Get access

Summary

The MOSFET was the subject of a patent in 1933, but did not reach commercial maturity until about thirty years later. The delay was principally due to a lack of understanding of the importance of the oxide/semiconductor interface, and to the time taken to develop suitable fabrication procedures, notably for the growth of the thin gate oxide. Now, in the early 21st century, the science of silicon, and the art and technology of its processing into electronic devices have reached such a state of maturity that billions of Si MOSFETs are made weekly. The claim that the Si MOSFET is the most abundant object made by mankind is difficult to refute.

In this chapter the so-called ‘long-channel’ FET is considered. The basic electrostatics of the device is developed, and the DC current-voltage characteristics are derived using two models that are very widely used in the simulation of Si MOSFET integrated circuits: PSP and SPICE. PSP stands for ‘Penn-State Philips’, after the two organizations that have been largely instrumental in bringing this surface-potential model to a state of commercial viability. It is the Compact Model Council's new, industrialstandard, MOSFET model. SPICE stands for ‘Simulation Program with Integrated Circuit Emphasis’. It was originally developed by Lawrence Nagel at the University of California at Berkeley in the mid-1970s, and has evolved extensively since then. PSP is surface-potential based, whereas SPICE is threshold-voltage based.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • MOSFET basics
  • David L. Pulfrey, University of British Columbia, Vancouver
  • Book: Understanding Modern Transistors and Diodes
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511840685.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • MOSFET basics
  • David L. Pulfrey, University of British Columbia, Vancouver
  • Book: Understanding Modern Transistors and Diodes
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511840685.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • MOSFET basics
  • David L. Pulfrey, University of British Columbia, Vancouver
  • Book: Understanding Modern Transistors and Diodes
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511840685.011
Available formats
×