Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-22T16:03:26.360Z Has data issue: false hasContentIssue false

4 - Thermal equilibrium

Published online by Cambridge University Press:  05 June 2012

David L. Pulfrey
Affiliation:
University of British Columbia, Vancouver
Get access

Summary

Thermal equilibrium in a semiconductor refers to the state when the temperature is uniform and has been steady for a long time, and when there are no sources of energy other than heat, e.g., no applied electric field nor optical irradiation. Obviously, semiconductor devices will not be in thermal equilibrium when they are in operation. However, it turns out that parts of a device often remain in a state very close to thermal equilibrium and, furthermore, knowledge of the carrier concentrations in thermal equilibrium is often a good starting point for understanding how a device works.

In this chapter, we briefly discuss the collision processes that tend to randomize the momenta of excited electrons and holes, then we introduce the thermal-equilibrium distribution function, develop some useful expressions for the carrier concentrations in equilibrium, and finish by considering the mean thermal velocity associated with an equilibrium distribution of electrons. The last property is a further step towards developing an understanding of current in diodes and transistors.

Collisions

In the previous chapter, we showed how the processes of recombination and generation alter the carrier concentrations in the conduction and valence bands. Under thermal-equilibrium conditions, the thermally activated band-to-band and chemical generation processes are operative, along with one or all of the following recombination mechanisms: radiative, RG centre, Auger.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Thermal equilibrium
  • David L. Pulfrey, University of British Columbia, Vancouver
  • Book: Understanding Modern Transistors and Diodes
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511840685.005
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Thermal equilibrium
  • David L. Pulfrey, University of British Columbia, Vancouver
  • Book: Understanding Modern Transistors and Diodes
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511840685.005
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Thermal equilibrium
  • David L. Pulfrey, University of British Columbia, Vancouver
  • Book: Understanding Modern Transistors and Diodes
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511840685.005
Available formats
×