Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-19T08:35:50.256Z Has data issue: false hasContentIssue false

5 - Charge transport

Published online by Cambridge University Press:  05 June 2012

David L. Pulfrey
Affiliation:
University of British Columbia, Vancouver
Get access

Summary

The picture of charge carriers that should have emerged so far is one of electrons and holes moving through the semiconductor in momentum states. The carriers are continually being generated and annihilated, and they are also frequently scattered to new momentum states via collisions with vibrating atoms, ionized impurities and other carriers. In thermal equilibrium large fluxes are present, but there is no net current. To disturb this equilibrium, and obtain a non-zero net flow of charge, we need to establish some driving force within the semiconductor. Fundamentally, this driving force is a gradient in energy. It can be manifest as a gradient in the potential energy, which is related to the electrostatic potential ψ, and as a gradient in kinetic energy. If each of the n electrons per m3 has a kinetic energy u, the total kinetic energy density W is nu. Gradients in both n and u can produce a current. The main objective of this chapter is to describe and characterize the currents due to each of these three gradients.

The above picture is one of dissipative transport, i.e., one in which the directed momentum of electrons injected into a region from a hemi-Maxwellian distribution, for example, is dissipated by scattering events. If the region is so short that the injected electrons can traverse it without being scattered, then we have ballistic transport.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Charge transport
  • David L. Pulfrey, University of British Columbia, Vancouver
  • Book: Understanding Modern Transistors and Diodes
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511840685.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Charge transport
  • David L. Pulfrey, University of British Columbia, Vancouver
  • Book: Understanding Modern Transistors and Diodes
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511840685.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Charge transport
  • David L. Pulfrey, University of British Columbia, Vancouver
  • Book: Understanding Modern Transistors and Diodes
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511840685.006
Available formats
×