Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T16:53:04.644Z Has data issue: false hasContentIssue false

Section 6 - Systemic Disorders That Also Involve the Cerebrovascular System

Published online by Cambridge University Press:  15 June 2018

Louis Caplan
Affiliation:
Beth Israel-Deaconess Medical Center, Boston
José Biller
Affiliation:
Loyola University Stritch School of Medicine, Chicago
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Adu, D., Howie, A. J., Scott, D. G., et al. 1987. Polyarteritis and the kidney. Q J Med 62, 221–37.Google Scholar
Agard, C., Mouthon, L., Mahr, A., Guillevin, L. 2003. Microscopic polyangiitis and polyarteritis nodosa: How and when do they start? Arthritis Rheum 49, 709–15.Google Scholar
Albert, D. A., Rimon, D., Silverstein, M. D. 1988. The diagnosis of polyarteritis nodosa. I. A literature-based decision analysis approach. Arthritis Rheum 31, 1117–27.Google Scholar
Ara, J., Mirapeix, E., Rodriguez, R., Saurina, A., Darnell, A. 1999. Relationship between ANCA and disease activity in small vessel vasculitis patients with anti-MPO ANCA. Nephrol Dial Transplant 14, 1667–72.Google Scholar
Baggenstoss, A. H., Shick, R. M., Polley, H. F. 1951. The effect of cortisone on the lesions of periarteritis nodosa. Am J Pathol 27, 537.Google ScholarPubMed
Balow, J. E. 1985. Renal vasculitis. Kidney Int 27, 954–64.CrossRefGoogle ScholarPubMed
Bansal, P. J., Tobin, M. C. 2004. Neonatal microscopic polyangiitis secondary to transfer of maternal myeloperoxidase-antineutrophil cytoplasmic antibody resulting in neonatal pulmonary hemorrhage and renal involvement. Ann Allergy Asthma Immunol 93, 398401.Google Scholar
Beck, L., Bomback, A. S., Choi, M. J., et al. 2013. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for glomerulonephritis. Am J Kidney Dis 62, 403–41.CrossRefGoogle ScholarPubMed
Begier, E. M., Langford, C. A., Sneller, M. C., Wise, R. P., Ball, R. 2004. Polyarteritis nodosa reports to the vaccine adverse event reporting system (VAERS): Implications for assessment of suspected vaccine-provoked vasculitis. J Rheumatol, 31, 2181–8.Google Scholar
Bendo, E., Gilbert, M., Chavis, P., Mistr, S. 2009. Sherlock Holmes in the ER (the case of red and the head). Surv Ophthalmol 54, 128–34.Google Scholar
Bonsib, S. M. 2001. Polyarteritis nodosa. Semin Diagn Pathol 18, 1423.Google ScholarPubMed
Bourgarit, A., Le Toumelin, P., Pagnoux, C., et al. 2005. Deaths occurring during the first year after treatment onset for polyarteritis nodosa, microscopic polyangiitis, and Churg–Strauss syndrome: A retrospective analysis of causes and factors predictive of mortality based on 595 patients. Medicine (Baltimore) 84, 323–30.Google Scholar
Bouvard, B., Lavigne, C., Marc, G., et al. 2007. Two consecutive episodes of intracerebral hemorrhage as the presenting feature of polyarteritis nodosa. Rev Med Interne 28, 651–4.Google ScholarPubMed
Brown, M. M., Swash, M. 1989. Polyarteritis nodosa and other systemic vasculitides. Handbook of Clinical Neurology 11, 353–67.Google Scholar
Caldeira, T., Meireles, C., Cunha, F., et al. 2007. Systemic polyarteritis nodosa associated with acute Epstein–Barr virus infection. Clin Rheumatol 26, 1733–5.Google Scholar
Carpenter, M. T., West, S. G. 1994. Polyarteritis nodosa in hairy cell leukemia: Treatment with interferon-alpha. J Rheumatol 21, 1150–2.Google ScholarPubMed
Chanseaud, Y., García de la Peña-Lefebvre, P., Guilpain, P., et al. 2003. IgM and IgG autoantibodies from microscopic polyangiitis patients but not those with other small- and medium-sized vessel vasculitides recognize multiple endothelial cell antigens. Clin Immunol 109, 165–78.CrossRefGoogle Scholar
Chen, N. C., Lai, P. H., Fang, H. C., Chou, K. J., Chen, C. L. 2012. Microscopic polyangiitis with an initial presentation of pontine infarction. Am J Med Sci 344, 163–5.Google Scholar
Chetty, R. 2001. Vasculitides associated with HIV infection. J Clin Pathol 54, 275–8.CrossRefGoogle ScholarPubMed
Chin, R. L., Latov, N. 2005. Central nervous system manifestations of rheumatologic diseases. Curr Opin Rheumatol 17, 91–9.Google ScholarPubMed
Cohen, R. D., Conn, D. L., Ilstrup, D. M. 1980. Clinical features, prognosis, and response to treatment in polyarteritis. Mayo Clin Proc 55, 146–55.Google ScholarPubMed
Coll-Vinent, B., Grau, J. M., López-Soto, A., et al. 1997. Circulating soluble adhesion molecules in patients with classical polyarteritis nodosa. Br J Rheumatol 36, 1178–83.CrossRefGoogle ScholarPubMed
Colmegna, I., Maldonado-Cocco, J. A. 2005. Polyarteritis nodosa revisited. Curr Rheumatol Rep 7, 288–96.CrossRefGoogle ScholarPubMed
Conn, D. L. 1990. Polyarteritis. Rheum Dis Clin North Am 16, 341–62.Google Scholar
Daoud, M. S., Gibson, L. E., DeRemee, R. A., et al. 1994. Cutaneous Wegener’s granulomatosis: Clinical, histopathologic, and immunopathologic features of thirty patients. J Am Acad Dermatol 31, 605–12.Google Scholar
Das, C. J., Pangtey, G. S. 2006. Images in clinical medicine. Arterial microaneurysms in polyarteritis nodosa. N Engl J Med 355, 2574.Google Scholar
Deshpande, P. V., Gilbert, R., Alton, H., Milford, D. V. 2000. Microscopic polyarteritis with renal and cerebral involvement. Pediatr Nephrol 15, 134–5.Google Scholar
Fauci, A. S., Doppman, J. L., Wolff, S. M. 1978. Cyclophosphamide-induced remissions in advanced polyarteritis nodosa. Am J Med 64, 890–4.Google Scholar
Fechner, F. P., Faquin, W. C., Pilch, B. Z. 2002. Wegener’s granulomatosis of the orbit: A clinicopathological study of 15 patients. Laryngoscope 112, 1945–50.Google Scholar
Filer, A. D., Gardner-Medwin, J. M., Thambyrajah, J., et al. 2003. Diffuse endothelial dysfunction is common to ANCA associated systemic vasculitis and polyarteritis nodosa. Ann Rheum Dis 62, 162–7.CrossRefGoogle ScholarPubMed
Ford, R. G., Siekert, R. G. 1965. Central nervous system manifestations of periarteritis nodosa. Neurology 15, 114–22.Google Scholar
Freire, A. L., Bertolo, M. B., de Pinho, A. J., Samara, A. M., Fernandes, S. R. 2004. Increased serum levels of interleukin-8 in polyarteritis nodosa and Behçet’s disease. Clin Rheumatol 23, 203–5.Google Scholar
Frohnert, P. P., Sheps, S. G. 1967. Long-term follow-up study of periarteritis nodosa. Am J Med 43, 814.CrossRefGoogle ScholarPubMed
Gayraud, M., Guillevin, L., le Toumelin, P., et al. 2001. Long-term followup of polyarteritis nodosa, microscopic polyangiitis, and Churg–Strauss syndrome: Analysis of four prospective trials including 278 patients. Arthritis Rheum 44, 666–75.Google Scholar
Gherardi, R., Belec, L., Mhiri, C., et al. 1993. The spectrum of vasculitis in human immunodeficiency virus-infected patients. A clinicopathologic evaluation. Arthritis Rheum 36, 1164–74.CrossRefGoogle ScholarPubMed
Gocke, D. J., Hsu, K., Morgan, C., et al. 1970. Association between polyarteritis and Australia antigen. Lancet 2, 1149–53.Google Scholar
Gordon, M., Luqmani, R. A., Adu, D., et al. 1993. Relapses in patients with a systemic vasculitis. Q J Med 86, 779–89.Google Scholar
De Groot, K., Rasmussen, N., Bacon, P. A., et al. 2005. Randomized trial of cyclophosphamide versus methotrexate for induction of remission in early systemic antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum 52, 2461–9.Google Scholar
Guillevin, L. 1999. Treatment of classic polyarteritis nodosa in 1999. Nephrol Dial Transplant 14, 2077–9.Google Scholar
Guillevin, L. 2004. Virus-induced systemic vasculitides: New therapeutic approaches. Clin Dev Immunol 11, 227–31.Google Scholar
Guillevin, L., Cohen, P., Mahr, A., et al. 2003. Treatment of polyarteritis nodosa and microscopic polyangiitis with poor prognosis factors: A prospective trial comparing glucocorticoids and six or twelve cyclophosphamide pulses in sixty-five patients. Arthritis Rheum 49, 93100.Google Scholar
Guillevin, L., Lhote, F. 1998. Treatment of polyarteritis nodosa and microscopic polyangiitis. Arthritis Rheum 41, 2100–5.Google Scholar
Guillevin, L., Lhote, F., Cohen, P., et al. 1995. Corticosteroids plus pulse cyclophosphamide and plasma exchanges versus corticosteroids plus pulse cyclophosphamide alone in the treatment of polyarteritis nodosa and Churg–Strauss syndrome patients with factors predicting poor prognosis. A prospective, randomized trial in sixty-two patients. Arthritis Rheum 38, 1638–45.Google Scholar
Guillevin, L., Lhote, F., Amouroux, J., et al. 1996. Antineutrophil cytoplasmic antibodies, abnormal angiograms and pathologic findings in polyarteritis nodosa and Churg–Strauss syndrome: Indications for the classification of vasculitides of the polyarteritis nodosa group. Br J Rheumatol 35, 958–64.CrossRefGoogle ScholarPubMed
Guillevin, L., Lhote, F., Gherardi, R. 1997. Polyarteritis nodosa, microscopic polyangiitis, and Churg–Strauss syndrome: Clinical aspects, neurologic manifestations, and treatment. Neurol Clin 15, 865–86.CrossRefGoogle ScholarPubMed
Guillevin, L., Lhote, F., Jarrousse, B., Fain, O. 1992. Treatment of polyarteritis nodosa and Churg–Strauss syndrome. A meta-analysis of 3 prospective controlled trials including 182 patients over 12 years. Ann Med Interne (Paris) 143, 405–16.Google Scholar
Guillevin, L., Mahr, A., Callard, P., et al. 2005. Hepatitis B virus-associated polyarteritis nodosa: Clinical characteristics, outcome, and impact of treatment in 115 patients. Medicine (Baltimore) 84, 313–22.CrossRefGoogle ScholarPubMed
Guillevin, L., Pagnoux, C., Karras, A., et al. 2014. Rituximab versus azathioprine for maintenance in ANCA-associated vasculitis. N Engl J Med 371, 1771–80.Google Scholar
Guillevin, L., Pagnoux, C., Seror, R., et al. 2011. The Five-Factor Score revisited: assessment of prognoses of systemic necrotizing vasculitides based on the French Vasculitis Study Group (FVSG) cohort. Medicine (Baltimore) 90, 1927.Google Scholar
Gupta, V., Chinchure, S. D., Goe, G., et al. 2013. Coil embolization of intracranial aneurysm in polyarteritis nodosa. A case report and review of the literature. Interv Neuroradiol 19, 203–8.Google Scholar
Han, S., Rehman, H. U., Jayaratne, P. S., Carty, J. E. 2006. Microscopic polyangiitis complicated by cerebral haemorrhage. Rheumatol Int 26, 1057–60.Google Scholar
Harlé, J. R., Disdier, P., Ali Cherif, A., et al. 1991. Curable dementia and panarteritis nodosa. Rev Neurol (Paris) 147, 148–50.Google Scholar
Harper, S. L., Letko, E., Samson, C. M., et al. 2001. Wegener’s granulomatosis: The relationship between ocular and systemic disease. J Rheumatol 28, 1025–32.Google ScholarPubMed
Hasler, P., Kistler, H., Gerber, H. 1995. Vasculitides in hairy cell leukemia. Semin Arthritis Rheum 25, 134–42.CrossRefGoogle ScholarPubMed
Haugeberg, G., Bie, R., Bendvold, A., Larsen, A. S., Johnsen, V. 1998. Primary vasculitis in a Norwegian community hospital: A retrospective study. Clin Rheumatol 17, 364–8.Google Scholar
Hekali, P., Kajander, H., Pajari, R., Stenman, S., Somer, T. 1991. Diagnostic significance of angiographically observed visceral aneurysms with regard to polyarteritis nodosa. Acta Radiol 32, 143–8.CrossRefGoogle ScholarPubMed
Hiemstra, T. F., Walsh, M., Mahr, A., et al. 2010. Mycophenolate mofetil vs azathioprine for remission maintenance in antineutrophil cytoplasmic antibody-associated vasculitis: A randomized controlled trial. JAMA 304, 2381–8.CrossRefGoogle ScholarPubMed
Hirohata, S., Tanimoto, K., Ito, K. 1993. Elevation of cerebrospinal fluid interleukin-6 activity in patients with vasculitides and central nervous system involvement. Clin Immunol Immunopathol 66, 225–9.Google Scholar
Hogan, S. L., Falk, R. J., Chin, H., et al. 2005. Predictors of relapse and treatment resistance in antineutrophil cytoplasmic antibody-associated small-vessel vasculitis. Ann Intern Med 143, 621–31.Google Scholar
Hogan, S. L., Nachman, P. H., Wilkman, A. S., Jennette, J. C., Falk, R. J. 1996. Prognostic markers in patients with antineutrophil cytoplasmic autoantibody-associated microscopic polyangiitis and glomerulonephritis. J Am Soc Nephrol 7, 2332.Google Scholar
Honda, H., Hasegawa, T., Morokawa, N., Kato, N., Inoue, K. 1996. A case of MPO-ANCA related vasculitis with transient leukoencephalopathy and multiple cerebral hemorrhage. Rinsho Shinkeigaku 36, 1089–94.Google ScholarPubMed
Iaconetta, G., Benvenuti, D., Lamaida, E., et al. 1994. Cerebral hemorrhagic complication in polyarteritis nodosa. Case report and review of the literature. Acta Neurol (Napoli) 16, 64–9.Google Scholar
Ito, Y., Suzuki, K., Yamazaki, T., et al. 2006. ANCA-associated vasculitis (AAV) causing bilateral cerebral infarction and subsequent intracerebral hemorrhage without renal and respiratory dysfunction. J Neurol Sci 240, 99101.Google Scholar
Jayne, D. 2009. The diagnosis of vasculitis. Best Pract Res Clin Rheumatol 23, 445–53.Google Scholar
Jayne, D., Rasmussen, N., Andrassy, K., et al. 2003. A randomized trial of maintenance therapy for vasculitis associated with antineutrophil cytoplasmic autoantibodies. N Engl J Med 349, 3644.Google Scholar
Jayne, D. R., Gaskin, G., Pusey, C. D., Lockwood, C. M. 1995. ANCA and predicting relapse in systemic vasculitis. QJM 88, 127–33.Google ScholarPubMed
Jayne, D. R., Gaskin, G., Rasmussen, N., et al. 2007. Randomized trial of plasma exchange or high-dosage methylprednisolone as adjunctive therapy for severe renal vasculitis. J Am Soc Nephrol 18, 2180–8.Google Scholar
Jennette, J. C., Falk, R. J. 1997. Small-vessel vasculitis. N Engl J Med 337, 1512–23.Google Scholar
Jennette, J. C., Falk, R. J., Andrassy, K., et al. 1994. Nomenclature of systemic vasculitides. Proposal of an international consensus conference. Arthritis Rheum 37, 187–92.CrossRefGoogle ScholarPubMed
Jennette, J. C., Falk, R. J., Bacon, P. A., et al. 2013. 2012 revised International Chapel Hill Consensus Conference nomenclature of vasculitides. Arthritis Rheum 65, 111.Google Scholar
Jennette, J. C., Thomas, D. B., Falk, R. J. 2001. Microscopic polyangiitis (microscopic polyarteritis). Semin Diagn Pathol 18, 313.Google Scholar
Jones, R. B., Tervaert, J. W., Hauser, T., et al. 2010. Rituximab versus cyclophosphamide in ANCA-associated renal vasculitis. N Engl J Med 363, 211–20.Google Scholar
Kallenberg, C. G. 2007. Antineutrophil cytoplasmic autoantibody-associated small-vessel vasculitis. Curr Opin Rheumatol 19, 1724.Google Scholar
Kallenberg, C. G., Heeringa, P., Stegeman, C. A. 2006. Mechanisms of disease: Pathogenesis and treatment of ANCA-associated vasculitides. Nat Clin Pract Rheumatol 2, 661–70.Google Scholar
Kamimura, T., Hatakeyama, M., Torigoe, K., et al. 2005. Muscular polyarteritis nodosa as a cause of fever of undetermined origin: A case report and review of the literature. Rheumatol Int 25, 394–7.Google Scholar
Kaplan, A. A. 2003. The use of apheresis in immune renal disorders. Ther Apher Dial 7, 165–72.Google Scholar
Kasantikul, V., Suwanwela, N., Pongsabutr, S. 1991. Magnetic resonance images of brain stem infarct in periarteritis nodosa. Surg Neurol 36, 133–6.Google Scholar
Kirkland, G. S., Savige, J., Wilson, D., et al. 1997. Classical polyarteritis nodosa and microscopic polyarteritis with medium vessel involvement: A comparison of the clinical and laboratory features. Clin Nephrol 47, 176–80.Google Scholar
Koppensteiner, R., Base, W., Bognar, H., et al. 1989. Course of cerebral lesions in a patient with periarteritis nodosa studied by magnetic resonance imaging. Klin Wochenschr 67, 398401.Google Scholar
Kussmaul, A., Maier, R. 1866. Ueber eine bisher nicht beschriebene eigenthümliche Arterienerkrankung (Periarteritis nodosa), die mit Morbus Brightii und rapid fortschreitender allgemeiner Muskellähmung einhergeht. Dtsch Arch Klin Med 1, 484518.Google Scholar
de la Fuente Fernandez, R., Graña Gil, J. 1994. Anticardiolipin antibodies and polyarteritis nodosa. Lupus 3, 523–4.Google Scholar
Lane, S. E., Watts, R., Scott, D. G. 2005. Epidemiology of systemic vasculitis. Curr Rheumatol Rep 7, 270–5.Google Scholar
Laurino, S., Chaudhry, A., Booth, A., Conte, G., Jayne, D. 2010. Prospective study of TNFalpha blockade with adalimumab in ANCA-associated systemic vasculitis with renal involvement. Nephrol Dial Transplant 25, 3307–14.Google Scholar
Leib, E. S., Restivo, C., Paulus, H. E. 1979. Immunosuppressive and corticosteroid therapy of polyarteritis nodosa. Am J Med 67, 941–7.Google Scholar
Lhote, F., Cohen, P., Généreau, T., Gayraud, M., Guillevin, L. 1996. Microscopic polyangiitis: Clinical aspects and treatment. Ann Med Interne (Paris) 147, 165–77.Google Scholar
Lhote, F., Cohen, P., Guillevin, L. 1998. Polyarteritis nodosa, microscopic polyangiitis and Churg–Strauss syndrome. Lupus 7, 238–58.Google Scholar
Lhote, F., Guillevin, L. 1995. Polyarteritis nodosa, microscopic polyangiitis, and Churg–Strauss syndrome. Clinical aspects and treatment. Rheum Dis Clin North Am 21, 911–47.Google Scholar
Lightfoot, R. W., Michel, B. A., Bloch, D. A., et al. 1990. The American College of Rheumatology 1990 criteria for the classification of polyarteritis nodosa. Arthritis Rheum 33, 1088–93.Google Scholar
Long, S. M., Dolin, P. 1994. Polyarteritis nodosa presenting as acute blindness. Ann Emerg Med 24, 523–5.Google Scholar
MacLaren, K., Gillespie, J., Shrestha, S., Neary, D., Ballardie, F. W. 2005. Primary angiitis of the central nervous system: Emerging variants. QJM 98, 643–54.Google Scholar
Mahr, A., Guillevin, L., Poissonnet, M., Aymé, S. 2004. Prevalences of polyarteritis nodosa, microscopic polyangiitis, Wegener’s granulomatosis, and Churg–Strauss syndrome in a French urban multiethnic population in 2000: A capture–recapture estimate. Arthritis Rheum 51, 92–9.Google Scholar
Mandell, B. F., Calabrese, L. H. 1998. Infections and systemic vasculitis. Curr Opin Rheumatol 10, 51–7.Google Scholar
Marignier, R., Derex, L., Philippeau, F., et al. 2002. Anterior choroidal artery infarction revealing polyarteritis nodosa. Rev Neurol (Paris) 158, 221–4.Google Scholar
Mayo, J., Arias, M., Leno, C., Berciano, J. 1986. Vascular parkinsonism and periarteritis nodosa. Neurology 36, 874–5.Google Scholar
Moore, P. M. 1995. Neurologic manifestation of vasculitis: Update on immunopathogenic mechanisms and clinical features. Ann Neurol 37 Suppl 1, S13141.CrossRefGoogle Scholar
Moore, P. M., Cupps, T. R. 1983. Neurological complications of vasculitis. Ann Neurol 14, 155–67.Google Scholar
Moore, P. M., Fauci, A. S. 1981. Neurologic manifestations of systemic vasculitis. A retrospective and prospective study of the clinicopathologic features and responses to therapy in 25 patients. Am J Med 71, 517–24.Google Scholar
Mukhtyar, C., Guillevin, L., Cid, M. C., et al. 2009. EULAR recommendations for the management of primary small and medium vessel vasculitis. Ann Rheum Dis 68, 310–7.Google Scholar
Nachman, P. H., Hogan, S. L., Jennette, J. C., Falk, R. J. 1996. Treatment response and relapse in antineutrophil cytoplasmic autoantibody-associated microscopic polyangiitis and glomerulonephritis. J Am Soc Nephrol 7, 33–9.Google Scholar
Navon Elkan, P., Pierce, S. B., Segel, R., et al. 2014. Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy. N Engl J Med 370, 921–31.Google Scholar
Niles, J. L., Böttinger, E. P., Saurina, G. R., et al. 1996. The syndrome of lung hemorrhage and nephritis is usually an ANCA-associated condition. Arch Intern Med 156, 440–5.Google Scholar
Oran, I., Memis, A., Parildar, M., Yunten, N. 1999. Multiple intracranial aneurysms in polyarteritis nodosa: MRI and angiography. Neuroradiology 41, 436–9.Google Scholar
Ozkul, A., Tataroglu, C., Kiylioglu, N., Akyol, A., Tataroglu, C. 2011. Microscopic polyangiitis presenting with medullary infarct. J Neurol Sci 300, 173–5.Google Scholar
Pagnoux, C., Cohen, P., Guillevin, L. 2006. Vasculitides secondary to infections. Clin Exp Rheumatol 24, S7181.Google Scholar
Pagnoux, C., Mahr, A., Hamidou, M. A., et al. 2008. Azathioprine or methotrexate maintenance for ANCA-associated vasculitis. N Engl J Med 359, 2790–803.CrossRefGoogle ScholarPubMed
Pagnoux, C., Seror, R., Henegar, C., et al. 2010. Clinical features and outcomes in 348 patients with polyarteritis nodosa: A systematic retrospective study of patients diagnosed between 1963 and 2005 and entered into the French Vasculitis Study Group database. Arthritis Rheum 62, 616–26.Google Scholar
Pavone, L., Grasselli, C., Chierici, E., et al. 2006. Outcome and prognostic factors during the course of primary small-vessel vasculitides. J Rheumatol 33, 1299–306.Google ScholarPubMed
Ramos-Casals, M., Muñoz, S., Medina, F., et al. 2009. Systemic autoimmune diseases in patients with hepatitis C virus infection: Characterization of 1020 cases (The HISPAMEC Registry). J Rheumatol 36, 1442–8.Google Scholar
Reichart, M. D., Bogousslavsky, J., Janzer, R. C. 2000. Early lacunar strokes complicating polyarteritis nodosa: Thrombotic microangiopathy. Neurology 54, 883–9.Google Scholar
Reichart, M. D., Meuli, R., Bogousslavsky, J., 2008. Microscopic polyangiitis and polyarteritis nodosa. In Uncommon Causes of Stroke, 2nd edn, ed. Caplan, L. R.. Cambridge: Cambridge University Press, pp. 311–30.Google Scholar
Ribi, C., Cohen, P., Pagnoux, C., et al. 2010. Treatment of polyarteritis nodosa and microscopic polyangiitis without poor-prognosis factors: A prospective randomized study of one hundred twenty-four patients. Arthritis Rheum 62, 1186–97.Google Scholar
Rodgers, H., Guthrie, J. A., Brownjohn, A. M., Turney, J. H. 1989. Microscopic polyarteritis: Clinical features and treatment. Postgrad Med J 65, 515–8.Google Scholar
Rumboldt, Z., Kalousek, M., Castillo, M. 2003. Hyperacute subarachnoid hemorrhage on T2-weighted MR images. AJNR Am J Neuroradiol 24, 472–5.Google Scholar
Sack, M., Cassidy, J. T., Bole, G. G. 1975. Prognostic factors in polyarteritis. J Rheumatol 2, 411–20.Google Scholar
Sasaki, A., Hirato, J., Nakazato, Y., Tanaka, T., Takeuchi, H. 1998. An autopsy case of P-ANCA-positive microscopic polyangiitis with multiple cerebral hemorrhagic infarction. No To Shinkei 50, 5660.Google ScholarPubMed
Savage, C. O., Winearls, C. G., Evans, D. J., Rees, A. J., Lockwood, C. M. 1985. Microscopic polyarteritis: Presentation, pathology and prognosis. Q J Med 56, 467–83.Google Scholar
Savige, J., Gillis, D., Benson, E., et al. 1999. International Group for Consensus Statement on Testing and Reporting of Antineutrophil Cytoplasmic Antibodies (ANCA). Am J Clin Pathol 111, 507–51.Google Scholar
Segelmark, M., Selga, D. 2007. The challenge of managing patients with polyarteritis nodosa. Curr Opin Rheumatol 19, 33–8.CrossRefGoogle ScholarPubMed
Specks, U. 2015. Accurate relapse prediction in ANCA-associated vasculitis: The search for the Holy Grail. J Am Soc Nephrol: JASN 26, 505–7.Google Scholar
Squire, I. B., Grosset, D. G., Lees, K. R. 1993. Immunosuppressive treatment in stroke and renal failure. Ann Rheumat Dis 52, 165.Google Scholar
Stahl, H., Mihatsch, M. J., Orantes, M., Lehmann, F. 1995. Pneumonia, biclonal gammopathy, paralysis of the fibular nerve and cerebrovascular insult. Praxis (Bern 1994) 84, 1071–8.Google Scholar
Stanson, A. W., Friese, J. L., Johnson, C. M., et al. 2001. Polyarteritis nodosa: Spectrum of angiographic findings. Radiographics 21, 151–9.Google Scholar
Stegeman, C. A. 2002. Anti-neutrophil cytoplasmic antibody (ANCA) levels directed against proteinase-3 and myeloperoxidase are helpful in predicting disease relapse in ANCA-associated small-vessel vasculitis. Nephrol Dial Transplant 17, 2077–80.Google Scholar
Stone, J. H. 2002. Polyarteritis nodosa. JAMA 288, 1632–9.Google Scholar
Stone, J. H., Hoffman, G. S., Merkel, P. A., et al. 2001. A disease-specific activity index for Wegener’s granulomatosis: Modification of the Birmingham Vasculitis Activity Score. International Network for the Study of the Systemic Vasculitides (INSSYS). Arthritis Rheum 44, 912–20.Google Scholar
Stone, J. H., Merkel, P. A., Spiera, R., et al. 2010. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N Engl J Med 363, 221–32.Google Scholar
Tang, C. W., Wang, P. N., Lin, K. P., et al. 2009. Microscopic polyangiitis presenting with capsular warning syndrome and subsequent stroke. J Neurol Sci 277, 174–5.Google Scholar
Tervaert, J. W., Kallenberg, C. 1993. Neurologic manifestations of systemic vasculitides. Rheum Dis Clin North Am 19, 913–40.Google Scholar
Trepo, C., Guillevin, L. 2001. Polyarteritis nodosa and extrahepatic manifestations of HBV infection: The case against autoimmune intervention in pathogenesis. J Autoimmun 16, 269–74.Google Scholar
Trepo, C., Thivolet, J. 1970. Hepatitis associated antigen and periarteritis nodosa (PAN). Vox Sang 19, 410–1.Google Scholar
Walton, E. W. 1958. Giant-cell granuloma of the respiratory tract (Wegener’s granulomatosis). Br Med J 2, 265.Google Scholar
Watts, R. A., Lane, S. E., Bentham, G., Scott, D. G. 2000. Epidemiology of systemic vasculitis: A ten-year study in the United Kingdom. Arthritis Rheum 43, 414–9.Google Scholar
Watts, R. A., Gonzalez-Gay, M. A., Lane, S. E., et al. 2001. Geoepidemiology of systemic vasculitis: Comparison of the incidence in two regions of Europe. Ann Rheum Dis 60, 170–2.Google Scholar
Watts, R. A., Suppiah, R., Merkel, P. A., Luqmani, R. 2011. Systemic vasculitis: is it time to reclassify? Rheumatology 50, 643–5.Google Scholar
Weidner, S., Geuss, S., Hafezi-Rachti, S., Wonka, A., Rupprecht, H. D. 2004. ANCA-associated vasculitis with renal involvement: An outcome analysis. Nephrol Dial Transplant 19, 1403–11.Google Scholar
Westman, K. W., Bygren, P. G., Olsson, H., Ranstam, J., Wieslander, J. 1998. Relapse rate, renal survival, and cancer morbidity in patients with Wegener’s granulomatosis or microscopic polyangiitis with renal involvement. J Am Soc Nephrol 9, 842–52.Google Scholar
Westman, K. W., Selga, D., Isberg, P. E., Bladström, A., Olsson, H. 2003. High proteinase 3–anti-neutrophil cytoplasmic antibody (ANCA) level measured by the capture enzyme-linked immunosorbent assay method is associated with decreased patient survival in ANCA-associated vasculitis with renal involvement. J Am Soc Nephrol 14, 2926–33.Google Scholar
Wildhagen, K., Stoppe, G., Meyer, G. J., et al. 1989. Imaging diagnosis of central nervous system involvement in panarteritis nodosa. Z Rheumatol 48, 323–5.Google Scholar
Younger, D. S. 2004. Vasculitis of the nervous system. Curr Opin Neurol 17, 317–36.Google Scholar
Zhou, Q., Yang, D., Ombrello, A. K., et al. 2014. Early-onset stroke and vasculopathy associated with mutations in ADA2. N Engl J Med 370, 911–20.Google Scholar

References

Ames, PR, Roes, L, Lupoli, S, et al. (1996) Thrombosis in Churg–Strauss syndrome. Beyond vasculitis? British Journal of Rheumatology, 35, 1181–3.Google Scholar
Chang, Y, Kargas, SA, Goates, JJ, Horoupian, DS (1993). Intraventricular and subarachnoid hemorrhage resulting from necrotizing vasculitis of the choroid plexus in a patient with Churg–Strauss syndrome. Clinical Neuropathology, 12, 84–7.Google Scholar
Cheng, M, Huang, P, Liao, P, Chen, J, Chiang, T (2012). Acta Neurologica Taiwanica, 21 No 4.Google Scholar
Churg, J, Strauss, L (1951). Allergic granulomatosis, allergic angiitis, and periarteritis nodosa. American Journal of Pathology, 27, 277301.Google Scholar
Chumbley, LC, Harrison, EG, DeRemee, RA (1977). Allergic granulomatosis and angiitis (Churg–Strauss syndrome). Mayo Clinic Proceedings, 52, 477–84.Google ScholarPubMed
Dorfman, LJ, Ransom, BR, Formo, LS, Klets, A (1983). Neuropathy in the hypereosinophilic syndrome. Muscle and Nerve 6, 291–8.Google Scholar
Durack, DT, Sumi, SM, Klebanoff, SJ (1979). Neurotoxicity of human eosinophils. Proceedings of the National Academy of Sciences, USA, 76, 1443–7.CrossRefGoogle ScholarPubMed
Fauci AS, (1982). NIH conference: the idiopathic hypereosinophilic syndrome. Annals of Internal Medicine, 97, 7892.Google Scholar
Garcia, G, Achouh, L, Cobarzan, D, Fichet, D, Humbert, M, (2005) Severe venous thromboembolic disease in Churg–Strauss syndrome. Allergy, 60, 409–10.Google Scholar
Guillevin L, , Lhote F, , Gayraud, M, et al. (1996). Prognostic factors in polyarteritis nodosa and Churg–Strauss syndrome. A prospective study in 342 patients. Medicine, 75, 1728.Google Scholar
Hoffman, PM, Godfrey, T, Stawell, RJ (2005). A case of Churg–Strauss syndrome with visual loss following central retinal artery occlusion. Lupus, 14, 174–5.Google Scholar
Keogh, KA, Specks, U (2003). Churg–Strauss syndrome. Clinical presentation, antineutrophil cytoplasmic antibodies and leukotriene receptor antagonists. American Journal of Medicine, 115, 284–90.Google Scholar
Keogh, KA, Specks, U (2006). Churg–Strauss syndrome: Update on clinical, laboratory and therapeutic aspects. Sarcoidosis, Vasculitis and Diffuse Lung Diseases, 23, 312.Google Scholar
Keogh, K (2007). Leukotriene receptor antagonists and Churg–Strauss syndrome: Cause, trigger or merely an association. Drug Safety, 30, 837–43.Google Scholar
Lanham, JG, Elkon, KB, Pusey, CD, Hughes, CR (1984). Systemic vasculitis with asthma and eosinophilia: A clinical approach to the Churg-Strauss Syndrome. Medicine, 63, 6581.Google Scholar
Liou, HH, Liu, HM, Chiang, IP, Yeh, TS, Chen, RC (1997). Churg–Strauss syndrome presented as multiple intracerebral hemorrhage. Lupus, 6, 279–82.Google Scholar
Masi, AT, Hunder, GG, Lie, JT, et al. (1990). The American College of Rheumatology 1990 criteria for the classification of Churg-Strauss syndrome (allergic granulomatosis and angiitis). Arthritis and Rheumatism, 33, 1094–100.Google Scholar
Nishino, R, Murata, Y, Oiwa, H, et al. (1999). A case of Churg–Strauss syndrome presented as right thalamic hemorrhage. No To Shinkei 51, 891–4.Google Scholar
Pagnoux, C, Guilpain, P, Guillevin, L (2007). Churg–Strauss syndrome. Current Opinion in Rheumatology, 19, 2532.Google Scholar
Peen, E, Hahn, P, Lauwers, G et al. (2000). Churg–Strauss syndrome: Localization of eosinophil major basic protein in damaged tissues. Arthritis and Rheumatology, 43, 1897–900.Google Scholar
Sable-Fourtassou, R, Cohen, P, Mahr, A, et al. for the French Vasculitis Study Group (2005). Antineutrophil cytoplasmic antibodies and the Churg–Strauss syndrome. Annals of Internal Medicine, 143, 632–8.Google Scholar
Sehgal, M, Swanson, JW, Deremee, RA, Colby, TV (1995). Neurologic manifestations of Churg–Strauss syndrome. Mayo Clinic Proceedings, 70, 337–41.Google Scholar
Teresa Sartori, M, Briani, C, Munari, M, et al. (2006). Cerebral venous thrombosis as a rare onset of Churg–Strauss syndrome. Thrombosis and Haemostasis, 96, 90–2.Google Scholar
Tsuda, H, Ishikawa, H, Majima, T, et al. (2005). Isolated oculomotor nerve palsy in Churg–Strauss syndrome. Internal Medicine, 44, 638–40.Google Scholar
Udono, T, Abe, T, Sato, H, Tamai, M (2003). Bilateral central retinal artery occlusion in Churg–Strauss syndrome. American Journal of Ophthalmology, 136, 1181–3.Google Scholar

References

Abu-Shakra, M. et al., 1995. Anticardiolipin antibodies in systemic lupus erythematosus: Clinical and laboratory correlations. The American Journal of Medicine, 99, 624–8.Google Scholar
Ainiala, H. et al., 2001. The prevalence of neuropsychiatric syndromes in systemic lupus erythematosus. Neurology, 57, 496500.Google Scholar
Appenzeller, S. et al., 2008. Quantitative magnetic resonance imaging analyses and clinical significance of hyperintense white matter lesions in systemic lupus erythematosus patients. Annals of Neurology, 64, 635–43.Google Scholar
Arnaud, L. et al., 2014. Efficacy of aspirin for the primary prevention of thrombosis in patients with antiphospholipid antibodies: An international and collaborative meta-analysis. Autoimmunity Reviews, 13, 281–91.Google Scholar
Asanuma, Y. et al., 2003. Premature coronary-artery atherosclerosis in systemic lupus erythematosus. New England Journal of Medicine, 349, 2407–15.CrossRefGoogle ScholarPubMed
Aviña-Zubieta, J. A. et al., 2015. The risk of pulmonary embolism and deep venous thrombosis in systemic lupus erythematosus: A general population-based study. Seminars in Arthritis and Rheumatism, 45, 195201.Google Scholar
Azarpazhooh, M. R. et al., 2010. Microembolic signals in patients with systemic lupus erythematosus. The Canadian Journal of Neurological Sciences, 37, 371–5.Google Scholar
Baizabal-Carvallo, J. F. & Samson, Y., 2010. Microembolic signals in systemic lupus erythematosus and other cerebral small vessel diseases. Journal of Neurology, 257, 503–8.Google Scholar
Brey, R. L. et al., 2002. Neuropsychiatric syndromes in lupus: Prevalence using standardized definitions. Neurology, 58, 1214–20.Google Scholar
Bruce, I. N., 2005. “Not only … but also”: Factors that contribute to accelerated atherosclerosis and premature coronary heart disease in systemic lupus erythematosus. Rheumatology, 44, 14921502.Google Scholar
Cantú-Brito, C. et al., 2010. The clinical significance of microembolic signals in patients with systemic lupus erythematosus. Neurological Research, 32, 134–8.Google Scholar
Cervera, R. et al., 2003. Morbidity and mortality in systemic lupus erythematosus during a 10-year period: A comparison of early and late manifestations in a cohort of 1,000 patients. Medicine, 82, 299308.Google Scholar
D’Cruz, D. P., Khamashta, M. A., & Hughes, G. R. V., 2007. Systemic lupus erythematosus. Lancet, 369, 587–96.Google Scholar
Dahl, A. et al., 2006. Detection of cerebral embolic signals in patients with systemic lupus erythematosus. Journal of Neurology, Neurosurgery, and Psychiatry, 77, 774–9.Google Scholar
Danchenko, N., Satia, J., & Anthony, M. S., 2006. Epidemiology of systemic lupus erythematosus: A comparison of worldwide disease burden. Lupus, 15, 308–18.Google Scholar
Devinsky, O., Petito, C. K., & Alonso, D. R., 1988. Clinical and neuropathological findings in systemic lupus erythematosus: The role of vasculitis, heart emboli, and thrombotic thrombocytopenic purpura. Annals of Neurology, 23, 380–4.Google Scholar
Ellis, S. G. & Verity, M. A., 1979. Central nervous system involvement in systemic lupus erythematosus: A review of neuropathologic findings in 57 cases, 1955–1977. Seminars in Arthritis and Rheumatism, 8, 212–21.Google Scholar
Erkan, D. et al., 2007. Aspirin for primary thrombosis prevention in the antiphospholipid syndrome: A randomized, double-blind, placebo-controlled trial in asymptomatic antiphospholipid antibody-positive individuals. Arthritis Rheum, 56, 2382–91.Google Scholar
Fernández-Nebro, A. et al., 2015. Cardiovascular events in systemic lupus erythematosus. Medicine, 94, e1183.Google Scholar
Fox, I. S. et al., 1980. Cerebral embolism in Libman–Sacks endocarditis. Neurology, 30, 487–91.Google Scholar
Goel, D. et al., 2007. Active necrotizing cerebral vasculitis in systemic lupus erythematosus. Neuropathology, 27, 561–5.Google Scholar
Hochberg, M., 1997. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis & Rheumatism, 40, 1997.Google Scholar
Jauch, E. C. et al., 2013. Guidelines for the early management of patients with acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 44, 870947.Google Scholar
Johnson, R. T. & Richardson, E. P., 1968. The neurological manifestations of systemic lupus erythematosus. Medicine, 47, 337–69.Google Scholar
Kernan, W. N. et al., 2014. Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 45, 2160–236.Google Scholar
Kitagawa, Y. et al., 1990. Stroke in systemic lupus erythematosus. Stroke, 21, 1533–9.Google Scholar
Krishnan, E., 2005. Stroke subtypes among young patients with systemic lupus erythematosus. The American Journal of Medicine, 118, 1415.Google Scholar
Libman, E. & Sacks, B., 1924. A hitherto undescribed form of valvular and mural endocarditis. Archives of Internal Medicine, 33, 701–37.Google Scholar
Mimori, A. et al., 2000. Subarachnoid hemorrhage and systemic lupus erythematosus. Lupus, 9, 521–6.CrossRefGoogle ScholarPubMed
Moyssakis, I. et al., 2007. Libman–Sacks endocarditis in systemic lupus erythematosus: Prevalence, associations, and evolution. The American Journal of Medicine, 120, 636–42.Google Scholar
Osler, W., 1904. On the visceral manifestations of the erythema group of skin diseases. The American Journal of the Medical Sciences, 127, 123.Google Scholar
Osler, W., 1900. The visceral lesions of the erythema group. The British Journal of Dermatology, 12, 227–45.Google Scholar
Petri, M. A. et al., 2011. Lupus Atherosclerosis Prevention Study (LAPS). Annals of the Rheumatic Diseases, 70, 760–5.Google Scholar
Ramos-Casals, M. et al., 2006. Vasculitis in systemic lupus erythematosus: Prevalence and clinical characteristics in 670 patients. Medicine, 85, 95104.Google Scholar
Roldan, C. A. et al., 2013. Libman–Sacks endocarditis and embolic cerebrovascular disease. JACC. Cardiovascular Imaging, 6, 973–83.Google Scholar
Roldan, C. A. et al., 2008. Transthoracic versus transesophageal echocardiography for detection of Libman–Sacks endocarditis: A randomized controlled study. Journal of Rheumatology, 35, 224–9.Google Scholar
Roman, M. J. et al., 2003. Prevalence and correlates of accelerated atherosclerosis in systemic lupus erythematosus. New England Journal of Medicine, 349, 2399–406.Google Scholar
Sarbu, N. et al., 2015. Brain abnormalities in newly diagnosed neuropsychiatric lupus: Systematic MRI approach and correlation with clinical and laboratory data in a large multicenter cohort. Autoimmunity Reviews, 14, 153–9.Google Scholar
Schoenfeld, S. R., Kasturi, S., & Costenbader, K. H., 2013. The epidemiology of atherosclerotic cardiovascular disease among patients with SLE: A systematic review. Seminars in Arthritis and Rheumatism, 43, 7795.Google Scholar
Sibbitt, W. L. et al., 2010. Magnetic resonance imaging and brain histopathology in neuropsychiatric systemic lupus erythematosus. Seminars in Arthritis and Rheumatism, 40, 3252.Google Scholar
Soubrier, M. et al., 2013. Do all lupus patients need statins? Joint, Bone, Spine: Revue du Rhumatisme, 80, 244–9.Google Scholar
Suzuki, Y. et al., 1990. Severe cerebral and systemic necrotizing vasculitis developing during pregnancy in a case of systemic lupus erythematosus. Journal of Rheumatology, 17, 1408–11.Google Scholar
Timlin, H. & Petri, M., 2013. Transient ischemic attack and stroke in systemic lupus erythematosus. Lupus, 22, 1251–8.Google Scholar
Wang, L. et al., 2015. Clinical characteristics of cerebral venous sinus thrombosis in patients with systemic lupus erythematosus: A single-centre experience in China. Journal of Immunology Research, 2015, 17.Google Scholar

References

Adams, HP Jr. Cerebral vasculitis. Handb Clin Neurol. 2014;119:475–94.Google Scholar
Behrouz, R. The risk of ischemic stroke in major rheumatic disorders. J Neuroimmunol. 2014;277:15.Google Scholar
Jastrzebska, M, Czok, ME, Guzik, P. Autoimmune diseases, their pharmacological treatment and the cardiovascular system. Cardiol J. 2013;20:569–76.Google Scholar
Sanna, G, Bertolaccini, ML, Cuadrado, MJ, Khamashta, MA, Hughes, GRV. Central nervous system involvement in the antiphospholipid (Hughes) syndrome. Rheumatology. 2003;42:200–13.Google Scholar
Dafer, RM, Biller, J. Antiphospholipid syndrome: Role of antiphospholipid antibodies in neurology. Hematol Oncol Clin N Am. 2008;22:95105.Google Scholar
Miyakis, S, Locksin, MD, Atsumi, T, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006;4:295306.Google Scholar
Kim, JH, Choi, CG, Choi, SJ, Lee, HK, Suh, DC. Primary antiphospholipid antibody syndrome: Neuroradiologic findings in 11 patients. Korean J Radiol. 2000;1:510.Google Scholar
Muscal, E, Brey, RL. Antiphospholipid syndrome and the brain in pediatric and adult patients. Lupus. 2010;19:406–11.Google Scholar
Levine, SR, Deegan, MJ, Futrell, N, Welch, KMA. Cerebrovascular and neurologic disease associated with antiphospholipid antibodies: 48 cases. Neurology. 1990;40:1181–9.Google Scholar
Rodrigues, CEM, Carvalho, JF, Shoenfeld, Y. Neurological manifestations of antiphospholipid syndrome. Eur J Clin Invest. 2010;40:350–9.Google Scholar
Gomez-Puerta, JA, Cervera, R. Diagnosis and classification of the antiphospholipid syndrome. J Autoimmun. 2014;48–49:20–5.Google Scholar
Brey, RL. Antiphospholipid antibodies in young adults with stroke. J Thromb Thrombolysis. 2005;20:105–12.Google Scholar
Tuhrim, S. Antiphospholipid antibodies and stroke. Curr Cardiol Rep. 2004;6:130–4.Google Scholar
Brey, RL, Chapman, J, Levine, SR, et al. Stroke and the antiphospholipid syndrome: Consensus meeting Taormina 2002. Lupus. 2003;23:508–13.Google Scholar
Muscal, E, Brey, RL. Neurological manifestations of the antiphospholipid syndrome: Risk assessments and evidence-based medicine. Int J Clin Pract. 2007;61:1561–8.Google Scholar
Ruiz-Irastorza, G, Hunt, BJ, Khamashta, MA. A systematic review of secondary thromboprophylaxis in patients with antiphospholipid antibodies. Arthritis Rheum. 2007;15:1487–95.Google Scholar
Mineo, C. Inhibition of nitric oxide and antiphospholipid antibody-mediated thrombosis. Curr Rheumatol Rep. 2013;15(5):324.Google Scholar
Ortel, TL. The antiphospholipid syndrome: What are we really measuring? How do we measure it? And how do we treat it? J Thromb Thrombolysis. 2006;21:7983.Google Scholar
Jara, LJ, Medina, G, Vera-Lastra, O. Systemic antiphospholipid syndrome and atherosclerosis. Clinic Rev Allerg Immunol. 2007;32:172–7.Google Scholar
Kluger, BM, Hughes, RL, Anderson, CA, Hassell, KL. Non-traumatic carotid dissection and stroke associated with anti-phospholipid antibody syndrome: Report of a case and review of the literature. Neurol India. 2008;56:77–8.Google Scholar
Merrill, JT. Antiphospholipid syndrome: What’s new in understanding antiphospholipid antibody-related stroke? Curr Rheumatol Rep. 2006;8:159–61.Google Scholar
Lee, JL, Naguwa, SM, Cheema, GS, Gershwin, ME. Revisiting Libman–Sacks endocarditis: A historical review and update. Clin Rev Allergy Immunol. 2009;36:126–30.Google Scholar
Specker, C, Pernoik, A, Brauckmann, U, Siebler, M, Schneider, M. Detection of cerebral microemboli in APS: Introducing a novel investigation method and implications of analogies with carotid artery disease. Lupus. 1998;7 Suppl 2:S7580.Google Scholar
Moll, S, McCloud, M, Ortel, TL. Subdural hematoma and lupus anticoagulants. Stroke. 1997;28:646–8.Google Scholar
Carangelo, B, Peri, G, Signori, G, Palma, L. Chronic hemispheric subdural hematoma in a patient with antiphospholipid antibody syndrome: Case report. J Neurosurg Sci. 2009;53:141–3.Google Scholar
Ruiz-Irastorza, G, Khamashta, MA, Hunt, BJ, Escudero, A, Cuadrado, MJ, Hughes, GR. Bleeding and recurrent thrombosis in definite antiphospholipid syndrome: Analysis of a series of 66 patients treated with oral anticoagulation to a target international normalized ratio of 3.5. Arch Intern Med. 2002;162:1164–9.Google Scholar
Carecchio, M, Cantello, R, Comi, C. Revisiting the molecular mechanism of neurological manifestations in antiphospholipid syndrome: Beyond vascular damage. J Immunol Res. 2014;2014:239398.Google Scholar
Cervera, R, Boffa, MC, Khamashta, MA, Hughes, GR. The Euro-Phospholipid Project: Epidemiology of the antiphospholipid syndrome in Europe. Lupus. 2009;18:889–93.Google Scholar
Carhuapoma, JR, Mitsias, P, Levine, SR. Cerebral venous thrombosis and anticardiolipin antibodies. Stroke. 1997;28:2363–9.Google Scholar
Gezer, S. Antiphospholipid syndrome. Dis Mon. 2003;49:691741.Google Scholar
Asherson, RA, Cervera, R, de Groot, PG, et al. Catastrophic antiphospholipid syndrome: International consensus statement on classification criteria and treatment guidelines. Lupus. 2003;12:530534.Google Scholar
Bucciarelli, S, Cervera, R, Espinosa, G, et al. Mortality in the catastrophic antiphospholipid syndrome: Causes of death and prognostic factors. Autoimmun Rev. 2006;6:72–5.Google Scholar
Erkan, D, Harrison, MJ, Levy, R, et al. Aspirin for primary thrombosis prevention in the antiphospholipid syndrome: A randomized, double-blind, placebo-controlled trial in asymptomatic antiphospholipid antibody-positive individuals. Arthritis Rheum. 2007;56:2382–91.Google Scholar
Ruiz-Irastorza, G, Cuadrado, MJ, Ruiz-Arruza, I, et al. Evidence-based recommendations for the prevention and long-term management of thrombosis in antiphospholipid antibody-positive patients: Report of a Task Force at the 13th International Congress on Antiphospholipid Antibodies. Lupus. 2011;20:206–18.Google Scholar
Levine, SR, Brey, RL, Tilley, BC et al. Antiphospholipid antibodies and subsequent thrombo-occlusive events in patients with ischemic stroke. JAMA. 2004;291:576–84.Google Scholar
Panichpisal, K, Rozner, E, Levine, SR. The management of stroke in antiphospholipid syndrome. Curr Rheumatol Rep. 2012;14:99105.Google Scholar
Erkan, D, Vega, J, Ramon, G, Kozora, E, Lockshin, MD. A pilot open-label phase II trial of rituximab for non-criteria manifestations of antiphospholipid syndrome. Arthritis Rheum. 2013;65:464–71.Google Scholar
Cuadrado, MJ. Treatment and monitoring of patients with antiphospholipid antibodies and thrombotic history (Hughes syndrome). Curr Rheumatol Rep. 2002;4:392–8.Google Scholar
Cohen, H, Machin, SJ. Antithrombotic treatment failures in antiphospholipid syndrome: The new anticoagulants? Lupus. 2010;19:486–91.Google Scholar
Peixoto, MV, de Carvalho, JF, Rodrigues, CE. Clinical, laboratory, and therapeutic analysis of 21 patients with neonatal thrombosis and antiphospholipid antibodies: A literature review. J Immunol Res. 2014;2014:672603.Google Scholar
Lundstrom, E, Gustafsson, JT, Jonsen, A, et al. HLA-DRB*04/*13 alleles are associated with vascular disease and antiphospholipid antibodies in systemic lupus erythematosus. Ann Rheum Dis. 2013;72:1018–25.Google Scholar
Hochberg, MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus (letter). Arthritis Rheum. 1997;40:1725.Google Scholar
ACR Ad Hoc Committee on Neuropsychiatric Lupus Nomenclature. The American College of Rheumatology nomenclature and case definitions for neuropsychiatric lupus syndromes. Arthritis Rheum. 1999;42:599608.Google Scholar
Van Dam, AP. Diagnosis and pathogenesis of CNS lupus. Rheumatol Int. 1991;11:111.Google Scholar
Sibbitt, WL Jr, Sibbitt, RR, Brooks, WM. Neuroimaging in neuropsychiatric systemic lupus erythematosus. Arthritis Rheum. 1999;42:2026–38.Google Scholar
Timlin, H, Petri, M. Transient ischemic attack and stroke in systemic lupus erythematosus. Lupus. 2013;22:1251–8.Google Scholar
Wierzbicki, AS. Lipids, cardiovascular disease and atherosclerosis in systemic lupus erythematosus. Lupus. 2000;9:194201.Google Scholar
Jennekens, FG, Kater, L. The central nervous system in systemic lupus erythematous. Part 2. Pathogenetic mechanisms of clinical syndromes: A literature investigation. Rheumatology (Oxford). 2002;41:619–30.Google Scholar
Mitsias, P, Levine, SR. Large cerebral vessel occlusive disease in systemic lupus erythematosus. Neurology. 1994;44:385–93.Google Scholar
Wang, R, Xu, Y, Lv, R, Chen, J. Systemic lupus erythematosus associated with moyamoya syndrome: A case report and literature review. Lupus. 2013;22:629–33.Google Scholar
Owada, T, Takahashi, K, Kita, Y. Subarachnoid hemorrhage in systemic lupus erythematosus in Japan: Two case reports and a review of the literature. Mod Rheumatol. 2009;19:573–80.Google Scholar
Nakai, Y, Hyodo, A, Yanaka, K, Akutsu, H, Nose, T. Distal superior cerebellar artery aneurysm in a patient with systemic lupus erythematosus: Case report. Surg Neurol. 2000;54:73–6.Google Scholar
Laversuch, CJ, Brown, MM, Clifton, A, Bourke, BE. Cerebral venous thrombosis and acquired protein S deficiency: An uncommon cause of headache in systemic lupus erythematosus. Br J Rheumatol. 1995;34:572–5.Google Scholar
Uthman, I, Khalil, I, Sawaya, R, Taher, A. Lupus anticoagulant, factor V Leiden, and methylenetetrahydrofolate reductase gene mutation in a lupus patient with cerebral venous thrombosis. Clin Rheumatol. 2004;23:362–3.Google Scholar
Alboudi, A, Sarathchandran, P, Alrukn, S, Al Madani, A. Cerebral venous thrombosis presenting with subdural haematoma as first presentation for systemic lupus erythematosus with negative antiphospholipid antibodies. BMJ Case Rep. 2014: doi: 10.1136/bcr-2014-205355.Google Scholar
Broussalis, E, Trinka, E, Kraus, J, McCoy, M, Killer, M. Treatment strategies for vasculitis that affects the nervous system. Drug Discov Today. 2013;18:818–35.Google Scholar
Yu, HH, Lee, JH, Wang, LC, Yang, YH, Chiang, BL. Neuropsychiatric manifestations in pediatric systemic lupus erythematosus: A 20-year study. Lupus. 2006;15:651–7.Google Scholar
Levy, DM, Massicotte, MP, Harvey, E, Hebert, D, Silverman, ED. Thromboembolism in paediatric lupus patients. Lupus. 2003;12:741–6.Google Scholar
Saini, AG, Sankhyan, N, Bhattad, S, et al. CNS vasculitis and stroke in neonatal lupus erythematosus: A case report and review of literature. Eur J Paediatr Neurol. 2014;18:444–8.Google Scholar
Shiboski, CH, Shiboski, SC, Seror, R, et al. 2016 American College of Rheumatology/European League Against Rheumatism Classification Criteria for Primary Sjögren’s Syndrome: A consensus and data-driven methodology involving three international patient cohorts. Arthritis Rheumatol. 2017;69:3545.Google Scholar
Niemela, RA, Hakala, M. Primary Sjögren’s syndrome with severe central nervous system disease. Semin Arthritis Rheum. 1999;29:413.Google Scholar
Segal, B, Carpenter, A, Walk, D. Involvement of nervous system pathways in primary Sjögren’s syndrome. Rheum Dis Clin N Am. 2008;34:885906.Google Scholar
Simmons-O’Brien, E, Chen, S, Watson, R, et al. One hundred anti-Ro (SS-A) antibody positive patients: A 10-year follow-up. Medicine (Baltimore). 1995;74:109–30.Google Scholar
Ishizaka, S, Hayashi, K, Otsuka, M, et al. Syringomelia and arachnoid cysts associated with spinal arachnoiditis following subarachnoid hemorrhage. Neurol Med Chir (Tokyo). 2012;52:686–90.Google Scholar
Marinos, G, Riley, J, Painter, DM, McCaughan, GW. Sulfasalazine-induced fulminant hepatic failure. J Clin Gastroenterol. 1992;14:132–5.Google Scholar
Urban, E, Jabbari, B, Robles, H. Concurrent cerebral venous sinus thrombosis and myeloradiculopathy in Sjögren’s syndrome. Neurology. 1994;44:554–6.Google Scholar
Delalande, S, de Seze, J, Fauchais, AL, et al. Neurologic manifestations in primary Sjögren syndrome: A study of 82 patients. Medicine (Baltimore). 2004;83:280–91.Google Scholar
Saip, S, Skman-Demir, G, Siva, A. Neuro-Behçet syndrome. Handb Clin Neurol. 2014;121:1703–23.Google Scholar
International Study Group for Behçet’s Disease. Criteria for diagnosis of Behçet’s disease. Lancet. 1990;335:1078–80.Google Scholar
Siva, A, Saip, S. The spectrum of nervous system involvement in Behçet’s syndrome and its differential diagnosis. J Neurol. 2009;156:513–29.Google Scholar
Kikuchi, S, Niino, M, Shinpo, K, Terae, S, Tashiro, K. Intracranial hemorrhage in neuro-Behçet’s syndrome. Intern Med. 2002;41:692–5.Google Scholar
Kocak, A, Cayli, SR, Ates, O, Sarac, K. Middle cerebral artery aneurysm associated with Behçet’s disease. Neurol Med Chir (Tokyo). 2004;44:368–71.Google Scholar
Ho, CL, Deruytter, MJ. Manifestations of neuro-Behçet’s disease. Report of two cases and review of the literature. Clin Neurol Neurosurg. 2005;107:310–14.Google Scholar
Aguiar de Sousa, D, Mestre, T, Ferro, JM. Cerebral venous thrombosis in Behçet’s disease: A systematic review. J Neurol. 2011;258:719–27.Google Scholar
Iannetti, L, Zito, R, Bruschi, S, et al. Recent understanding on diagnosis and management of central nervous system vasculitis in children. Clin Dev Immunol. 2012;2012:698327.Google Scholar
Zaiden, M, Mariotte, E, Galicier, L, et al. Vasculitic emergencies in the intensive care unit: A special focus on cryoglobulinemic vasculitis. Ann Intensive Care. 2012;2:31.Google Scholar
De Vita, S, Soldano, F, Isola, M, et al. Preliminary classification criteria for the cryoglobulinaemic vasculitis. Ann Rheum Dis. 2011;70:1183–90.Google Scholar
Ghetie, D, Mehraban, N, Sibley, CH. Cold hard facts of cryoglobulinemia: Updates on clinical features and treatment advances. Rheum Dis Clin North Am. 2015;41:93108.Google Scholar
Mazzola, L, Antoine, JC, Camdessanche, JP, et al. Brain hemorrhage as a complication of type I cryoglobulinemia vasculopathy. J Neurol. 2003;250:1376–8.Google Scholar
Adinolfi, LE, Zampino, R, Restivo, L, et al. Chronic hepatitis C virus infection and atherosclerosis: Clinical impact and mechanisms. World J Gastroenterol. 2014;20:3410–17.Google Scholar
Ramos-Casals, M, Robles, A, Brito-Zeron, P, et al. Life-threatening cryoglobulinemia: Clinical and immunological characterization of 29 cases. Semin Arthritis Rheum. 2006;36:189–96.Google Scholar
Holle, JU, Gross, WL. Neurological involvement in Wegener’s granulomatosis. Curr Opin Rheumatol. 2011;23:711.Google Scholar
American College of Rheumatology. 1990 Criteria for the classification of Wegener’s granulomatosis (now known as granulomatosis with polyangiitis). http://www.rheumatology.org/Practice-Quality/Clinical-Support/Criteria/ACR-Endorsed-Criteria. Accessed 28 November 2015.Google Scholar
de Leeuw, K, Sanders, JS, Stegeman, C, et al. Accelerated atherosclerosis in patients with Wegener’s granulomatosis. Ann Rheum Dis. 2005;64:753–9.Google Scholar
Davison, R, Sheerin, NS. Granulomatosis with polyangiitis presenting as ischaemic stroke. JRSM Short Rep. 2012;3:81.Google Scholar
Nowack, R, Wachtler, P, Kunz, J, Rasmussen, N. Cranial nerve palsy in Wegener’s granulomatosis: Lessons from clinical cases. J Neurol. 2009;256:299304.Google Scholar
Nesher, G. The diagnosis and classification of giant cell arteritis. J Autoimmun. 2014;48–49:73–5.Google Scholar
Chatterjee, S, Flamm, SD, Tan, CD, Rodriguez, ER. Clinical diagnosis and management of large vessel vasculitis: Giant cell arteritis. Curr Cardiol Rep. 2014;16:498.Google Scholar
Ness, T, Bley, TA, Schmidt, WA, Lamprecht, P. The diagnosis and treatment of giant cell arteritis. Dtsch Arztebl Int. 2013;110:376–85.Google Scholar
Weyand, CM, Goronzy, JJ. Giant-cell arteritis and polymyalgia rheumatic. N Engl J Med. 2014;371:50–7.Google Scholar
American College of Rheumatology. 1990 Criteria for the classification of giant cell (temporal) arteritis – excerpt. http://www.rheumatology.org/Practice-Quality/Clinical-Support/Criteria/ACR-Endorsed-Criteria. Accessed 28 November 2015.Google Scholar
Mollan, SP, Sharrack, N, Burdon, MA, Denniston, AK. Aspirin as adjunctive treatment for giant cell arteritis. Cochrane Database Syst Rev. 2014;8:CD010453.Google Scholar
Caylor, TL, Perkins, A. Recognition and management of polymyalgia rheumatica and giant cell arteritis. Am Fam Physician. 2013;88:676–84.Google Scholar
Smith, JH, Swanson, JW. Giant cell arteritis. Headache. 2014;54:1273–89.Google Scholar
Mahr, AD, Jover, JA, Spiera, RF, et al. Adjunctive methotrexate for treatment of giant cell arteritis: An individual patient data meta-analysis. Arthritis Rheum. 2007;86:2789–97.Google Scholar
Martinez-Taboada, VM, Lopez-Hoyos, M, Narvaez, J, Munoz-Cacho, P. Effect of antiplatelet/anticoagulant therapy on severe ischemic complications in patients with giant cell arteritis: A cumulative meta-analysis. Autoimmun Rev. 2014;13:788–94.Google Scholar
Gupta, V, Chinchure, SD, Goel, G, et al. Coil embolization of intracranial aneurysm in polyarteritis nodosa. A case report and review of the literature. Interv Neuroradiol. 2013;19:203–8.Google Scholar
American College of Rheumatology. 1990 Criteria for the Classification of polyarteritis nodosa. http://www.rheumatology.org/Practice-Quality/Clinical-Support/Criteria/ACR-Endorsed-Criteria. Accessed 28 November 2015.Google Scholar
Pagnoux, C, Seror, R, Henegar, C, et al. Clinical features and outcomes in 348 patients with polyarteritis nodosa: A systematic retrospective study of patients diagnosed between 1963 and 2005 and entered into the French Vasculitis Study Group Database. Arthritis Rheum. 2010;62:6116–26.Google Scholar
Reichart, MD, Bogousslavsky, J, Janzer, RC. Early lacunar strokes complicating polyarteritis nodosa: Thrombotic microangiopathy. Neurology. 2000;54:883–9.Google Scholar
Provenzale, JM, Allen, NB. Neuroradiologic findings in polyarteritis nodosa. AJNR Am J Neuroradiol. 1996;17:1119–26.Google Scholar
Ford, RG, Siekert, RG. Central nervous system manifestations of periarteritis nodosa. Neurology. 1965;15:114–22.Google Scholar
Hajj-Ali, RA, Calabrese, LH. Diagnosis and classification of central nervous system vasculitis. J Autoimmun. 2014;48–49:149–52.Google Scholar
Calabrese, LH, Mallek, JA. Primary angiitis of the central nervous system. Report of 8 new cases, review of the literature, and proposal for diagnostic critera. Medicine (Baltimore). 1988;67:2039.Google Scholar
Birnbaum, J, Hellmann, DB. Primary angiitis of the central nervous system. Arch Neurol. 2009;66:704–9.Google Scholar
Berlit, P, Kraemer, M. Cerebral vasculitis in adults: What are the steps in order to establish the diagnosis? Red flags and pitfalls. Clin Exp Immunol. 2013;175:419–24.Google Scholar
Lucke, M, Hajj-Ali, RA. Advances in primary angiitis of the central nervous system. Curr Cardiol Rep. 2014;16:533.Google Scholar
Suri, V, Kakkar, A, Sharma, MC, et al. Primary angiitis of the central nervous system: A study of histopathological patterns and review of the literature. Folia Neuropathol. 2014;52:187–96.Google Scholar
Merkel, PA, Koroshetz, WJ, Irizarry, MC, Cudkowicz, ME. Cocaine-associated cerebral vasculitis. Semin Arthritis Rheum. 1995;25:172–83.Google Scholar
Hajj-Ali, RA, Calabrese, LH. Primary angiitis of the central nervous system. Autoimmunity Reviews. 2013;12:463–6.Google Scholar
Nogueras, C, Sala, M, Sasal, M, et al. Recurrent stroke as a manifestation of primary angiitis of the central nervous system in a patient infected with human immunodeficiency virus. Arch Neurol. 2002;59:468–73.Google Scholar
Yasuda, Y, Matsuda, I, Kang, Y, Saiga, T, Kameyama, M. Isolated angiitis of the central nervous system first presenting as intracranial hemorrhage during cesarean section. Intern Med. 1993;32:745–8.Google Scholar
Biller, J, Loftus, CM, Moore, SA, et al. Isolated central nervous system angiitis first presenting as spontaneous intracranial hemorrhage. Neurosurgery. 1987;20:310–15.Google Scholar
Ozawa, T, Sasaki, O, Sorimachi, T, Tanaka, R. Primary angiitis of the central nervous system: Report of two cases and review of the literature. Neurosurgery. 1995;36:173–9.Google Scholar
Twilt, M, Benseler, SM. The spectrum of CNS vasculitis in children and adults. Nat Rev Rheumatol. 2012;8:97107.Google Scholar
Gowdie, P, Twilt, M, Benseler, SM. Primary and secondary central nervous system vasculitis. J Child Neurol. 2012;27:1448–59.Google Scholar
Park, MS, Marlin, AE, Gaskill, SJ. Angiography-negative primary angiitis of the central nervous system in childhood. J Neurosurg Pediatr. 2014;13:62–7.Google Scholar
Cellucci, T, Benseler, SM. Central nervous system vasculitis in children. Curr Opin Rheumatol. 2010;22:590–7.Google Scholar
Pistracher, K, Gellner, V, Riegler, S, et al. Cerebral haemorrhage in the presence of primary childhood central nervous system vasculitis: A review. Childs Nerv Syst. 2012;28:1141–8.Google Scholar
Hutchinson, C, Elbers, J, Halliday, W, et al. Treatment of small vessel primary CNS vasculitis in children: An open-label cohort study. Lancet Neurol. 2010;9:1078–84.Google Scholar
Aletaha, D, Neogi, T, Silman, AJ, et al. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010;62:2569–81.Google Scholar
Meune, C, Touze, E, Trinquart, L, Allanore, Y. High risk of clinical cardiovascular events in rheumatoid arthritis: Levels of associations of myocardial infarction and stroke through a systematic review and meta-analysis. Arch Cardiovasc Dis. 2010;103:253–61.Google Scholar
Kitas, GD, Gabriel, SE. Cardiovascular disease in rheumatoid arthritis: State of the art and future perspectives. Ann Rheum Dis. 2011;70:814.Google Scholar
Dhawan, SS, Quyyumi, AA. Rheumatoid arthritis and cardiovascular disease. Curr Atheroscler Rep. 2008;10:128–33.Google Scholar
Ruyssen-Weitrand, A, Fautrel, B, Saraux, A, Loet, XL, Pham, T. Cardiovascular risk induced by low-dose corticosteroids in rheumatoid arthritis: A systematic literature review. Joint Bone Spine. 2011;78:2330.Google Scholar
Ohno, T, Matsuda, I, Furukawa, H, Kanoh, T. Recovery from rheumatoid cerebral vasculitis by low-dose methotrexate. Internal Medicine. 1994;33:615–20.Google Scholar
De Carvalho, M, Swash, M. Neurologic complications of craniovertebral dislocation. Handb Clin Neurol. 2014;119:435–48.Google Scholar
Mills, JA, Michel, BA, Bloch, DA, et al. The American College of Rheumatology 1990 criteria for the classification of Henoch-Schonlein purpura. Arthritis Rheum. 1990;33:1114–21.Google Scholar
Berube, MD, Blais, N, Lanthier, S. Neurologic manifestations of Henoch–Schönlein purpura. Handb Clin Neurol. 2014;120:1101–11.Google Scholar
van den Hoogen, F, Khanna, D, Fransen, J, et al. 2013 classification criteria for systemic sclerosis: An American College of Rheumatology/European League against Rheumatism collaborative initiative. Arthritis Rheum. 2013;65:2737–47.Google Scholar
Amaral, TN, Peres, FA, Lapa, AT, Marques-Neto, JF, Appenzeller, S. Neurologic involvement in scleroderma: A systematic review. Semin Arthritis Rheumatism. 2013;43:335–47.Google Scholar
Das, CP, Rabhakar, S, Lal, V, Kharbanda, PS. Scleroderma, stroke, optic neuropathy: A rare association. Neurol India. 2002;50:504–7.Google Scholar
Smith, JA. Update on ankylosing spondylitis: Current concepts in pathogenesis. Curr Allergy Asthma Rep. 2015;15:489.Google Scholar
van Tubergen, A, Weber, U. Diagnosis and classification in spondyloarthritis: Identifying a chameleon. Nat Rev Rheumatol. 2012;8:253–61.Google Scholar
van der Linden, S, Valkenburg, HA, Cats, A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum. 1984;27:361–8.Google Scholar
Mathieu, S, Gossec, L, Dougados, M, Soubrier, M. Cardiovascular profile in ankylosing spondylitis: A systematic review and meta-analysis. Arthritis Care Res (Hoboken). 2011;63:557–63.Google Scholar
Kaprove, RE, Little, AH, Graham, DC, Rosen, PS. Ankylosing spondylitis: Survival in men with and without radiotherapy. Arthritis Rheum. 1980;23:5761.Google Scholar
Dutra, LA, Braga-Neto, P, Pedroso, JL, Barsottini, OG. Sneddon’s syndrome: Case report and review of its relationship with antiphospholipid syndrome. Einstein (Sao Paulo). 2012;10:230–2.Google Scholar
Bolayir, E, Yilmaz, A, Kugu, N, Erdogan, H, Akyol, M, Akyuz, A. Sneddon’s syndrome: Clinical and laboratory analysis of 10 cases. Acta Med Okayama. 2004;58:5995.Google Scholar
Wu, S, Xu, Z, Liang, H. Sneddon’s syndrome: A comprehensive review of the literature. Orphanet J Rare Dis. 2014;9:215.Google Scholar
Rebollo, M, Val, JF, Garijo, F, Quintana, F, Berciano, J. Livedo reticularis and cerebrovascular lesions (Sneddon’s syndrome). Clinical, radiological and pathological features in eight cases. Brain. 1983;106:965–79.Google Scholar
Wu, W, Chaer, RA. Nonarteriosclerotic vascular disease. Surg Clin North Am. 2013;93:833–75.Google Scholar
American College of Rheumatology. 1990 criteria for the classification of Takayasu arteritis. http://www.rheumatology.org/Practice-Quality/Clinical-Support/Criteria/ACR-Endorsed-Criteria. Accessed 28 November 2015.Google Scholar
Chatterjee, S, Flamm, SD, Tan, CD, Rodriguez, ER. Clinical diagnosis and management of large vessel vasculitis: Takayasu arteritis. Curr Cardiol Rep. 2014;16:499.Google Scholar
American College of Rheumatology. 1990 criteria for the classification of Churg-Strauss syndomre (traditional format), their sensitivity and specificity versus other defined vasculitis syndromes. http://www.rheumatology.org/Practice-Quality/Clinical-Support/Criteria/ACR-Endorsed-Criteria. Accessed 28 November 2015.Google Scholar
Burns, JC, Glode, MP. Kawasaki syndrome. Lancet. 2004;364:533–44.Google Scholar
Chowdhury, SR, Majumder, S, Chakraborty, PP, et al. Headache in a case of Rhupus syndrome. Headache. 2008;48:155–8.Google Scholar

References

Adams, B. D. et al., 2010. Myeloproliferative disorders and the hyperviscosity syndrome. Hematology/Oncology Clinics of North America, 24, 585602. Available at: www.ncbi.nlm.nih.gov/pubmed/20488356 [Accessed December 15, 2015].Google Scholar
Alexandrescu, D. T. et al., 2005. Strokes after intravenous gamma globulin: Thrombotic phenomenon in patients with risk factors or just coincidence? American Journal of Hematology, 78, 216–20. Available at: www.ncbi.nlm.nih.gov/pubmed/15726606 [Accessed November 19, 2015].Google Scholar
Allport, L. E. et al., 2005. Elevated hematocrit is associated with reduced reperfusion and tissue survival in acute stroke. Neurology, 65, 1382–7. Available at: www.ncbi.nlm.nih.gov/pubmed/16275824 [Accessed December 15, 2015].Google Scholar
Anon, 1975. Editorial: Haemorheology, blood-flow and venous thrombosis. Lancet, 2, 113–4. Available at: www.ncbi.nlm.nih.gov/pubmed/49700 [Accessed November 22, 2015].Google Scholar
Artoni, A., Bucciarelli, P., & Martinelli, I., 2014. Cerebral thrombosis and myeloproliferative neoplasms. Current Neurology and Neuroscience Reports, 14, 496. Available at: www.ncbi.nlm.nih.gov/pubmed/25217248 [Accessed December 6, 2015].Google Scholar
Baker, I. A. et al., 2002. Fibrinogen, viscosity and white blood cell count predict myocardial, but not cerebral infarction: Evidence from the Caerphilly and Speedwell cohort. Thrombosis and Haemostasis, 87, 421–5. Available at: www.ncbi.nlm.nih.gov/pubmed/11916073 [Accessed November 15, 2015].Google Scholar
Barabas, A. P., Offen, D. N., & Meinhard, E. A., 1973. The arterial complications of polycythaemia vera. British Journal of Surgery, 60, 183–7. Available at: www.ncbi.nlm.nih.gov/pubmed/4693567 [Accessed November 20, 2015].Google Scholar
Berk, P. D. et al., 1986. Therapeutic recommendations in polycythemia vera based on Polycythemia Vera Study Group protocols. Seminars in Hematology, 23, 132–43. Available at: www.ncbi.nlm.nih.gov/pubmed/3704665 [Accessed November 20, 2015].Google Scholar
Billakota, S. & El Husseini, N., 2014. Pearls & oysters: Polycythemia vera presenting with ischemic strokes in multiple arterial territories. Neurology, 82, e16870. Available at: www.ncbi.nlm.nih.gov/pubmed/24843039 [Accessed December 15, 2015].Google Scholar
Boulanger, E. et al., 2006. Polyclonal IgG4 hypergammaglobulinemia associated with plasmacytic lymphadenopathy, anemia and nephropathy. Annals of Hematology, 85, 833–40. Available at: www.ncbi.nlm.nih.gov/pubmed/16871390 [Accessed December 15, 2015].Google Scholar
Bunn, H. F., 1997. Pathogenesis and treatment of sickle cell disease. New England Journal of Medicine, 337, 762–9. Available at: www.ncbi.nlm.nih.gov/pubmed/9287233 [Accessed November 20, 2015].Google Scholar
Byrne, N.P. et al., 2002. Neuropathologic findings in a Guillain–Barré patient with strokes after IVIg therapy. Neurology, 59, 458–61. Available at: www.ncbi.nlm.nih.gov/pubmed/12177388 [Accessed November 20, 2015].Google Scholar
Caplan, L.R., 1995. Binswanger’s disease: Revisited. Neurology, 45, 626–33.Google Scholar
Caress, J. B. et al., 2003. The clinical features of 16 cases of stroke associated with administration of IVIg. Neurology, 60, 1822–4. Available at: www.ncbi.nlm.nih.gov/pubmed/12796539 [Accessed November 22, 2015].Google Scholar
Caress, J. B. et al., 2009. Case–control study of thromboembolic events associated with IV immunoglobulin. Journal of Neurology, 256, 339–42. Available at: www.ncbi.nlm.nih.gov/pubmed/19253011 [Accessed December 7, 2015].Google Scholar
Chang, T. et al., 2014. Cerebral infarction 3 weeks after intravenous immunoglobulin for Miller Fisher syndrome: A case report. Journal of Medical Case Reports, 8, 100. Available at: www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4007143&tool=pmcentrez&rendertype=abstract [Accessed December 15, 2015].Google Scholar
Chang, T. S. & Jensen, M. B., 2014. Haemodilution for acute ischaemic stroke. The Cochrane Database of Systematic Reviews, 8, CD000103. Available at: www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4181849&tool=pmcentrez&rendertype=abstract [Accessed November 25, 2015].Google Scholar
Chen, L. Y. et al., 2015. Polyclonal hyperviscosity syndrome in IgG4-related disease and associated conditions. Clinical Case Reports, 3, 217–26.Google Scholar
Chien, S., Usami, S., & Bertles, J. F., 1970. Abnormal rheology of oxygenated blood in sickle cell anemia. Journal of Clinical Investigation, 49, 623–34. Available at: www.pubmedcentral.nih.gov/articlerender.fcgi?artid=322516&tool=pmcentrez&rendertype=abstract [Accessed October 20, 2015].Google Scholar
Choi, W.-J. et al., 2012. Acute cerebellar infarction associated with intravenous gammaglobulin treatment in idiopathic thrombocytopenic purpura. Journal of Stroke and Cerebrovascular Diseases, 21, e911. Available at: www.ncbi.nlm.nih.gov/pubmed/22749629 [Accessed December 15, 2015].Google Scholar
Connes, P., Verlhac, S., & Bernaudin, F., 2013. Advances in understanding the pathogenesis of cerebrovascular vasculopathy in sickle cell anaemia. British Journal of Haematology, 161, 484–98. Available at: www.ncbi.nlm.nih.gov/pubmed/23496688 [Accessed December 15, 2015].Google Scholar
Coull, B. M. et al., 1991. Chronic blood hyperviscosity in subjects with acute stroke, transient ischemic attack, and risk factors for stroke. Stroke, 22, 162–8. Available at: www.ncbi.nlm.nih.gov/pubmed/2003279 [Accessed November 22, 2015].Google Scholar
Cowan, A. Q., Cho, D. J., & Rosenson, R. S., 2012. Importance of blood rheology in the pathophysiology of atherothrombosis. Cardiovascular Drugs and Therapy, 26, 339–48. Available at: www.ncbi.nlm.nih.gov/pubmed/22821616 [Accessed December 6, 2015].Google Scholar
Danesh, J. et al., 2005. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: An individual participant meta-analysis. JAMA, 294, 1799–809. Available at: www.ncbi.nlm.nih.gov/pubmed/16219884 [Accessed November 22, 2015].Google Scholar
Davalos, D. & Akassoglou, K., 2012. Fibrinogen as a key regulator of inflammation in disease. Seminars in Immunopathology, 34, 4362. Available at: www.ncbi.nlm.nih.gov/pubmed/22037947 [Accessed November 13, 2015].Google Scholar
Dintenfass, L., 1966. A preliminary outline of the blood high viscosity syndromes. Archives of Internal Medicine, 118, 427–35. Available at: www.ncbi.nlm.nih.gov/pubmed/5332028 [Accessed November 22, 2015].Google Scholar
Dintenfass, L., 1968. Internal viscosity of the red cell and a blood viscosity equation. Nature, 219, 956–8. Available at: www.ncbi.nlm.nih.gov/pubmed/5673017 [Accessed November 19, 2015].Google Scholar
Dormandy, J. A., Yates, C. J., & Berent, G. A., 1981. Clinical relevance of blood viscosity and red cell deformability including newer therapeutic aspects. Angiology, 32, 236–42. Available at: www.ncbi.nlm.nih.gov/pubmed/7224233 [Accessed November 22, 2015].Google Scholar
Emerson, G. G., Herndon, C. N., & Sreih, A. G., 2002. Thrombotic complications after intravenous immunoglobulin therapy in two patients. Pharmacotherapy, 22, 1638–41. Available at: www.ncbi.nlm.nih.gov/pubmed/12495174 [Accessed November 22, 2015].Google Scholar
Ernst, E. et al., 1991. Impaired blood rheology: A risk factor after stroke? Journal of Internal Medicine, 229, 457–62. Available at: www.ncbi.nlm.nih.gov/pubmed/2040872 [Accessed November 22, 2015].Google Scholar
Ernst, E., 1995. Haemorheological consequences of chronic cigarette smoking. Journal of Cardiovascular Risk, 2, 435–9. Available at: www.ncbi.nlm.nih.gov/pubmed/8749271 [Accessed November 22, 2015].Google Scholar
Fahey, J. L., Barth, W. F., & Solomon, A., 1965. Serum hypervicosity syndrome. JAMA, 192, 464–7. Available at: www.ncbi.nlm.nih.gov/pubmed/14284847 [Accessed November 22, 2015].Google Scholar
Fahraeus, R. & Lindqvist, T., 1931. Viscosity of blood in narrow capillary tubes. American Journal of Physiology, 96, 562–8. Available at: www.ncbi.nlm.nih.gov/pubmed/2040872 [Accessed November 22, 2015].Google Scholar
Fisher, M. & Meiselman, H. J., 1991. Hemorheological factors in cerebral ischemia. Stroke, 22, 1164–9. Available at: www.ncbi.nlm.nih.gov/pubmed/1833861 [Accessed November 22, 2015].Google Scholar
Forconi, S. & Gori, T., 2013. Endothelium and hemorheology. Clinical Hemorheology and Microcirculation, 53, 310. Available at: www.ncbi.nlm.nih.gov/pubmed/22951621 [Accessed December 6, 2015].Google Scholar
Gaehtgens, P. & Marx, P., 1987. Hemorheological aspects of the pathophysiology of cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 7, 259–65. Available at: www.ncbi.nlm.nih.gov/pubmed/3294863 [Accessed November 22, 2015].Google Scholar
Gori, T. et al., 2015. The distribution of whole blood viscosity, its determinants and relationship with arterial blood pressure in the community: Cross-sectional analysis from the Gutenberg Health Study. Therapeutic Advances in Cardiovascular Disease, 9, 354–65. Available at: www.ncbi.nlm.nih.gov/pubmed/26082340 [Accessed December 11, 2015].Google Scholar
Grotemeyer, K. C. et al., 2014. Association of elevated plasma viscosity with small vessel occlusion in ischemic cerebral disease. Thrombosis Research, 133, 96100. Available at: www.ncbi.nlm.nih.gov/pubmed/24238841 [Accessed December 6, 2015].Google Scholar
Grotta, J. C. et al., 1986. Red blood cell disorders and stroke. Stroke, 17, 811–7. Available at: www.ncbi.nlm.nih.gov/pubmed/3532433 [Accessed November 22, 2015].Google Scholar
Hayashi, T. et al., 2015. Ischemic stroke in pediatric moyamoya disease associated with immune thrombocytopenia: A case report. Child’s Nervous System, 31, 991–6. Available at: www.ncbi.nlm.nih.gov/pubmed/25663502 [Accessed November 14, 2015].Google Scholar
Hernández-Gilsoul, T. et al., 2013. Pulmonary hypertension secondary to hyperviscosity in a patient with rheumatoid arthritis and acquired von Willebrand disease: A case report. Journal of Medical Case Reports, 7, 232. Available at: www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4015717&tool=pmcentrez&rendertype=abstract [Accessed December 15, 2015].Google Scholar
van Hilten, J. J. et al., 1989. Cerebral infarction in hereditary spherocytosis. Stroke, 20, 1755–6. Available at: www.ncbi.nlm.nih.gov/pubmed/2595739 [Accessed November 22, 2015].Google Scholar
Jeffries, B. F., Lipper, M. H., & Kishore, P. R., 1980. Major intracerebral arterial involvement in sickle cell disease. Surgical Neurology, 14, 291–5. Available at: www.ncbi.nlm.nih.gov/pubmed/7434197 [Accessed November 22, 2015].Google Scholar
Juhan, I. et al., 1982. Abnormalities of erythrocyte deformability and platelet aggregation in insulin-dependent diabetics corrected by insulin in vivo and in vitro. Lancet, 1, 535–7. Available at: www.ncbi.nlm.nih.gov/pubmed/6120392 [Accessed November 22, 2015].Google Scholar
Kannel, W. B. et al., 1972. Hemoglobin and the risk of cerebral infarction: The Framingham Study. Stroke, 3, 409–20. Available at: www.ncbi.nlm.nih.gov/pubmed/4261794 [Accessed November 22, 2015].Google Scholar
Kaptoge, S. et al., 2012. C-reactive protein, fibrinogen, and cardiovascular disease prediction. New England Journal of Medicine, 367, 1310–20. Available at: www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3714101&tool=pmcentrez&rendertype=abstract [Accessed December 14, 2015].Google Scholar
Kassim, A. A. & DeBaun, M. R., 2013. Sickle cell disease, vasculopathy, and therapeutics. Annual Review of Medicine, 64, 451–66. Available at: www.ncbi.nlm.nih.gov/pubmed/23190149 [Accessed December 7, 2015].Google Scholar
Kato, G. J. et al., 2009. Vasculopathy in sickle cell disease: Biology, pathophysiology, genetics, translational medicine, and new research directions. American Journal of Hematology, 84, 618–25. Available at: www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3209715&tool=pmcentrez&rendertype=abstract [Accessed November 12, 2015].Google Scholar
Katritsis, D. et al., 2007. Wall shear stress: Theoretical considerations and methods of measurement. Progress in Cardiovascular Diseases, 49, 307–29. Available at: www.ncbi.nlm.nih.gov/pubmed/17329179 [Accessed October 4, 2015].Google Scholar
Kawamoto, A. et al., 1991. Factors associated with silent multiple lacunar lesions on magnetic resonance imaging in asymptomatic elderly hypertensive patients. Clinical and Experimental Pharmacology & Physiology, 18, 605–10. Available at: www.ncbi.nlm.nih.gov/pubmed/1835681 [Accessed November 22, 2015].Google Scholar
Khan, U. A., Shanholtz, C. B., & McCurdy, M. T., 2014. Oncologic mechanical emergencies. Emergency Medicine Clinics of North America, 32, 495508. Available at: www.ncbi.nlm.nih.gov/pubmed/25060246 [Accessed December 6, 2015].Google Scholar
Koenig, W. & Ernst, E., 1992. The possible role of hemorheology in atherothrombogenesis. Atherosclerosis, 94, 93107. Available at: www.ncbi.nlm.nih.gov/pubmed/1632876 [Accessed November 22, 2015].Google Scholar
Kossorotoff, M. et al., 2015. Cerebral haemorrhagic risk in children with sickle-cell disease. Developmental Medicine and Child Neurology, 57, 187–93. Available at: www.ncbi.nlm.nih.gov/pubmed/25174812 [Accessed December 16, 2015].Google Scholar
Kwaan, H. C., 2010. Role of plasma proteins in whole blood viscosity: A brief clinical review. Clinical Hemorheology and Microcirculation, 44, 167–76. Available at: www.ncbi.nlm.nih.gov/pubmed/20364062 [Accessed November 22, 2015].Google Scholar
Kwaan, H.C., 2013. Hyperviscosity in plasma cell dyscrasias. Clinical Hemorheology and Microcirculation, 55, 7583. Available at: www.ncbi.nlm.nih.gov/pubmed/23455837 [Accessed December 11, 2015].Google Scholar
Landolfi, R., Cipriani, M. C., & Novarese, L., 2006. Thrombosis and bleeding in polycythemia vera and essential thrombocythemia: Pathogenetic mechanisms and prevention. Best Practice & Research. Clinical Haematology, 19, 617–33. Available at: www.ncbi.nlm.nih.gov/pubmed/16781491 [Accessed December 15, 2015].Google Scholar
Leonhardt, H., Arntz, H. R., & Klemens, U. H., 1977. Studies of plasma viscosity in primary hyperlipoproteinaemia. Atherosclerosis, 28, 2940. Available at: www.ncbi.nlm.nih.gov/pubmed/199202 [Accessed November 22, 2015].Google Scholar
Lorenzana, A. et al., 2014. Cerebral infarctions after intravenous immunoglobulin therapy for ITP in a child. Pediatric Neurology, 50, 188–91. Available at: www.ncbi.nlm.nih.gov/pubmed/24262342 [Accessed December 15, 2015].Google Scholar
Lowe, G. D. et al., 1982. Increased blood viscosity and fibrinolytic inhibitor in type II hyperlipoproteinaemia. Lancet, 1, 472–5. Available at: www.ncbi.nlm.nih.gov/pubmed/6121140 [Accessed November 22, 2015].Google Scholar
Lowe, G. D., 1987. Blood rheology in general medicine and surgery. Baillière’s Clinical Haematology, 1, 827–61. Available at: www.ncbi.nlm.nih.gov/pubmed/3327567 [Accessed November 22, 2015].Google Scholar
Lowe, G. D., 1995. Fibrinogen and cardiovascular disease: Historical introduction. European Heart Journal, 16 Suppl A, 25. Available at: www.ncbi.nlm.nih.gov/pubmed/7796825 [Accessed November 22, 2015].Google Scholar
Lowe, G. D. et al., 1997. Blood viscosity and risk of cardiovascular events: The Edinburgh Artery Study. British Journal of Haematology, 96, 168–73. Available at: www.ncbi.nlm.nih.gov/pubmed/9012704 [Accessed November 22, 2015].Google Scholar
Lowe, G. D., 1998. Etiopathogenesis of cardiovascular disease: Hemostasis, thrombosis, and vascular medicine. Annals of Periodontology, 3, 121–6. Available at: www.ncbi.nlm.nih.gov/pubmed/9722696 [Accessed November 22, 2015].Google Scholar
Lowe, G. D. O., 2005. Circulating inflammatory markers and risks of cardiovascular and non-cardiovascular disease. Journal of Thrombosis and Haemostasis, 3, 1618–27. Available at: www.ncbi.nlm.nih.gov/pubmed/16102027 [Accessed November 22, 2015].Google Scholar
Lowe, G. D. O., 2006. Can haematological tests predict cardiovascular risk? The 2005 Kettle Lecture. British Journal of Haematology, 133, 232–50. Available at: www.ncbi.nlm.nih.gov/pubmed/16643425 [Accessed November 22, 2015].Google Scholar
Lowe, G. & Rumley, A., 2014. The relevance of coagulation in cardiovascular disease: What do the biomarkers tell us? Thrombosis and Haemostasis, 112, 860–7. Available at: www.ncbi.nlm.nih.gov/pubmed/25231258 [Accessed December 14, 2015].Google Scholar
Malek, A. M., Alper, S. L., & Izumo, S., 1999. Hemodynamic shear stress and its role in atherosclerosis. JAMA, 282, 2035–42. Available at: www.ncbi.nlm.nih.gov/pubmed/10591386 [Accessed November 21, 2015].Google Scholar
Marchioli, R. et al., 2013. Cardiovascular events and intensity of treatment in polycythemia vera. The New England Journal of Medicine, 368, 2233. Available at: www.ncbi.nlm.nih.gov/pubmed/23216616 [Accessed November 10, 2015].Google Scholar
McMillan, D. E., 1985. Hemorheologic changes in diabetes and their role in increased atherogenesis. Hormone and Metabolic Research. Supplement Series, 15, 73–9. Available at: www.ncbi.nlm.nih.gov/pubmed/3865884 [Accessed November 22, 2015].Google Scholar
McMillan, D. E., 1989. Increased levels of acute-phase serum proteins in diabetes. Metabolism: Clinical and Experimental, 38, 1042–6. Available at: www.ncbi.nlm.nih.gov/pubmed/2478861 [Accessed November 22, 2015].Google Scholar
McMillan, D. E., 1997. Development of vascular complications in diabetes. Vascular Medicine, 2, 132–42. Available at: www.ncbi.nlm.nih.gov/pubmed/9546955 [Accessed November 22, 2015].Google Scholar
Melamed, E. et al., 1976. Aseptic cavernous sinus thrombosis after internal carotid arterial occlusion in polycythaemia vera. Journal of Neurology, Neurosurgery, and Psychiatry, 39, 320–4. Available at: www.pubmedcentral.nih.gov/articlerender.fcgi?artid=492279&tool=pmcentrez&rendertype=abstract [Accessed November 22, 2015].Google Scholar
Noda, S. et al., 2011. Hyperviscosity syndrome associated with systemic plasmacytosis. Clinical and Experimental Dermatology, 36, 273–6. Available at: www.ncbi.nlm.nih.gov/pubmed/20738318 [Accessed December 15, 2015].Google Scholar
Ohene-Frempong, K. et al., 1998. Cerebrovascular accidents in sickle cell disease: Rates and risk factors. Blood, 91, 288–94. Available at: www.ncbi.nlm.nih.gov/pubmed/9414296 [Accessed November 22, 2015].Google Scholar
Ott, E. O., Lechner, H., & Aranibar, A., 1974. High blood viscosity syndrome in cerebral infarction. Stroke, 5, 330–3. Available at: www.ncbi.nlm.nih.gov/pubmed/4836535 [Accessed November 22, 2015].Google Scholar
Paniagua, O. A., Bryant, M. B., & Panza, J. A., 2001. Role of endothelial nitric oxide in shear stress-induced vasodilation of human microvasculature: Diminished activity in hypertensive and hypercholesterolemic patients. Circulation, 103, 1752–8. Available at: www.ncbi.nlm.nih.gov/pubmed/11282906 [Accessed December 11, 2015].Google Scholar
Paraskevas, K. I. et al., 2008. The role of fibrinogen and fibrinolysis in peripheral arterial disease. Thrombosis Research, 122, 112. Available at: www.ncbi.nlm.nih.gov/pubmed/17669476 [Accessed December 6, 2015].Google Scholar
Paszkowiak, J. J. & Dardik, A., 2003. Arterial wall shear stress: Observations from the bench to the bedside. Vascular and Endovascular Surgery, 37, 4757. Available at: www.ncbi.nlm.nih.gov/pubmed/12577139 [Accessed November 22, 2015].Google Scholar
Paul, B., 2002. Polyclonal hypergammaglobulinaemia with hyperviscosity syndrome. British Journal of Haematology, 118, 922–3. Available at: www.ncbi.nlm.nih.gov/pubmed/12181068 [Accessed December 15, 2015].Google Scholar
Pavlakis, S. G. et al., 1988. Brain infarction in sickle cell anemia: Magnetic resonance imaging correlates. Annals of Neurology, 23, 125–30. Available at: www.ncbi.nlm.nih.gov/pubmed/3377435 [Accessed November 22, 2015].Google Scholar
Pearce, J. M., Chandrasekera, C. P., & Ladusans, E. J., 1983. Lacunar infarcts in polycythaemia with raised packed cell volumes. British Medical Journal, 287, 935–6. Available at: www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1549171&tool=pmcentrez&rendertype=abstract [Accessed November 22, 2015].Google Scholar
Pearson, T.C. & Wetherley-Mein, G., 1978. Vascular occlusive episodes and venous haematocrit in primary proliferative polycythaemia. Lancet, 2, 1219–22. Available at: www.ncbi.nlm.nih.gov/pubmed/82733 [Accessed November 22, 2015].Google Scholar
Preul, M. C. et al., 1998. Intracranial aneurysms and sickle cell anemia: Multiplicity and propensity for the vertebrobasilar territory. Neurosurgery, 42, 971–7. Available at: www.ncbi.nlm.nih.gov/pubmed/9588540 [Accessed December 16, 2015].Google Scholar
Rampling, M. W., 2003. Hyperviscosity as a complication in a variety of disorders. Seminars in Thrombosis and Hemostasis, 29, 459–65. Available at: www.ncbi.nlm.nih.gov/pubmed/14631545 [Accessed November 22, 2015].Google Scholar
Reinhart, W. H. & Berchtold, P. E., 1992. Effect of high-dose intravenous immunoglobulin therapy on blood rheology. Lancet, 339, 662–4. Available at: www.ncbi.nlm.nih.gov/pubmed/1347348 [Accessed November 22, 2015].Google Scholar
Rezai, K. A. et al., 2002. Rheumatoid hyperviscosity syndrome: Reversibility of microvascular abnormalities after treatment. American Journal of Ophthalmology, 134, 130–2. Available at: www.ncbi.nlm.nih.gov/pubmed/12095825 [Accessed December 15, 2015].Google Scholar
Rosenson, R. S. & Lowe, G. D., 1998. Effects of lipids and lipoproteins on thrombosis and rheology. Atherosclerosis, 140, 271–80. Available at: www.ncbi.nlm.nih.gov/pubmed/9862270 [Accessed November 22, 2015].Google Scholar
Rothman, S. M., Fulling, K. H., & Nelson, J. S., 1986. Sickle cell anemia and central nervous system infarction: A neuropathological study. Annals of Neurology, 20, 684–90. Available at: www.ncbi.nlm.nih.gov/pubmed/3813497 [Accessed November 22, 2015].Google Scholar
Sakuta, S., 1981. Blood filtrability in cerebrovascular disorders, with special reference to erythrocyte deformability and ATP content. Stroke, 12, 824–8. Available at: www.ncbi.nlm.nih.gov/pubmed/7303073 [Accessed November 22, 2015].Google Scholar
Schneider, R. et al., 1985. The haemorheological features of lacunar strokes. Journal of Neurology, 232, 357–62. Available at: www.ncbi.nlm.nih.gov/pubmed/4078601 [Accessed November 22, 2015].Google Scholar
Schneider, R. et al., 1987. The role of plasma hyperviscosity in subcortical arteriosclerotic encephalopathy (Binswanger’s disease). Journal of Neurology, 234, 6773. Available at: www.ncbi.nlm.nih.gov/pubmed/3559641 [Accessed November 22, 2015].Google Scholar
Seplowitz, A. H., Chien, S., & Smith, F. R., 1981. Effects of lipoproteins on plasma viscosity. Atherosclerosis, 38, 8995. Available at: www.ncbi.nlm.nih.gov/pubmed/7470209 [Accessed November 22, 2015].Google Scholar
Silverstein, A., Gilbert, H., & Wasserman, L. R., 1962. Neurologic complications of polycythemia. Annals of Internal Medicine, 57, 909–16. Available at: www.ncbi.nlm.nih.gov/pubmed/13992952 [Accessed November 22, 2015].Google Scholar
Sloop, G. D., 1996. A unifying theory of atherogenesis. Medical Hypotheses, 47, 321–5. Available at: www.ncbi.nlm.nih.gov/pubmed/8910882 [Accessed November 22, 2015].Google Scholar
Sloop, G. D., Weidman, J. J., & St Cyr, J. A., 2015. The systemic vascular resistance response: A cardiovascular response modulating blood viscosity with implications for primary hypertension and certain anemias. Therapeutic Advances in Cardiovascular Disease, 9, 403–11. Available at: www.ncbi.nlm.nih.gov/pubmed/26116626 [Accessed December 6, 2015].Google Scholar
Somer, T. & Meiselman, H. J., 1993. Disorders of blood viscosity. Annals of Medicine, 25, 31–9. Available at: www.ncbi.nlm.nih.gov/pubmed/8435185 [Accessed November 22, 2015].Google Scholar
Squizzato, A. et al., 2013. Antiplatelet drugs for polycythaemia vera and essential thrombocythaemia. The Cochrane Database of Systematic Reviews, 4, CD006503. Available at: www.ncbi.nlm.nih.gov/pubmed/23633335 [Accessed December 16, 2015].Google Scholar
Stetefeld, H. R. et al., 2014. Posterior reversible encephalopathy syndrome and stroke after intravenous immunoglobulin treatment in Miller–Fisher syndrome/Bickerstaff brain stem encephalitis overlap syndrome. Journal of Stroke and Cerebrovascular Diseases, 23, e4235. Available at: www.ncbi.nlm.nih.gov/pubmed/25149206 [Accessed December 15, 2015].Google Scholar
Stiehm, E. R., 2013. Adverse effects of human immunoglobulin therapy. Transfusion Medicine Reviews, 27, 171–8. Available at: www.ncbi.nlm.nih.gov/pubmed/23835249 [Accessed November 20, 2015].Google Scholar
Stockman, J. A. et al., 1972. Occlusion of large cerebral vessels in sickle-cell anemia. New England Journal of Medicine, 287, 846–9. Available at: www.ncbi.nlm.nih.gov/pubmed/5071963 [Accessed November 22, 2015].Google Scholar
Stone, M. J. & Bogen, S. A., 2012. Evidence-based focused review of management of hyperviscosity syndrome. Blood, 119, 2205–8. Available at: www.ncbi.nlm.nih.gov/pubmed/22147890 [Accessed November 25, 2015].Google Scholar
Stuart, J. et al., 1981. Haematological stress syndrome in atherosclerosis. Journal of Clinical Pathology, 34, 464–7. Available at: www.pubmedcentral.nih.gov/articlerender.fcgi?artid=493325&tool=pmcentrez&rendertype=abstract [Accessed November 22, 2015].CrossRefGoogle ScholarPubMed
Stucki, A. et al., 2001. Endothelial cell activation by myeloblasts: Molecular mechanisms of leukostasis and leukemic cell dissemination. Blood, 97, 2121–9. Available at: www.ncbi.nlm.nih.gov/pubmed/11264180 [Accessed December 15, 2015].Google Scholar
Szapary, L. et al., 2004. Hemorheological disturbances in patients with chronic cerebrovascular diseases. Clinical Hemorheology and Microcirculation, 31, 19. Available at: www.ncbi.nlm.nih.gov/pubmed/15272148 [Accessed December 11, 2015].Google Scholar
Tefferi, A., 1999. Pathogenetic mechanisms in chronic myeloproliferative disorders: Polycythemia vera, essential thrombocythemia, agiogenic myeloid metaplasia, and chronic myelogenous leukemia. Seminars in Hematology, 36(1 Suppl 2), 38. Available at: www.ncbi.nlm.nih.gov/pubmed/9930550 [Accessed December 15, 2015].Google Scholar
Tefferi, A. et al., 2013. Survival and prognosis among 1545 patients with contemporary polycythemia vera: An international study. Leukemia, 27, 1874–81. Available at: www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3768558&tool=pmcentrez&rendertype=abstract [Accessed November 17, 2015].Google Scholar
Thomas, D. J. et al., 1977. Cerebral blood-flow in polycythaemia. Lancet, 2, 161–3. Available at: www.ncbi.nlm.nih.gov/pubmed/69781 [Accessed November 22, 2015].Google Scholar
Thomas, D. J., 1982. Whole blood viscosity and cerebral blood flow. Stroke, 13, 285–7. Available at: www.ncbi.nlm.nih.gov/pubmed/7080118 [Accessed November 19, 2015].Google Scholar
Tohgi, H. et al., 1978. Importance of the hematocrit as a risk factor in cerebral infarction. Stroke, 9, 369–74. Available at: www.ncbi.nlm.nih.gov/pubmed/675749 [Accessed November 22, 2015].Google Scholar
Vucic, S. et al., 2004. Thromboembolic complications of intravenous immunoglobulin treatment. European Neurology, 52, 141–4. Available at: www.ncbi.nlm.nih.gov/pubmed/15479982 [Accessed November 22, 2015].Google Scholar
Wada, Y. et al., 2006. Cerebral infarction after high-dose intravenous immunoglobulin therapy for Kawasaki disease. Journal of Pediatrics, 148, 399400. Available at: www.ncbi.nlm.nih.gov/pubmed/16615977 [Accessed December 15, 2015].Google Scholar
Wang, W. C. & Dwan, K., 2013. Blood transfusion for preventing primary and secondary stroke in people with sickle cell disease. The Cochrane Database of Systematic Reviews, 11, CD003146. Available at: www.ncbi.nlm.nih.gov/pubmed/24226646 [Accessed December 16, 2015].Google Scholar
Wells, R. Jr., 1970. Syndromes of hyperviscosity. New England Journal of Medicine, 283, 183–6. Available at: www.ncbi.nlm.nih.gov/pubmed/4987394 [Accessed November 22, 2015].Google Scholar
Wells, R. E., 1964. Rheology of blood in the microvasculature. New England Journal of Medicine, 270, 832–9. Available at: www.ncbi.nlm.nih.gov/pubmed/14108089 [Accessed November 22, 2015].Google Scholar
White, D. A. & Leonard, M. C., 2007. Acute stroke with high-dose intravenous immune globulin. American Journal of Health-System Pharmacy, 64, 1611–4. Available at: www.ncbi.nlm.nih.gov/pubmed/17646563 [Accessed December 6, 2015].Google Scholar
Wong, P.C.W. et al., 2013. IgG4-related disease with hypergammaglobulinemic hyperviscosity and retinopathy. European Journal of Haematology, 90, 250–6. Available at: www.ncbi.nlm.nih.gov/pubmed/23278107 [Accessed December 15, 2015].Google Scholar
Wood, J. H. & Kee, D. B., 1985. Hemorheology of the cerebral circulation in stroke. Stroke, 16, 765–72. Available at: www.ncbi.nlm.nih.gov/pubmed/3901420 [Accessed November 19, 2015].Google Scholar
Wood, K. C., Hsu, L. L., & Gladwin, M. T., 2008. Sickle cell disease vasculopathy: A state of nitric oxide resistance. Free Radical Biology & Medicine, 44, 1506–28. Available at: www.ncbi.nlm.nih.gov/pubmed/18261470 [Accessed December 15, 2015].Google Scholar
Woodward, M. et al., 2005. Associations of inflammatory and hemostatic variables with the risk of recurrent stroke. Stroke, 36, 2143–7. Available at: www.ncbi.nlm.nih.gov/pubmed/16151030 [Accessed November 22, 2015].Google Scholar
Yazdi, R. & Côté, C., 1986. Watershed infarction in a case of polycythemia vera. Clinical Nuclear Medicine, 11, 665–6. Available at: www.ncbi.nlm.nih.gov/pubmed/3769364 [Accessed November 22, 2015].Google Scholar
Yedgar, S., Koshkaryev, A., & Barshtein, G., 2002. The red blood cell in vascular occlusion. Pathophysiology of Haemostasis and Thrombosis, 32, 263–8. Available at: www.ncbi.nlm.nih.gov/pubmed/13679654 [Accessed December 11, 2015].Google Scholar
Zhang, W. et al., 2006. Effect of ICAM-1 and LFA-1 in hyperleukocytic acute myeloid leukaemia. Clinical and Laboratory Haematology, 28, 177–82. Available at: www.ncbi.nlm.nih.gov/pubmed/16706934 [Accessed December 15, 2015].Google Scholar

References

Adams, H. P. Jr. (1990). Calcium antagonists in the management of patients with aneurysmal subarachnoid hemorrhage: A review. Angiology, 41, 1010–16.Google Scholar
Adebamowo, S. N., Spiegelman, D., Willett, W. C., & Rexrode, K. M. (2015). Association between intakes of magnesium, potassium, and calcium and risk of stroke: 2 cohorts of US women and updated meta-analyses. American Journal of Clinical Nutrition, 101, 1269–77.Google Scholar
Altura, B. T., Memon, Z. I., Zhang, A., et al. (1997). Low levels of serum ionized magnesium are found in patients early after stroke which result in rapid elevation in cytosolic free calcium and spasm in cerebral vascular muscle cells. Neuroscience Letters, 230, 3740.Google Scholar
Amighi, J., Sabeti, S., Schlager, O., et al. (2004). Low serum magnesium predicts neurological events in patients with advanced atherosclerosis. Stroke, 35, 22–7.Google Scholar
Bain, L. K., Myint, P. K., Jennings, A., et al. (2015). The relationship between dietary magnesium intake, stroke and its major risk factors, blood pressure and cholesterol, in the EPIC-Norfolk cohort. International Journal of Cardiology, 196, 108–14.Google Scholar
Barth, M., Capelle, H. H., Weidauer, S., et al. (2007). Effect of nicardipine prolonged-release implants on cerebral vasospasm and clinical outcome after severe aneurysmal subarachnoid hemorrhage: A prospective, randomized, double-blind phase IIa study. Stroke, 38, 330–6.Google Scholar
Bauermeister, D. E., Jennings, E. R., Cruse, D. R., & Sedgwick, V. D. (1967). Hypercalcemia with seizures: A clinical paradox. JAMA, 201, 132–3.Google Scholar
Bostrom, H. & Alveryd, A. (1972). Stroke in hyperparathyroidism. Acta Medica Scandinavica, 192, 299308.Google Scholar
Campbell, C. A., Mackay, K. B., Patel, S., et al. (1997). Effects of isradipine, an L-type calcium channel blocker on permanent and transient focal cerebral ischemia in spontaneously hypertensive rats. Experimental Neurology, 148, 4550.Google Scholar
Chung, J. W., Ryu, W. S., Kim, B. J., & Yoon, B. W. (2015). Elevated calcium after acute ischemic stroke: Association with a poor short-term outcome and long-term mortality. Journal of Stroke, 17, 54–9.Google Scholar
Collignon, F. P., Friedman, J. A., Piepgras, D. G., et al. (2004). Serum magnesium levels as related to symptomatic vasospasm and outcome following aneurysmal subarachnoid hemorrhage. Neurocritical Care, 1, 441–8.Google Scholar
Dorhout Mees, S. M., Rinkel, G. J., Feigin, V. L., et al. (2007). Calcium antagonists for aneurysmal subarachnoid haemorrhage. The Cochrane Database of Systematic Reviews, 3, CD000277.Google Scholar
Dorhout Mees, S. M., Algra, A., Vandertop, W. P., et al. (2012). Magnesium for aneurysmal subarachnoid haemorrhage (MASH-2): A randomised placebo-controlled trial. Lancet, 380, 44–9.Google Scholar
Dorhout Mees, S. M., Algra, A., Wong, G. K., et al. (2015). Early magnesium treatment after aneurysmal subarachnoid hemorrhage: Individual patient data meta-analysis. Stroke, 46, 3190–3.Google Scholar
Eikermann-Haerter, K., Lee, J. H., Yuzawa, I., et al. (2012). Migraine mutations increase stroke vulnerability by facilitating ischemic depolarizations. Circulation, 125, 335–45.Google Scholar
Eikermann-Haerter, K., Arbel-Ornath, M., Yalcin, N., et al. (2015a). Abnormal synaptic Ca(2+) homeostasis and morphology in cortical neurons of familial hemiplegic migraine type 1 mutant mice. Annals of Neurology, 78, 193210.Google Scholar
Eikermann-Haerter, K., Lee, J. H., Yalcin, N., et al. (2015b). Migraine prophylaxis, ischemic depolarizations, and stroke outcomes in mice. Stroke, 46, 229–36.Google Scholar
Fan, X., Jin, W. Y., & Wang, Y. T. (2014). The NMDA receptor complex: A multifunctional machine at the glutamatergic synapse. Frontiers in Cellular Neuroscience, 8, 160.Google Scholar
Gorelick, P. & Caplan, L. (1985). Calcium, hypercalcemia, and stroke. Current Concepts in Cerebrovascular Disease – Stroke, 20, 1317.Google Scholar
Haley, E. C. Jr, Kassell, N. F., Torner, J. C., Truskowski, L. L., & Germanson, T. P. (1994). A randomized trial of two doses of nicardipine in aneurysmal subarachnoid hemorrhage. A report of the cooperative aneurysm study. Journal of Neurosurgery, 80, 788–96.Google Scholar
Hall, J. E. (ed.). (2015). Guyton and Hall Textbook of Medical Physiology, 13th edn. Philadelphia, PA: Saunders.Google Scholar
Hamerman, D. (2005). Osteoporosis and atherosclerosis: Biological linkages and the emergence of dual-purpose therapies. QJM: Monthly Journal of the Association of Physicians, 98, 467–84.Google Scholar
Hanggi, D., Turowski, B., Beseoglu, K., Yong, M., & Steiger, H. J. (2008). Intra-arterial nimodipine for severe cerebral vasospasm after aneurysmal subarachnoid hemorrhage: Influence on clinical course and cerebral perfusion. AJNR American Journal of Neuroradiology, 29, 1053–60.Google Scholar
Helpern, J. A., Vande Linde, A. M., Welch, K. M., et al. (1993). Acute elevation and recovery of intracellular [Mg2+] following human focal cerebral ischemia. Neurology, 43, 1577–81.Google Scholar
Hollingworth, M., Chen, P. R., Goddard, A. J., et al. (2015). Results of an international survey on the investigation and endovascular management of cerebral vasospasm and delayed cerebral ischemia. World Neurosurgery, 83, 1120–6.Google Scholar
Horn, J. & Limburg, M. (2001). Calcium antagonists for ischemic stroke: A systematic review. Stroke, 32, 570–6.Google Scholar
Huang, B. R., Chang, P. C., Yeh, W. L., et al. (2014). Anti-neuroinflammatory effects of the calcium channel blocker nicardipine on microglial cells: Implications for neuroprotection. PloS One, 9, e91167.Google Scholar
Huang, Q. F., Gebrewold, A., Altura, B. T., & Altura, B. M. (1990). Cocaine-induced cerebral vascular damage can be ameliorated by Mg2+ in rat brain. Neuroscience Letters, 109, 113–16.Google Scholar
Iso, H., Stampfer, M. J., Manson, J. E., et al. (1999). Prospective study of calcium, potassium, and magnesium intake and risk of stroke in women. Stroke, 30, 1772–9.Google Scholar
Jackson, J. L., Cogbill, E., Santana-Davila, R., et al. (2015). A comparative effectiveness meta-analysis of drugs for the prophylaxis of migraine headache. PloS One, 10, e0130733.Google Scholar
Kalogeris, T., Baines, C. P., Krenz, M., & Korthuis, R. J. (2012). Cell biology of ischemia/reperfusion injury. International Review of Cell and Molecular Biology, 298, 229317.Google Scholar
Katsamakis, G., Lukovits, T. G., & Gorelick, P. B. (1998). Calcific cerebral embolism in systemic calciphylaxis. Neurology, 51, 295–7.Google Scholar
Kristian, T. & Siesjo, B. K. (1996). Calcium-related damage in ischemia. Life Sciences, 59, 357–67.Google Scholar
Larsson, S. C., Orsini, N., & Wolk, A. (2012). Dietary magnesium intake and risk of stroke: A meta-analysis of prospective studies. American Journal of Clinical Nutrition, 95, 362–6.Google Scholar
Li, L., Schulz, U. G., Kuker, W., Rothwell, P. M., & Oxford Vascular Study. (2015). Age-specific association of migraine with cryptogenic TIA and stroke: Population-based study. Neurology, 85, 1444–51.Google Scholar
Mohr, J. P., Orgogozo, J. M., Harrison, M. J. G., et al. (1994). Meta-analysis of oral nimodipine trials in acute ischemic stroke. Cerebrovasc Dis, 4, 197203.Google Scholar
Muir, K. W. (2002). Magnesium in stroke treatment. Postgraduate Medical Journal, 78, 641–5.Google Scholar
Muir, K. W., Lees, K. R., Ford, I., Davis, S., & Intravenous Magnesium Efficacy in Stroke (IMAGES) Study Investigators. (2004). Magnesium for acute stroke (intravenous magnesium efficacy in stroke trial): Randomised controlled trial. Lancet, 363, 439–45.Google Scholar
Nogueira, R. G., Lev, M. H., Roccatagliata, L., et al. (2009). Intra-arterial nicardipine infusion improves CT perfusion-measured cerebral blood flow in patients with subarachnoid hemorrhage-induced vasospasm. AJNR American Journal of Neuroradiology, 30, 160–4.Google Scholar
Ohira, T., Peacock, J. M., Iso, H., et al. (2009). Serum and dietary magnesium and risk of ischemic stroke: The Atherosclerosis Risk in Communities Study. American Journal of Epidemiology, 169, 1437–44.Google Scholar
Ram, Z., Sadeh, M., Shacked, I., Sahar, A., & Hadani, M. (1991). Magnesium sulfate reverses experimental delayed cerebral vasospasm after subarachnoid hemorrhage in rats. Stroke, 22, 922–7.Google Scholar
Reddy, D., Fallah, A., Petropoulos, J. A., et al. (2014). Prophylactic magnesium sulfate for aneurysmal subarachnoid hemorrhage: A systematic review and meta-analysis. Neurocritical Care, 21, 356–64.Google Scholar
Sato, Y., Kuno, H., Kaji, M., et al. (1998). Increased bone resorption during the first year after stroke. Stroke, 29, 1373–7.Google Scholar
Sato, Y., Kaji, M., Metoki, N., Satoh, K., & Iwamoto, J. (2003). Does compensatory hyperparathyroidism predispose to ischemic stroke? Neurology, 60, 626–9.Google Scholar
Saver, J. L., Kidwell, C., Eckstein, M., Starkman, S., & FAST-MAG Pilot Trial Investigators. (2004). Prehospital neuroprotective therapy for acute stroke: Results of the field administration of stroke therapy – magnesium (FAST– MAG) pilot trial. Stroke, 35, e1068.Google Scholar
Saver, J. L., Starkman, S., Eckstein, M., et al. (2015). Prehospital use of magnesium sulfate as neuroprotection in acute stroke. New England Journal of Medicine, 372, 528–36.Google Scholar
Scher, A. I., Gudmundsson, L. S., Sigurdsson, S., et al. (2009). Migraine headache in middle age and late-life brain infarcts. JAMA, 301, 2563–70.Google Scholar
Shanmugam, V., Chhablani, R., & Gorelick, P. B. (1997). Spontaneous calcific cerebral embolus. Neurology, 48, 538–9.Google Scholar
Singhal, A. B., Hajj-Ali, R. A., Topcuoglu, M. A., et al. (2011). Reversible cerebral vasoconstriction syndromes: Analysis of 139 cases. Archives of Neurology, 68, 1005–12.Google Scholar
Streeto, J. M. (1969). Acute hypercalcemia simulating basilar-artery insufficiency. New England Journal of Medicine, 280, 427–9.Google Scholar
Sun, Y., Zhang, L., Chen, Y., Zhan, L., & Gao, Z. (2015). Therapeutic targets for cerebral ischemia based on the signaling pathways of the GluN2B C terminus. Stroke, 46, 2347–53.Google Scholar
Syntichaki, P. & Tavernarakis, N. (2003). The biochemistry of neuronal necrosis: Rogue biology? Nature Reviews Neuroscience, 4, 672–84.Google Scholar
Takano, T., Oberheim, N., Cotrina, M. L., & Nedergaard, M. (2009). Astrocytes and ischemic injury. Stroke, 40, S812.Google Scholar
van den Bergh, W. M., Algra, A., van der Sprenkel, J. W., Tulleken, C. A., & Rinkel, G. J. (2003). Hypomagnesemia after aneurysmal subarachnoid hemorrhage. Neurosurgery, 52, 276–81.Google Scholar
van den Bergh, W. M., Algra, A., van Kooten, F., et al. (2005). Magnesium sulfate in aneurysmal subarachnoid hemorrhage: A randomized controlled trial. Stroke, 36, 1011–15.Google Scholar
Velat, G. J., Kimball, M. M., Mocco, J. D., & Hoh, B. L. (2011). Vasospasm after aneurysmal subarachnoid hemorrhage: Review of randomized controlled trials and meta-analyses in the literature. World Neurosurgery, 76, 446–54.Google Scholar
Vivancos, J., Gilo, F., Frutos, R., et al. (2014). Clinical management guidelines for subarachnoid haemorrhage. Diagnosis and treatment. Neurologia, 29, 353–70.Google Scholar
Walker, G. L., Williamson, P. M., Ravich, R. B., & Roche, J. (1980). Hypercalcaemia associated with cerebral vasospasm causing infarction. Journal of Neurology, Neurosurgery, and Psychiatry, 43, 464–7.Google Scholar
Warach, S., Kaufman, D., Chiu, D., et al. (2006). Effect of the glycine antagonist gavestinel on cerebral infarcts in acute stroke patients, a randomized placebo-controlled trial: The GAIN MRI substudy. Cerebrovascular Diseases, 21, 106–11.Google Scholar
Westermaier, T., Stetter, C., Kunze, E., et al. (2013). Magnesium treatment for neuroprotection in ischemic diseases of the brain. Experimental & Translational Stroke Medicine, 5, 6–7378–5–6.Google Scholar
Wong, G. K., Chan, M. T., Boet, R., Poon, W. S., & Gin, T. (2006). Intravenous magnesium sulfate after aneurysmal subarachnoid hemorrhage: A prospective randomized pilot study. Journal of Neurosurgical Anesthesiology, 18, 142–8.Google Scholar
Yamamoto, T., Mori, K., Esaki, T., et al. (2015). Preventive effect of continuous cisternal irrigation with magnesium sulfate solution on angiographic cerebral vasospasms associated with aneurysmal subarachnoid hemorrhages: A randomized controlled trial. Journal of Neurosurgery, 124, 1826.Google Scholar
Yarnell, P. R. & Caplan, L. R. (1986). Basilar artery narrowing and hyperparathyroidism: Illustrative case. Stroke, 17, 1022–4.Google Scholar
Zhang, J., Yang, J., Zhang, C., et al. (2012). Calcium antagonists for acute ischemic stroke. The Cochrane Database of Systematic Reviews, 5, CD001928.Google Scholar
Zhao, J., Zhou, D., Guo, J., et al. (2011). Efficacy and safety of fasudil in patients with subarachnoid hemorrhage: Final results of a randomized trial of fasudil versus nimodipine. Neurologia Medico-Chirurgica, 51, 679–83.Google Scholar
Zoerle, T., Ilodigwe, D. C., Wan, H., et al. (2012). Pharmacologic reduction of angiographic vasospasm in experimental subarachnoid hemorrhage: Systematic review and meta-analysis. Journal of Cerebral Blood Flow and Metabolism, 32, 1645–58.Google Scholar

References

Alvaro, L. C., Iriondo, I., and Villaverde, F. J. 2002. Sexual headache and stroke in a heavy cannabis smoker. Headache, 42, 224.Google Scholar
Arora, A., Kumar, A., and Raza, M. N. 2013. “Legal high” associated with Wallenbeg syndrome. BMJ Case Rep, doi:10.1136/bcr-2013–009693.Google Scholar
Asplund, K., Nasic, S., Janlert, V., et al. 2003. Smokeless tobacco as a possible risk factor for stroke in men. A nested case–control study. Stroke, 34, 1754.Google Scholar
Barber, P. A., Pridmore, H. M., Krishnamurthy, V., et al. 2013. Cannabis, ischemic stroke, and transient ischemic attack. A case-control study. Stroke, 44, 2327.Google Scholar
Baud, M. O., Brown, E. G., Singhal, N. S., et al. 2015. Immediate hemorrhagic transformation after intravenous tissue-type plasminogen activator injection in 2 cocaine users. Stroke, 46, e167.Google Scholar
Bernson-Leung, M. E., Leung, L. Y., and Kumar, S. 2014. Synthetic cannabis and acute ischemic stroke. J Stroke Cerebrovasc Dis, 23, 1239.Google Scholar
Bhalla, M. C. 2015. Intraparenchymal hemorrhage after heroin use. Am J Emerg Med, 33, 1109.e3.Google Scholar
Bhatnager, A., Whitsel, L. P., Ribisl, K. M., et al. 2014. Electronic cigarettes. A policy statement from the American Heart Association. Circulation, 130, 1418.Google Scholar
Bolz, J., Meves, S. H., Kara, K., et al. 2015. Multiple cerebral infarctions in a young patient with heroin-induced hypereosinophilic syndrome. J Neurol Sci, 356, 193.Google Scholar
Boyko, O. B., Burger, P. C., and Heinz, E. R. 1987. Pathological and radiological correlation of subarachnoid hemorrhage in phencyclidine abuse: Case report. J Neurosurg, 67, 446.Google Scholar
Broderick, J. P., Viscoli, C. M., Brott, T., et al. 2003. Major risk factors for aneurysmal subarachnoid hemorrhage in the young are modifiable. Stroke, 34, 1375.Google Scholar
Bruno, A., Nolte, K. B., and Chapin, J. 1993. Stroke associated with ephedrine use. Neurology, 43, 1313.Google Scholar
Brust, J. C. M. 2004. Neurological Aspects of Substance Abuse, 2nd edn. Boston: Butterworth-Heinemann.Google Scholar
Brust, J. C. M. 2016. Stroke and substance abuse. In Stroke: Pathophysiology, Diagnosis, and Treatment, 6th edn, Grotta, J. C., Alpers, G. W., Broderick, J. P., et al. (eds), Elsevier, pp. 648–57.Google Scholar
Brust, J. C. M. 2013. Spice, pot, and stroke. Neurology, 81, 1.Google Scholar
Brust, J. C. M., Dickinson, P. C. T., Hughes, J. E. O., and Holtzman, R. N. N. 1990. The diagnosis and treatment of cerebral mycotic aneurysms. Ann Neurol, 27, 238.Google Scholar
Brust, J. C. M. and Richter, R. W. 1976. Stroke associated with addiction to heroin. J Neurol Neurosurg Psychiatry, 39, 194.Google Scholar
Brust, J. C. M. and Richter, R. W. 1977. Stroke associated with cocaine abuse? N Y State J Med, 77, 1473.Google Scholar
Cagienard, F., Schultzi, T., and Reinhart, W. H. 2014. Cocaine in high concentrations inhibits platelet aggregation in vitro. Clin Hemorheol Microcirc 57, 385.Google Scholar
Chang, T. R., Kowalski, R. C., Caserta, P., et al. 2013. Import of acute cocaine use on aneurysmal subarachnoid hemorrhage. Stroke, 44, 1825.Google Scholar
Chillar, R. K. and Jackson, A. L. 1981. Reversible hemiplegia after presumed intracarotid injection of Ritalin. N Engl J Med, 304, 1305.Google Scholar
Chiuve, S. E., Rexrode, K. M., Spiegelman, D., et al. 2008. Primary prevention of stroke by healthy lifestyle. Circulation, 118, 947.Google Scholar
Chokshi, S. K., Moore, R., Pandian, N. G., and Isner, J. M. 1989. Reversible cardiomyopathy associated with cocaine intoxication. Ann Intern Med, 111, 1039.Google Scholar
Christie, I. C., Price, J., Edwards, L., et al. 2008. Alcohol consumption and cerebral blood flow among older adults. Alcohol, 42, 269.Google Scholar
Citron, B. P., Halpern, M., McCarron, M., et al. 1970. Necrotizing angiitis associated with drug abuse. N Engl J Med, 283, 1003.Google Scholar
Derby, L. E., Myers, M. W., Jick, H., et al. 1999. Use of dexfenfluramine, fenfluramine and phentermine and the risk of stroke. Br J Clin Pharmacol, 47, 565.Google Scholar
Deusch, E., Kress, H. G., Kraft, B., et al. 2004. The procoagulatory effects of delta-9-tetrahydrocannabinol in human platelets. Anesth Analg, 99, 1127.Google Scholar
Darke, S., Kaye, S., and Duflou, J. 2006. Comparative cardiac pathology among deaths due to cocaine toxicity, opioid toxicity and non-drug-related causes. Addiction, 101, 1771.Google Scholar
Desbois, A. C. and Cacoub, P. 2013. Cannabis-associated arterial disease. Ann Vasc Surg, 27, 996.Google Scholar
Ducros, A., Boukobza, M., Porcher, R., et al. 2007. The clinical and radiological spectrum of reversible cerebral vasoconstriction syndrome. A prospective series of 67 patients. Brain, 130, 3091.Google Scholar
Eastman, J. W. and Cohen, S. N. 1975. Hypertensive crisis and death associated with phencyclidine poisoning. JAMA, 231, 1270.Google Scholar
Esse, K., Fossati-Bellani, M., Traylor, A., et al 2011. Epidemic of illicit drug use, mechanisms of action/addiction, and stroke as a health hazard. Brain Behav 1, 44.Google Scholar
Feldmann, E., Broderick, J. P., Kernan, W. N., et al. 2005. Major risk factors for intracerebral hemorrhage in the young are modifiable. Stroke 36, 1881.Google Scholar
Freeman, M. J., Rose, D. Z., Myers, M. A., et al. 2013. Ischemic stroke after use of the synthetic marijuana “Spice.” Neurology, 81, 2090.Google Scholar
Fuchs, F. D., Chambless, L. E., Whelton, P. K., et al. 2001. Alcohol consumption and the incidence of hypertension: The Atherosclerosis Risk in Communities Study. Hypertension, 37, 1242.Google Scholar
Gatringer, T., Enzinger, C., Fischer, R., et al. 2015. IV thrombolysis in patients with ischemic stroke and alcohol abuse. Neurology, 85, 1592–7.Google Scholar
Geng, X., Elmadhoun, B. S., Peng, C., et al. 2015. Ethanol and normobaric oxygen. Novel approach in modulating pyruvate dehydrogenase complex after severe transient and permanent ischemic stroke. Stroke, 46, 492.Google Scholar
Giraldo, E. A., Yaqi, M. A., and Vaidean, C. D. 2012. A case–control study of stroke risk factors and outcomes in African-American stroke patients with and without crack-cocaine abuse. Neurocrit Care, 16, 273.Google Scholar
Girot, M. 2009. Smoking and stroke. Presse Med, 38, 1120.Google Scholar
Gordon, E. L., Nguyen, T. S., Ngai, A. C., and Winn, H. R. 1995. Differential effects of alcohols on intracerebral arterioles. Ethanol alone causes vasoconstriction. J Cereb Blood Flow Metab, 15, 532.Google Scholar
Green, R., Kelly, K. M., Gabrielsen, T., et al. 1990. Multiple cerebral hemorrhages after smoking ‘crack’ cocaine. Stroke, 21, 957.Google Scholar
Hackam, D. G. 2015. Cannabis and stroke. Systematic appraisal of case reports. Stroke, 46, 852.Google Scholar
Hemachandra, D., McKetin, R., Cherbuin, N., et al. 2015. Heavy cannabis users at elevated risk of stroke: Evidence from a general population survey. Aust NZ J Public Health, doi: 10.1111/1753–6405.12477.Google Scholar
Herning, R. I., King, D. E., Better, W. C., and Cadet, J. L. 1999. Neurovascular deficits in cocaine users. Neuropharmacology, 21, 110.Google Scholar
Herning, R. I., Better, W. E., Tate, K., et al. 2005. Cerebrovascular perfusion in marijuana users during a month of monitored abstinence. Neurology, 64, 488.Google Scholar
Hillbom, M., Saloheimo, P., and Juvela, S. 2011. Alcohol consumption, blood pressure, and the risk of stroke. Curr Hypertens Rep, 13, 208.Google Scholar
Ho, E. L., Josephson, S. A., Lee, H. S., et al. 2009. Cerebrovascular complications of methamphetamine abuse. Neurocrit Care, 10, 295.Google Scholar
Hossain, M., Mazzone, P., Tierney, W., et al. 2011. In vitro assessment of tobacco smoke toxicity at the BBB: Do antioxidant supplements have a permissive role? BMC Neurosci, 12, 92.Google Scholar
Inal, T., Kose, A., Koksal, O., et al. 2014. Acute temporal lobe infarction in a young patient associated with marijuana abuse: An unusual cause of stroke. World J Emerg Med, 5, 72.Google Scholar
Ince, B., Benbir, G., Yuksel, O., et al. 2015. Both hemorrhagic and ischemic stroke following high doses of cannabis consumption. Presse Med, 44, 106–7.Google Scholar
Jaffre, A., Ruidavets, J. B., Nasr, N., et al. 2015. Tobacco use and cryptogenic stroke in young adults. J Stroke Cerebrovasc Dis, http://dx.doi.org/10.101.Google Scholar
Jones, R. T. 2002. Cardiovascular system effects of marijuana. J Clin Pharmacol, 103, 58S.Google Scholar
Jones, S. B., Loehr, L., Avery, C. L, et al. 2015. Midlife alcohol consumption and the risk of stroke in the Atherosclerosis Risk in Communities Study. Stroke, 46, 3124–30.Google Scholar
Jouanjus, E., Lapeyre-Mestre, M., Micallef, J., et al. 2014. Cannabis use: Signal of increasing risk of serious cardiovascular disorders. J Am Heart Assoc, 3, e.000638.Google Scholar
Judice, D. J., LeBlanc, H. J., and McGarry, P. A. 1978. Spinal cord vasculitis presenting as spinal cord tumor in a heroin addict. J Neurosurg, 48, 131.Google Scholar
Kadlecova, P., Andel, R., Mikulik, R., et al. 2015. Alcohol consumption at midlife and risk of stroke during 43 years of follow-up: Cohort and twin analysis. Stroke, 46, 627.Google Scholar
Kaufman, M. J., Levin, J. M., Ross, M. H., et al. 1998. Cocaine-induced cerebral vasoconstriction detected in humans with magnetic resonance angiography. JAMA, 279, 376.Google Scholar
Kernan, W. N., Viscoli, C. M., Brass, L. M., et al. 2000. Phenylpropanolamine and the risk of hemorrhagic stroke. N Engl J Med, 343, 1826.Google Scholar
Klatsky, A. L. 2007. Alcohol, cardiovascular disease and diabetes mellitus. Pharmacol Res, 55, 237.Google Scholar
Klatsky, A. L. 2015. Alcohol and cardiovascular diseases: Where do we stand today? J Intern Med, 278, 238.Google Scholar
Kohsaka, S., Zhezen, J., and DiTullio, M. R. 2011. Alcohol consumption and atherosclerosis burden in the proximal thoracic aorta. Athersclerosis, 219, 794.Google Scholar
Larson, S. C., Akesson, A., and Wolk, A. 2015. Primary prevention of stroke by a healthy lifestyle in a high risk group. Neurology, 84, 224.Google Scholar
Latorre, J. G. S. and Schmidt, E. B. 2015. Cannabis, cannabinoids, and cerebral metabolism: Potential applications in stroke and disorders of the central nervous system. Curr Cardiol Rep, 17, 72.Google Scholar
Mathew, R. J., Wilson, W. I., and Davis, R. 2003. Postural syncope after marijuana. A transcranial Doppler study of the hemodynamics. Pharmacol Biochem Behav, 75, 309.Google Scholar
Matteo, I., Pinedo, A., Gomez-Beldarrain, M., et al. 2005. Recurrent stroke associated with cannabis use. J Neurol Neurosurg Psychiatry, 76, 435.Google Scholar
McCreary, M., Emerman, C., Hanna, J., and Simon, J. 2000. Acute myelopathy following intranasal insufflation of heroin: Case report. Neurology, 55, 316.Google Scholar
Miotto, K., Striebel, J., Cho, A. K., et al. 2013. Clinical and pharmacological aspects of bath salt use: A review of the literature and case reports. Drug Alcohol Depend, 132, 1.Google Scholar
Mittleman, M. A., Lewis, R. A., Maclure, M., et al. 2001. Triggering myocardial infarction by marijuana. Circulation, 103, 2805.Google Scholar
Morganstern, M. D., Viscoli, C. M., Kernan, W. N., et al. 2003. Use of ephedra-containing products and risk for hemorrhagic stroke. Neurology, 60, 132.Google Scholar
Mukamal, K. J., Ascherio, A., Mittleman, M. A., et al. 2005a. Alcohol and risk for ischemic stroke in men: The role of drinking patterns and usual beverage. Ann Intern Med, 142, 11.Google Scholar
Mukamal, K. J., Chung, H., Jenny, N. S., et al. 2005b. Alcohol use and the risk of ischemic stroke among older adults. The Cardiovascular Health Study. Stroke, 36, 1830.Google Scholar
Mukamal, K. J., Longstreth, W. T., Mittleman, M. A., et al. 2001. Alcohol consumption and subclinical findings on magnetic resonance imaging of the brain in older adults: The Cardiovascular Health Study. Stroke, 32, 939.Google Scholar
Ntlholang, O., McDonagh, R., Nicholson, S., et al. 2015. Is intimal hyperplasia associated with cranial arterial stenosis in cannabis-associated cerebral infarction? Int J Stroke, 10, e56.Google Scholar
Nudelman, R. W. and Salcman, M. 1987. The birth of the blues. II. Blue movie. JAMA, 257, 3230.Google Scholar
Ohita, T., Tanigawa, T., Tabata, M., et al. 2009. Effects of habitual alcohol intake on ambulatory blood pressure, heart rate, and its variability among Japanese men. Hypertension, 53, 13.Google Scholar
Oono, I. P., Mackay, D. F., and Pell, J. P. 2011. Meta-analysis of the association between secondhand smoke exposure and stroke. J Public Health, 11, 496.Google Scholar
Oyinlove, O., Nzeh, D., Yusef, A., et al. 2014. Ischemic stroke following abuse of marijuana in a Nigerian adult male. J Neurosci Rural Pract, 5, 417.Google Scholar
Palomaki, H., Kaste, M., Raininko, R. et al. 1993. Risk factors for cervical atherosclerosis in patients with transient ischemic attack or minor ischemic stroke. Stroke, 24, 970.Google Scholar
Parker, M. J., Tarlow, M. J., and Milne-Anderson, J. 1984. Glue sniffing and cerebral infarction. Arch Dis Child, 59, 675.Google Scholar
Patra, I., Tatlor, B., Irving, H., et al. 2010. Alcohol consumption and the risk of morbidity and mortality for different stroke types: A systematic review and meta-analysis. BMC Public Health, 10, 258.Google Scholar
Pearson, J., Richter, R. W., Baden, M. M. et al. 1972. Transverse myelopathy as an illustration of the neurologic and neuropathologic features of heroin addiction. Hum Pathol, 3, 109.Google Scholar
Petitti, D. B., Sidney, S., Queensberry, C., and Bernstein, A. 1998. Stroke and cocaine or amphetamine use. Epidemiology, 9, 596.Google Scholar
Peyrot, I., Garsaud, A. M., Saint-Cyr, I., et al. 2007. Cannabis arteritis: A new case report and review of the literature. J Eur Acad Dermatol Venereal, 21, 388.Google Scholar
Qureshi, A. I., Akber, M. S., Czander, E., et al. 1997. Crack cocaine use and stroke in young patients. Neurology, 48, 341.Google Scholar
Qureshi, A. I., Mohammad, Y., Suri, M. F., et al. 2001a. Cocaine use and hypertension are major risk factors for intracerebral hemorrhage in young African Americans. Ethn Dis, 11, 311.Google Scholar
Qureshi, A. I., Fareed, M., Suri, K., et al. 2001b. Cocaine use and the likelihood of non-fatal myocardial infarction and stroke: Data from the third National Health and Nutrition Examination Survey. Circulation, 103, 502.Google Scholar
Qureshi, A. I., Suri, M. F., Yahia, A. M. 2001c. Risk factors for subarachnoid hemorrhage. Neurosurgery 49, 607.Google Scholar
Ray, W. Z., Krisht, K. M., Schabel, A., et al. 2013. Subarachnoid hemorrhage from a thoracic radicular artery pseudoanaurysm after methamphetamine and synthetic cannabinoid abuse: Case report. Global Spine J, 3, 119.Google Scholar
Ren, H., Du, C., Yuan, Z., et al. 2012. Cocaine-induced cortical micro-ischemia in the rodent brain: Clinical implications. Mol Psychiatr, 17, 1017.Google Scholar
Renard, D. and Gaillard, N. 2008. Brain hemorrhage and cerebral vasospasm associated with chronic use of cannabis and buprenorphine. Cerebrovasc Dis, 25, 282.Google Scholar
Rose, D. Z., Guerrero, W. R., Mokin, M. V., et al. 2015. Hemorrhagic stroke following use of the synthetic marijuana “Spice.” Neurology, 85, 1177.Google Scholar
Reynolds, K., Lewis, L. B., and Nolen, J. D. L. 2003. Alcohol consumption and risk of stroke. A meta-analysis. JAMA, 289, 579.Google Scholar
Rothrock, J. F., Rubenstein, R., and Lyden, P. D. 1988. Ischemic stroke associated with methamphetamine inhalation. Neurology, 38, 589.Google Scholar
Sacco, R. L., Elkind, M., Boden-Albala, B., et al. 1999. The protective effect of moderate alcohol consumption on ischemic stroke. JAMA, 281, 53.Google Scholar
Santos, A. N., Rodrigues, M., Mare, R., et al. 2014. Recurrent stroke in a young cannabis user. J Neuropsychiatry Clin Neurosci 26, e41.Google Scholar
Schifano, F., Oyefeso, A., Webb, L., et al. 2003. Review of deaths related to taking ecstasy, England and Wales, 1997–2000. Br Med J, 326, 80.Google Scholar
Seely, K. A., Lapoint, J., Moran, J. H., et al. 2012. Spice drugs are more than harmless herbal blends: A review of the pharmacology and toxicology of synthetic cannabinoids. Prog Neuropsychopharmacol Biol Psychiatry, 39, 234.Google Scholar
Shah, R. S. and Cole, J. W. 2010. Smoking and stroke: The more you smoke the more you stroke. Expert Rev Cardiovasc Ther, 8, 917.Google Scholar
Singh, N. N., Pan, Y., Muengtaweeponsa, S., et al. 2012. Cannabis-related stroke: Case series and review of the literature. J Stroke Cerebrovasc Dis, 21, 555.Google Scholar
Sloan, M. A., Duh, S.-H., Magder, L. S., et al. 2000. Marijuana and the risk of stroke. Stroke, 30, 57.Google Scholar
Sobel, J., Espinas, O. E., and Friedman, S. A. 1971. Carotid artery obstruction following LSD capsule injection. Arch Intern Med, 127, 290.Google Scholar
Sordo, L., Indave, B. I., Barrio, G., et al. 2014. Cocaine use and risk of stroke: A systematic review. Drug Alcohol Depend, 142, 1.Google Scholar
Sull, J. W., Yi, S. W., Nam, C. M., et al. 2009. Binge drinking and hypertension on cardiovascular mortality in Korean men and women. A Kangwha Cohort Study. Stroke, 40, 2953.Google Scholar
Takematsu, M., Hoffman, R. S., Nelson, L. S., et al. 2014. A case of acute cerebral ischemia following inhalation of a synthetic cannabinoid. Clin Toxicol, 52, 973.Google Scholar
Ubogu, E. E. 2001. Amaurosis fugax associated with phencyclidine inhalation. Eur Neurol, 46, 98.Google Scholar
Van Tol, A. and Hendriks, H. D. 2001. Moderate alcohol consumption: Effects on lipids and cardiovascular disease risk. Curr Opin Lipidol, 12, 19.Google Scholar
Westover, A. N., McBride, S., Haley, R. W. 2007. Stroke in young adults who abuse amphetamines or cocaine: A population-based study of hospitalized patients. Arch Gen Psychiatry, 64, 495.Google Scholar
Wolff, V., Armspach, J.-P., Lauer, V., et al. 2015. Ischaemic strokes with reversible vasoconstriction and without thunderclap headache: A variant of the reversible cerebral vasoconstriction syndrome? Cerebrovasc Dis, 39, 31.Google Scholar
Wolff, V., Lauer, V., Rouyer, O., et al. 2011. Cannabis use, ischemic stroke, and multifocal intracranial vasoconstriction: A prospective study of 48 consecutive young patients. Stroke, 42, 1178.Google Scholar
Wang, F., Wang, Y., Geng, X., et al. 2012. Neuroprotective effect of acute ethanol administration in a rat with transient cerebral ischemia. Stroke, 42, 205.Google Scholar
Woods, B. T. and Strewler, G. J. 1972. Hemiparesis occurring six hours after intravenous heroin injection. Neurology, 22, 863.Google Scholar
Zhang, C., Qin, Y.-Y., Chen, Q., et al. 2014. Alcohol intake and risk of stroke: A dose–response meta-analysis of prospective studies. Int J Cardiol, 174, 669.Google Scholar
Zheng, L., Wu, X., Dong, X., et al. 2015. Effects of chronic alcohol exposure on the modulation of ischemia-induced glutamate release via cannabinoid receptors in the dorsal hippocampus. Alcohol Clin Exp Res, 39, 1908.Google Scholar

References

Agnelli, G., George, D. J., Kakkar, A. K., et al. 2012. Semuloparin for thromboprophylaxis in patients receiving chemotherapy for cancer. N Engl J Med, 366, 601–9.Google Scholar
Agnelli, G., Gussoni, G., Bianchini, C., et al. 2009. Nadroparin for the prevention of thromboembolic events in ambulatory patients with metastatic or locally advanced solid cancer receiving chemotherapy: A randomised, placebo-controlled, double-blind study. Lancet Oncol, 10, 943–9.Google Scholar
Bang, O. Y., Ovbiagele, B., and Kim, J. S.. 2014. Evaluation of cryptogenic stroke with advanced diagnostic techniques. Stroke, 45, 1186–94.Google Scholar
Baron, J. A., Gridley, G., Weiderpass, E., Nyren, O., and Linet, M.. 1998. Venous thromboembolism and cancer. Lancet, 351, 1077–80.Google Scholar
Bennett, C. L., Angelotta, C., Yarnold, P. R., et al. 2006. Thalidomide- and lenalidomide-associated thromboembolism among patients with cancer. JAMA, 296, 2558–60.Google Scholar
Bick, R. L. 2003. Cancer-associated thrombosis. N Engl J Med, 349, 109–11.Google Scholar
Buggiani, G., Krysenka, A., Grazzini, M., et al. 2010. Paraneoplastic vasculitis and paraneoplastic vascular syndromes. Dermatol Ther, 23, 597605.Google Scholar
Caine, G. J., Stonelake, P. S., Lip, G. Y., and Kehoe, S. T.. 2002. The hypercoagulable state of malignancy: Pathogenesis and current debate. Neoplasia, 4, 465–73.Google Scholar
Cestari, D. M., Weine, D. M., Panageas, K. S., Segal, A. Z., and DeAngelis, L. M.. 2004. Stroke in patients with cancer: Incidence and etiology. Neurology, 62, 2025–30.Google Scholar
Chaturvedi, P., Singh, A. P., and Batra, S. K.. 2008. Structure, evolution, and biology of the MUC4 mucin. FASEB J, 22, 966–81.Google Scholar
Cheng, S. W., Ting, A. C., and Wu, L. L.. 2002. Ultrasonic analysis of plaque characteristics and intimal-medial thickness in radiation-induced atherosclerotic carotid arteries. Eur J Vasc Endovasc Surg, 24, 499504.Google Scholar
Chighizola, C. B., Andreoli, L., de Jesus, G. R., et al. 2015. The association between antiphospholipid antibodies and pregnancy morbidity, stroke, myocardial infarction, and deep vein thrombosis: A critical review of the literature. Lupus, 24, 980–4.Google Scholar
Chimowitz, M. I., Lynn, M. J., Howlett-Smith, H., et al. 2005. Comparison of warfarin and aspirin for symptomatic intracranial arterial stenosis. N Engl J Med, 352, 1305–16.Google Scholar
Cramer, S. C., Rordorf, G., Maki, J. H., et al. 2004. Increased pelvic vein thrombi in cryptogenic stroke: Results of the Paradoxical Emboli from Large Veins in Ischemic Stroke (PELVIS) study. Stroke, 35, 4650.Google Scholar
Dalmau, J. 2009. Recognizing paraneoplastic limbic encephalitis. J Clin Oncol, 27, e230231; author reply e232.Google Scholar
Dalmau, J. O. and Posner, J. B.. 1997. Paraneoplastic syndromes affecting the nervous system. Semin Oncol, 24, 318328.Google Scholar
De Stefano, V., Za, T., Rossi, E., et al. 2008. Recurrent thrombosis in patients with polycythemia vera and essential thrombocythemia: Incidence, risk factors, and effect of treatments. Haematologica, 93, 372–80.Google Scholar
Dorresteijn, L. D., Kappelle, A. C., Boogerd, W., et al. 2002. Increased risk of ischemic stroke after radiotherapy on the neck in patients younger than 60 years. J Clin Oncol, 20, 282–8.Google Scholar
Dowling, N. F., Austin, H., Dilley, A., et al. 2003. The epidemiology of venous thromboembolism in Caucasians and African-Americans: The GATE Study. J Thromb Haemost, 1, 80–7.Google Scholar
el-Shami, K., Griffiths, E., and Streiff, M.. 2007. Nonbacterial thrombotic endocarditis in cancer patients: Pathogenesis, diagnosis, and treatment. Oncologist, 12, 518–23.Google Scholar
Graus, F., Rogers, L. R., and Posner, J. B.. 1985. Cerebrovascular complications in patients with cancer. Medicine (Baltimore), 64, 1635.Google Scholar
Graus, F., Arino, H., and Dalmau, J.. 2014. Paraneoplastic neurological syndromes in Hodgkin and non-Hodgkin lymphomas. Blood, 123, 3230–8.Google Scholar
Grisold, W., Oberndorfer, S., and Struhal, W.. 2009. Stroke and cancer: A review. Acta Neurol Scand, 119, 116.Google Scholar
Hong, C. T., Tsai, L. K., and Jeng, J. S.. 2009. Patterns of acute cerebral infarcts in patients with active malignancy using diffusion-weighted imaging. Cerebrovasc Dis, 28, 411–16.Google Scholar
Hull, R. D., Pineo, G. F., Brant, R. F., et al. 2006. Long-term low-molecular-weight heparin versus usual care in proximal-vein thrombosis patients with cancer. Am J Med, 119, 1062–72.Google Scholar
Hurwitz, H. I., Saltz, L. B., Van Cutsem, E., et al. 2011. Venous thromboembolic events with chemotherapy plus bevacizumab: A pooled analysis of patients in randomized phase II and III studies. J Clin Oncol, 29, 1757–64.Google Scholar
Kase, C. S. 1986. Intracerebral hemorrhage: Non-hypertensive causes. Stroke, 17, 590–5.Google Scholar
Kent, D. M. and Thaler, D. E.. 2010. Is patent foramen ovale a modifiable risk factor for stroke recurrence? Stroke, 4, S2630.Google Scholar
Kent, D. M., Ruthazer, R., Weimar, C., et al. 2013. An index to identify stroke-related vs. incidental patent foramen ovale in cryptogenic stroke. Neurology, 81, 619–25.Google Scholar
Kim, K. and Lee, J. H.. 2014. Risk factors and biomarkers of ischemic stroke in cancer patients. J Stroke, 16, 91–6.Google Scholar
Kim, S. G., Hong, J. M., Kim, H. Y., et al. 2010. Ischemic stroke in cancer patients with and without conventional mechanisms: A multicenter study in Korea. Stroke, 41, 798801.Google Scholar
Kim, S. J., Moon, G. J., and Bang, O. Y.. 2013. Biomarkers for stroke. J Stroke, 15, 2737.Google Scholar
Krauth, M. T., Puthenparambil, J., and Lechner, K.. 2012. Paraneoplastic autoimmune thrombocytopenia in solid tumors. Crit Rev Oncol Hematol, 81, 7581.Google Scholar
Lee, A. Y., Levine, M. N., Baker, R. I., et al. 2003. Low-molecular-weight heparin versus a coumarin for the prevention of recurrent venous thromboembolism in patients with cancer. N Engl J Med, 349, 146–53.Google Scholar
Mohr, J. P., Thompson, J. L., Lazar, R. M., et al. 2001. A comparison of warfarin and aspirin for the prevention of recurrent ischemic stroke. N Engl J Med, 345, 1444–51.Google Scholar
Nagel, M. A. and Gilden, D.. 2015. The relationship between herpes zoster and stroke. Curr Neurol Neurosci Rep, 15, 16.Google Scholar
Narvaez, J., Estrada, P., Lopez-Vives, L., et al. 2015. Prevalence of ischemic complications in patients with giant cell arteritis presenting with apparently isolated polymyalgia rheumatica. Semin Arthritis Rheum, 45, 328–33.Google Scholar
Navi, B. B., Reichman, J. S., Berlin, D., et al. 2010. Intracerebral and subarachnoid hemorrhage in patients with cancer. Neurology, 74, 494501.Google Scholar
Navi, B. B., Singer, S., Merkler, A. E., et al. 2014. Recurrent thromboembolic events after ischemic stroke in patients with cancer. Neurology, 83, 2633.Google Scholar
Oberndorfer, S., Nussgruber, V., Berger, O., Lahrmann, H., and Grisold, W.. 2009. Stroke in cancer patients: A risk factor analysis. J Neurooncol, 94, 227.Google Scholar
Park, H. J. and Ranganathan, P.. 2011. Neoplastic and paraneoplastic vasculitis, vasculopathy, and hypercoagulability. Rheum Dis Clin North Am, 37, 593606.Google Scholar
Pelosof, L. C. and Gerber, D. E.. 2010. Paraneoplastic syndromes: An approach to diagnosis and treatment. Mayo Clin Proc, 85, 838–54.Google Scholar
Piatek, C. and O’Connell, C.. 2012. Unsuspected pulmonary embolism: Impact on mortality among cancer patients. Curr Opin Pulm Med, 18, 406–9.Google Scholar
Piatek, C., O’Connell, C. L., and Liebman, H. A.. 2012. Treating venous thromboembolism in patients with cancer. Expert Rev Hematol, 5, 201–9.Google Scholar
Plummer, C., Henderson, R. D., O’Sullivan, J. D., and Read, S. J.. 2011. Ischemic stroke and transient ischemic attack after head and neck radiotherapy: A review. Stroke, 42, 2410–18.Google Scholar
Quinn, J. A. and DeAngelis, L. M.. 2000. Neurologic emergencies in the cancer patient. Semin Oncol, 27, 311–21.Google Scholar
Reynen, K., Kockeritz, U., and Strasser, R. H.. 2004. Metastases to the heart. Ann Oncol, 15, 375–81.Google Scholar
Rogers, L. R. 2010. Cerebrovascular complications in patients with cancer. Semin Neurol, 30, 311–19.Google Scholar
Scalia, G. M., Tandon, A. K., and Robertson, J. A.. 2012. Stroke, aortic vegetations and disseminated adenocarcinoma: A case of marantic endocarditis. Heart Lung Circ, 21, 234–6.Google Scholar
Scappaticci, F. A., Skillings, J. R., Holden, S. N., et al. 2007. Arterial thromboembolic events in patients with metastatic carcinoma treated with chemotherapy and bevacizumab. J Natl Cancer Inst, 99, 1232–9.Google Scholar
Scarpace, S. L., Hahn, T., Roy, H., et al. 2005. Arterial thrombosis in four patients treated with thalidomide. Leuk Lymphoma, 46, 239–42.Google Scholar
Schulman, S., Kearon, C., Kakkar, A. K., et al. 2009. Dabigatran versus warfarin in the treatment of acute venous thromboembolism. N Engl J Med, 361, 2342–52.Google Scholar
Seok, J. M., Kim, S. G., Kim, J. W., et al. 2010. Coagulopathy and embolic signal in cancer patients with ischemic stroke. Ann Neurol, 68, 213–19.Google Scholar
Singhal, A. B., Topcuoglu, M. A., and Buonanno, F. S.. 2002. Acute ischemic stroke patterns in infective and nonbacterial thrombotic endocarditis: A diffusion-weighted magnetic resonance imaging study. Stroke, 33, 1267–73.Google Scholar
Stefan, O., Vera, N., Otto, B., Heinz, L., and Wolfgang, G.. 2009. Stroke in cancer patients: A risk factor analysis. J Neurooncol, 94, 221–6.Google Scholar
Taccone, F. S., Jeangette, S. M., and Blecic, S. A.. 2008. First-ever stroke as initial presentation of systemic cancer. J Stroke Cerebrovasc Dis, 17, 169–74.Google Scholar
Uemura, J., Kimura, K., Sibazaki, K., et al. 2010. Acute stroke patients have occult malignancy more often than expected. Eur Neurol, 64, 140–4.Google Scholar
Ungprasert, P., Sanguankeo, A., Upala, S., and Knight, E. L.. 2014. Risk of malignancy in patients with giant cell arteritis and polymyalgia rheumatica: A systematic review and meta-analysis. Semin Arthritis Rheum, 44, 366–70.Google Scholar
Varki, A. 2007. Trousseau’s syndrome: Multiple definitions and multiple mechanisms. Blood, 110, 1723–19.Google Scholar
Wasay, M., Bakshi, R., Bobustuc, G., et al. 2008. Cerebral venous thrombosis: Analysis of a multicenter cohort from the United States. J Stroke Cerebrovasc Dis, 17, 4954.Google Scholar
Younger, D. S. 2004. Vasculitis of the nervous system. Curr Opin Neurol, 17, 317–36.Google Scholar
Zhang, Y. Y., Cordato, D., Shen, Q., et al. 2007. Risk factor, pattern, etiology and outcome in ischemic stroke patients with cancer: A nested case–control study. Cerebrovasc Dis, 23, 181–7.Google Scholar
Zhu, D. S., Fu, J., Zhang, Y., et al. 2014. Neurological antiphospholipid syndrome: Clinical, neuroimaging, and pathological characteristics. J Neurol Sci, 346, 138–44.Google Scholar

References

Ball, E., Newburger, A., & Ackerman, A. B. Degos’ disease: A distinctive pattern of disease, chiefly of lupus erythematosus, and not a specific disease per se. Am. J. Dermatopathol. 25, 308–20 (2003).Google Scholar
Black, M. M., Nishioka, K., & Levene, G. M. The role of dermal blood vessels in the pathogenesis of malignant atrophic papulosis (Degos’ disease). Br. J. Dermatol. 88, 213–19 (1973).Google Scholar
Cabot, R. C. et al. Case 18–2014: A 32-year-old man with a rash, myalgia, and weakness. N. Engl. J. Med. 370, 2327–37 (2014).Google Scholar
Dastur, D. K., Singhal, B. S., & Shroff, H. J. CNS involvement in malignant atrophic papulosis (Kohlmeier–Degos disease): Vasculopathy and coagulopathy. J. Neurol. Neurosurg. Psychiatry 44, 156–60 (1981).Google Scholar
Degos, R. Malignant atrophic papulosis. Br. J. Dermatol. 100, 2135 (1979).Google Scholar
Degos, R., Delort, J., & Tricot, R. Dermatite papulo-squameuse atrophiante. Bull Soc Franc Derm Syph. 49, 48150 (1942).Google Scholar
Drucker, C. R. Malignant atrophic papulosis: Response to antiplatelet therapy. Dermatologica 180, 90–2 (1990).Google Scholar
Feuerman, E. J., Dollberg, L., & Salvador, O. Malignant atrophic papulosis with mucin in the dermis. A clinical and pathological study, including autopsy. Arch. Pathol. 90, 310–15 (1970).Google Scholar
Garrett-Bakelman, F., DeSancho, M., & Magro, C. C5b-9 is a potential effector in the pathophysiology of Degos disease: A case report of treatment with eculizumab. Paper presented at the 33rd World Congress of the International Society of Hematology, October 10–13, Jerusalem, Israel (2010).Google Scholar
Howard, R. O. & Nishida, S. A case of Degos’ disease with electron microscopic findings. Trans. Am. Acad. Ophthalmol. Otolaryngol. 73, 1097–112 (1969).Google Scholar
Katz, S. K., Mudd, L. J., & Roenigk, H. H. Jr. Malignant atrophic papulosis (Degos’ disease) involving three generations of a family. J. Am. Acad. Dermatol. 37, 480–4 (1997).Google Scholar
Köhlmeier, W. Multiple Hautnekrosen bei Thrombangiitis obliterans. Arch. f. Dermat. 181, 783–92 (1941).Google Scholar
Magro, C. M. et al. Degos disease: A C5b-9/interferon-alpha-mediated endotheliopathy syndrome. Am. J. Clin. Pathol. 135, 599–10 (2011).Google Scholar
Magro, C. M. et al. The effects of eculizumab on the pathology of malignant atrophic papulosis. Orphanet J. Rare Dis. 8, 185 (2013).Google Scholar
Molenaar, W. M., Rosman, J. B., Donker, A., & Houthoff, H. J. The pathology and pathogenesis of malignant atrophic papulosis (Degos’ disease): A case study with reference to other vascular disorders. Pathol. Res. Pract. 182, 98106 (1987).Google Scholar
Paramo, J. A. et al. Fibrinolysis in Degos’ disease. Thromb. Haemost. 54, 730 (1985).Google Scholar
Pierce, R. N. & Smith, G. J. Intrathoracic manifestations of Degos’ disease (malignant atrophic papulosis). Chest 73, 7984 (1978).Google Scholar
Plantin, P., Labouche, F., Sassolas, B., Delaire, P., & Guillet, G. Degos’ disease: A 10-year follow-up of a patient without visceral involvement. J. Am. Acad. Dermatol. 21, 136–7 (1989).Google Scholar
Roenigk, H. H. Jr. & Farmer, R. G. Degos’ disease (malignant papulosis). Report of three cases with clues to etiology. JAMA 206, 1508–14 (1968).Google Scholar
Shapiro, L. S., Toledo-Garcia, A. E., & Farrell, J. F. Effective treatment of malignant atrophic papulosis (Köhlmeier–Degos disease) with treprostinil: Early experience. Orphanet J. Rare Dis. 8, 52 (2013).Google Scholar
Soter, N. A., Murphy, G. F., & Mihm, M. C. Jr. Lymphocytes and necrosis of the cutaneous microvasculature in malignant atrophic papulosis: A refined light microscope study. J. Am. Acad. Dermatol. 7, 620–30 (1982).Google Scholar
Stahl, D., Thomsen, K., & Hou-Jensen, K. Malignant atrophic papulosis: Treatment with aspirin and dipyridamole. Arch. Dermatol. 114, 1687–9 (1978).Google Scholar
Su, W. P., Schroeter, A. L., Lee, D. A., Hsu, T., & Muller, S. A. Clinical and histologic findings in Degos’ syndrome (malignant atrophic papulosis). Cutis 35, 131–8 (1985).Google Scholar
Subbiah, P., Wijdicks, E., Muenter, M., Carter, J., & Connolly, S. Skin lesion with a fatal neurologic outcome (Degos’ disease). Neurology 46, 636–40 (1996).Google Scholar
Tribble, K. et al. Malignant atrophic papulosis: absence of circulating immune complexes or vasculitis. J. Am. Acad. Dermatol. 15, 365–9 (1986).Google Scholar
Vázquez-Doval, F. J., Ruiz Erenchun, F., Paramo, J. A., & Quintanilla, E. Malignant atrophic papulosis. A report of two cases with altered fibrinolysis and platelet function. Clin. Exp. Dermatol. 18, 441–4 (1993).Google Scholar
Yoshikawa, H. et al. Degos’ disease: radiological and immunological aspects. Acta Neurol. Scand. 94, 353–36 (1996).Google Scholar

References

Crohn’s & Colitis Foundation of America. The facts about inflammatory bowel diseases. (Accessed January 7, 2016, at www.crohnscolitisfoundation.org/assets/pdfs/updatedibdfactbook.pdf). See also www.cdc.gov/ibd/ibd-epidemiology.htm.Google Scholar
Kappelman, MD, Moore, KR, Allen, JK, and Cook, SF. Recent trends in the prevalence of Crohn’s disease and ulcerative colitis in a commercially insured US population. Dig Dis Sci. 2013;58:519–25.Google Scholar
Andres, PG and Friedman, LS. Epidemiology and the natural course of inflammatory bowel disease. Gastroenterology Clinics of North America. 1999;28:255–81.Google Scholar
Sartor, RB. Mechanisms of disease: Pathogenesis of Crohn’s disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol. 2006;3:390407.Google Scholar
Gevers, D, Kugathasan, S, Denson, LA, et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe. 2014;15:382–92.Google Scholar
Sankaran-Walters, S, Macal, M, Grishina, I, et al. Sex differences matter in the gut: Effect on mucosal immune activation and inflammation. Biol Sex Differ. 2013;4:10.Google Scholar
Levine, JB and Lukawski-Trubish, D. Extraintestinal considerations in inflammatory bowel disease. Gastroenterol Clin N Am. 1995;24:633–46.Google Scholar
Manzino, M and Tomasina, C. Infarti cerebrali multipli in corso di morbo di Crohn. Descrizione di un caso. Minerva Medica. 1996;87:253–5.Google Scholar
Lossos, A, River, Y, Eliakim, A, and Steiner, I. Neurologic aspects of inflammatory bowel disease. Neurology. 1995;45:416–21.Google Scholar
Bargen, JA and Barker, NW. Extensive arterial and venous thrombosis complicating chronic ulcerative colitis. Arch Int Med. 1936;58:1731.Google Scholar
Graef, V. Venous thrombosis occurring in nonspecific ulcerative colitis. Arch Int Med. 1966;117:377382.Google Scholar
Talbot, RW, Heppell, J, Dozois, RR, and Beart, RW Jr. Vascular complications of inflammatory bowel disease. Mayo Clin Proc. 1986;61:140–5.Google Scholar
Rickets, WE and Palmer WL. Complications of chronic non-specific ulcerative colitis. Gastroenterology. 1946;7:5566.Google Scholar
Jackson, LM, O’Gorman, PJ, O’Connell, J, et al. Thrombosis in inflammatory bowel disease: Clinical setting, procoagulant profile and factor V Leiden. Qjm. 1997;90:183–8.Google Scholar
Grip, O, Svensson, PJ, and Lindgren, S. Inflammatory bowel disease promotes venous thrombosis earlier in life. Scand J Gastroenterol. 2000;35:619–23.Google Scholar
Scarpa, M, Pilon, F, Pengo, V, et al. Deep venous thrombosis after surgery for inflammatory bowel disease: Is standard dose low molecular weight heparin prophylaxis enough? World J Surg. 2010;34:1629–36.Google Scholar
Merrill, A and Millham, F. Increased risk of postoperative deep vein thrombosis and pulmonary embolism in patients with inflammatory bowel disease: A study of National Surgical Quality Improvement Program patients. Arch Surg. 2012;147:120–4.Google Scholar
Grainge, MJ, West, J, and Card, TR. Venous thromboembolism during active disease and remission in inflammatory bowel disease: A cohort study. Lancet. 2010;375:657–63.Google Scholar
Nguyen, GC, Bernstein, CN, Bitton, A, et al. Consensus statements on the risk, prevention, and treatment of venous thromboembolism in inflammatory bowel disease: Canadian Association of Gastroenterology. Gastroenterology. 2014;146:835–48.Google Scholar
Harrison, MJ and Truelove, SC. Cerebral venous thrombosis as a complication of ulcerative colitis. Am J Dig Dis. 1967;12:1025–8.Google Scholar
Cognat, E, Crassard, I, Denier, C, Vahedi, K, and Bousser, MG. Cerebral venous thrombosis in inflammatory bowel diseases: Eight cases and literature review. Int J Stroke. 2011;6:487–92.Google Scholar
Johns, DR. Cerebrovascular complications of inflammatory bowel disease. American Journal of Gastroenterology. 1991;86:367–70.Google Scholar
Kim, I, Min, KH, Yeo, M, et al. Unusual case of cerebral venous thrombosis in patient with Crohn’s disease. Case Rep Neurol. 2015;7:115–20.Google Scholar
Silverstein, A and Present, DH. Cerebrovascular occlusions in relatively young patients with regional enteritis. JAMA. 1971;215:976–7.Google Scholar
Halliday, CE and Farthing, MJ. Arterial thrombosis in Crohn’s disease. Med J Aust. 1988;149:559–60.Google Scholar
Mevorach, D, Goldberg, Y, Gomori, JM, and Rachmilewitz, D. Antiphospholipid syndrome manifested by ischemic stroke in a patient with Crohn’s disease. J Clin Gastroenterol. 1996;22:141–3.Google Scholar
Ennaifer, R, Moussa, A, Mouelhi, L, et al. Cerebral venous sinus thrombosis as presenting feature of ulcerative colitis. Acta Gastroenterol Belg. 2009;72:350–3.Google Scholar
Papakonstantinou, AS, Stratopoulos, C, Terzis, I, et al. Ulcerative colitis and acute stroke: Two rare complications after Mason’s vertical banded gastroplasty for treatment of morbid obesity. Obes Surg. 1999;9:502–5.Google Scholar
Joshi, D, Dickel, T, Aga, R, and Smith-Laing, G. Stroke in inflammatory bowel disease: A report of two cases and review of the literature. Thromb J. 2008;6:2.Google Scholar
Ogawa, E, Sakakibara, R, Yoshimatsu, Y, et al. Crohn’s disease and stroke in a young adult. Intern Med. 2011;50:2407–8.Google Scholar
Penix, LP. Ischemic strokes secondary to vitamin B12 deficiency-induced hyperhomocystinemia. Neurology. 1998;51:622–4.Google Scholar
Schneiderman, JH, Sharpe, JA, and Sutton, DM. Cerebral and retinal vascular complications of inflammatory bowel disease. Ann Neurol. 1979;5:331–7.Google Scholar
Shaban, A, Hymel, B, Chavez-Keatts, M, Karlitz, JJ, and Martin-Schild, S. Recurrent posterior strokes in inflammatory bowel disease patients. Gastroenterol Res Pract. 2015;2015:672460.Google Scholar
Dare, B and Byrne, E. Giant cell arteritis. A five-year review of biopsy-proven cases in a teaching hospital. Med J Aust. 1980;1:372–3.Google Scholar
Rustagi, T and Majumder, S. Crohn’s–Takayasu’s arteritis overlap with hypercoagulability: An optimal milieu for ischemic stroke. J Dig Dis. 2011;12:142–6.Google Scholar
Farrant, M, Mason, JC, Wong, NA, and Longman, RJ. Takayasu’s arteritis following Crohn’s disease in a young woman: any evidence for a common pathogenesis? World J Gastroenterol. 2008;14:4087–90.Google Scholar
Reny, JL, Paul, JF, Lefebvre, C, et al. Association of Takayasu’s arteritis and Crohn’s disease. Results of a study on 44 Takayasu patients and review of the literature. Ann Med Interne (Paris). 2003;154:8590.Google Scholar
Kusunoki, R, Ishihara, S, Sato, M, et al. Rare case of Takayasu’s arteritis associated with Crohn’s disease. Intern Med. 2011;50:1581–5.Google Scholar
Mayeux, R and Fahn, S. Strokes and ulcerative colitis. Neurology. 1978;28:571–4.Google Scholar
Hilton-Jones, D and Warlow, CP. The causes of stroke in the young. J Neurol. 1985;232:137–43.Google Scholar
Paradis, K, Bernstein, ML, and Adelson, JW. Thrombosis as a complication of inflammatory bowel disease in children: A report of four cases. J Pediatr Gastroenterol Nutr. 1985;4:659–62.Google Scholar
Prior, A, Strang, FA, and Whorwell, PJ. Internal carotid artery occlusion in association with Crohn’s disease. Dig Dis Sci. 1987;32:1047–50.Google Scholar
Lloyd-Still, JD and Tomasi, L. Neurovascular and thromboembolic complications of inflammatory bowel disease in childhood. J Pediatr Gastroenterol Nutr. 1989;9:461–6.Google Scholar
Jorens, PG, Hermans, CR, Haber, I, et al. Acquired protein C and S deficiency, inflammatory bowel disease and cerebral arterial thrombosis. Blut. 1990;61:307–10.Google Scholar
Jorens, PG, Delvigne, CR, Hermans, CR, et al. Cerebral arterial thrombosis preceding ulcerative colitis. Stroke. 1991;22:1212.Google Scholar
Karacostas, D, Mavromatis, J, Artemis, K, and Milonas, I. Hemorrhagic cerebral infarct and ulcerative colitis. A case report. Funct Neurol. 1991;6:181–4.Google Scholar
Fukuhara, T, Tsuchida, S, Kinugasa, K, and Ohmoto, T. A case of pontine lacunar infarction with ulcerative colitis. Clin Neurol Neurosurg. 1993;95:159–62.Google Scholar
Tomomasa, T, Itoh, K, Matsui, A, et al. An infant with ulcerative colitis complicated by endocarditis and cerebral infarction. J Pediatr Gastroenterol Nutr. 1993;17:323–5.Google Scholar
Gormally, SM, Bourke, W, Kierse, B, et al. Isolated cerebral thrombo-embolism and Crohn disease. Eur J Pediatr. 1995;154:815–8.Google Scholar
Keene, DL, Matzinger, MA, Jacob, PJ, and Humphreys, P. Cerebral vascular events associated with ulcerative colitis in children. Pediatr Neurol. 2001;24:238–43.Google Scholar
Chetri, K, Ghoshal, UC, Somani, SK, et al. Common carotid artery occlusion causing cerebral infarction in ulcerative colitis. Indian J Gastroenterol. 2002;21:122–3.Google Scholar
Younes-Mhenni, S, Derex, L, Berruyer, M, et al. Large-artery stroke in a young patient with Crohn’s disease. Role of vitamin B6 deficiency-induced hyperhomocysteinemia. J Neurol Sci. 2004;221:113–5.Google Scholar
Schluter, A, Krasnianski, M, Krivokuca, M, et al. Magnetic resonance angiography in a patient with Crohn’s disease associated cerebral vasculitis. Clin Neurol Neurosurg. 2004;106:110–3.Google Scholar
Nogami, H, Iiai, T, Maruyama, S, Tani, T, and Hatakeyama, K. Common carotid arterial thrombosis associated with ulcerative colitis. World J Gastroenterol. 2007;13:1755–7.Google Scholar
Freilinger, T, Riedel, E, Holtmannspotter, M, Dichgans, M, and Peters, N. Ischemic stroke and peripheral arterial thromboembolism in a patient with Crohn’s disease: A case presentation. J Neurol Sci. 2008;266:177–9.Google Scholar
Standridge, S and de los Reyes, E. Inflammatory bowel disease and cerebrovascular arterial and venous thromboembolic events in 4 pediatric patients: A case series and review of the literature. J Child Neurol. 2008;23:5966.Google Scholar
Harris, D. Left middle cerebral artery infarct in a young man with Crohn’s disease. J R Soc Med. 2009;102:443–4.Google Scholar
Lafitte, M, Debruxelles, S, Sibon, I, Rouanet, F, and Couffinhal, T. Cerebral embolism from subclinical carotid atherosclerotic lesion in a young woman with inflammatory Crohn disease. Eur Heart J. 2009;30:575.Google Scholar
Barclay, AR, Keightley, JM, Horrocks, I, et al. Cerebral thromboembolic events in pediatric patients with inflammatory bowel disease. Inflamm Bowel Dis. 2010;16:677–83.Google Scholar
Lange, MC, Zamproni, LN, Braatz, V, et al. Ischemic stroke in a patient with Crohn’s disease: A confirmed paradoxical embolism mechanism. Arq Neuropsiquiatr. 2010;68:651–2.Google Scholar
Soong, MM and Carroll, A. Cerebral venous thrombosis presenting as a complication of inflammatory bowel disease. Ir J Med Sci. 2010;179:127–9.Google Scholar
Calabro, RS, Pezzini, A, Gervasi, G, Pollicino, P, and Bramanti, P. Recurrent ischemic stroke in a patient with ulcerative colitis and high levels of lipoprotein (a). Blood Coagul Fibrinolysis. 2011;22:549–51.Google Scholar
Chentanez, T, Khawcharoenporn, T, Chokrungvaranon, N, and Joyner, J. Cardiobacterium hominis endocarditis presenting as acute embolic stroke: A case report and review of the literature. Heart Lung. 2011;40:262–9.Google Scholar
Houissa, F, Salem, M, Bouzaidi, S, et al. Cerebral thrombosis in inflammatory bowel disease: A report of four cases. J Crohns Colitis. 2011;5:249–52.Google Scholar
Brosch, JR and Janicki, MJ. Intra-arterial thrombolysis as an ideal treatment for inflammatory bowel disease related thromboembolic stroke: A case report and review. Int J Neurosci. 2012;122:541–4.Google Scholar
Richard, S, Mione, G, Perrin, J, et al. Internal carotid thrombus in patients with inflammatory bowel disease: Two cases. World J Gastroenterol. 2013;19:773–5.Google Scholar
Casella, G, Cortelezzi, CC, Marialuisa, D, et al. Cerebral arterial thrombosis in ulcerative colitis. Case Rep Gastrointest Med. 2013;2013:679147.Google Scholar
Ha, C, Magowan, S, Accortt, NA, Chen, J, and Stone, CD. Risk of arterial thrombotic events in inflammatory bowel disease. Am J Gastroenterol. 2009;104:1445–51.Google Scholar
Bernstein, CN, Wajda, A, and Blanchard, JF. The incidence of arterial thromboembolic diseases in inflammatory bowel disease: A population-based study. Clin Gastroenterol Hepatol. 2008;6:41–5.Google Scholar
Andersohn, F, Waring, M, and Garbe, E. Risk of ischemic stroke in patients with Crohn’s disease: A population-based nested case-control study. Inflamm Bowel Dis. 2010;16:1387–92.Google Scholar
Kellen, E, Hemelt, M, Broberg, K, et al. Pooled analysis and meta-analysis of the glutathione S-transferase P1 Ile 105Val polymorphism and bladder cancer: A HuGE-GSEC review. Am J Epidemiol. 2007;165:1221–30.Google Scholar
Keller, JJ, Wang, J, Huang, YL, et al. Increased risk of stroke among patients with ulcerative colitis: A population-based matched cohort study. Int J Colorectal Dis. 2014;29:805–12.Google Scholar
Zöller, B, Li, X, Sundquist, J, and Sundquist, K. Risk of subsequent ischemic and hemorrhagic stroke in patients hospitalized for immune-mediated diseases: A nationwide follow-up study from Sweden. BMC Neurol. 2012;12:41.Google Scholar
Kristensen, SL, Ahlehoff, O, Lindhardsen, J, et al. Disease activity in inflammatory bowel disease is associated with increased risk of myocardial infarction, stroke and cardiovascular death: A Danish nationwide cohort study. PLoS One. 2013;8:e56944.Google Scholar
Huang, WS, Tseng, CH, Chen, PC, et al. Inflammatory bowel diseases increase future ischemic stroke risk: A Taiwanese population-based retrospective cohort study. Eur J Intern Med. 2014;25:561–5.Google Scholar
Keller, JJ, Wang, J, Hwang, YL, et al. Increased risk of stroke among patients with Crohn’s disease: A population-based matched cohort study. Int J Colorectal Dis. 2015;30:645–53.Google Scholar
Singh, S, Singh, H, Loftus, EV Jr., and Pardi, DS. Risk of cerebrovascular accidents and ischemic heart disease in patients with inflammatory bowel disease: A systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2014;12:382–93 e1: quiz e22.Google Scholar
Stouthard, JM, Levi, M, Hack, CE, et al. Interleukin-6 stimulates coagulation, not fibrinolysis, in humans. Thromb Haemost. 1996;76:738–42.Google Scholar
Yoshida, H, Russell, J, Senchenkova, EY, Almeida Paula, LD, and Granger, DN. Interleukin-1 beta mediates the extra-intestinal thrombosis associated with experimental colitis. Am J Pathol. 2010;177:2774–81.Google Scholar
Yoshida, H, Yilmaz, CE, and Granger, DN. Role of tumor necrosis factor-alpha in the extraintestinal thrombosis associated with colonic inflammation. Inflamm Bowel Dis. 2011;17:2217–23.Google Scholar
Koutroubakis, IE. The relationship between coagulation state and inflammatory bowel disease: Current understanding and clinical implications. Expert Rev Clin Immunol. 2015;11:479–88.CrossRefGoogle ScholarPubMed
Tabibian, JH and Streiff, MB. Inflammatory bowel disease-associated thromboembolism: A systematic review of outcomes with anticoagulation versus catheter-directed thrombolysis. Inflamm Bowel Dis. 2012;18:161–71.CrossRefGoogle ScholarPubMed
Harries, AD, Fitzsimons, E, Fifield, R, Dew, MJ, and Rhoades, J. Platelet count: A simple measure of activity in Crohn’s disease. Br Med J (Clin Res Ed). 1983;286:1476.Google Scholar
Gawaz, M, Langer, H, and May, AE. Platelets in inflammation and atherogenesis. J Clin Invest. 2005;115:3378–84.Google Scholar
Danese, S, Papa, A, Saibeni, S, et al. Inflammation and coagulation in inflammatory bowel disease: The clot thickens. Am J Gastroenterol. 2007;102:174–86.Google Scholar
Hudson, M, Chitolie, A, Hutton, RA, et al. Thrombotic vascular risk factors in inflammatory bowel disease. Gut. 1996;38:733–7.Google Scholar
Dolapcioglu, C, Soylu, A, Kendir, T, et al. Coagulation parameters in inflammatory bowel disease. Int J Clin Exp Med. 2014;7:1442–8.Google Scholar
Alkim, H, Ayaz, S, Alkim, C, Ulker, A, and Sahin, B. Continuous active state of coagulation system in patients with nonthrombotic inflammatory bowel disease. Clin Appl Thromb Hemost. 2011;17:600–4.Google Scholar
Edwards, RL, Levine, JB, Green, R, et al. Activation of blood coagulation in Crohn’s disease. Increased plasma fibrinopeptide A levels and enhanced generation of monocyte tissue factor activity. Gastroenterology. 1987;92:329–37.Google Scholar
Liebman, HA, Kashani, N, Sutherland, D, McGehee, W, and Kam, AL. The factor V Leiden mutation increases the risk of venous thrombosis in patients with inflammatory bowel disease. [See comment] Gastroenterology. 1998;115:830–4.Google Scholar
Guedon, C, Le Cam-Duchez, V, Lalaude, O, et al. Prothrombotic inherited abnormalities other than factor V Leiden mutation do not play a role in venous thrombosis in inflammatory bowel disease. [See comment] Am J Gastroenterol. 2001;96:1448–54.Google Scholar
Liang, J, Wu, S, Feng, B, et al. Factor V Leiden and inflammatory bowel disease: A systematic review and meta-analysis. J Gastroenterol. 2011;46:1158–66.CrossRefGoogle ScholarPubMed
Zhong, M, Dong, XW, Zheng, Q, Tong, JL, and Ran, ZH. Factor V Leiden and thrombosis in patients with inflammatory bowel disease (IBD): A meta-analysis. Thromb Res. 2011;128:403–9.Google Scholar
Vaezi, MF, Rustagi, PK, and Elson, CO. Transient protein S deficiency associated with cerebral venous thrombosis in active ulcerative colitis. Am J Gastroenterol. 1995;90:313–5.Google Scholar
Yuerlki, B, Aksoy, D, Aybar, M, et al. The search for a common thrombophilic state during the active state of inflammatory bowel disease. J Clin Gastroenterol. 2006;40:809–13.Google Scholar
Mevorach, D, Goldberg, Y, Gomori, JM, and Rachmilewitz, D. Antiphospholipid syndrome manifested by ischemic stroke in a patient with Crohn’s disease. J Clin Gastroenterol. 1996;22:141–3.Google Scholar
Koutroubakis, IE, Petinaki, E, Anagnostopoulou, E, et al. Anti-cardiolipin and anti-beta2-glycoprotein 1 antibodies in patients with inflammatory bowel disease. Digest Dis Sci. 1998;43:2507–12.Google Scholar
Romagnuolo, J, Fedorak, RN, Dias, VC, Bamforth, F, and Teltscher, M. Hyperhomocysteinemia and inflammatory bowel disease: Prevalence and predictors in a cross-sectional study. [See comment] Am J Gastroenterol. 2001;96:2143–9.Google Scholar
Oldenburg, B, Fijnheer, R, van der Griend, R, vanBerge-Henegouwen, GP, and Koningsberger, JC. Homocysteine in inflammatory bowel disease: A risk factor for thromboembolic complications? Am J Gastroenterol. 2000;95:2825–30.Google Scholar
Bjerregaard, LT, Nederby, NJ, Fredholm, L, et al. Hyperhomocysteinaemia, coagulation pathway activation and thrombophilia in patients with inflammatory bowel disease. Scand J Gastroenterol. 2002;37:62–7.Google Scholar
Chang, TR, Albright, KC, Boehme, AK, et al. Factor VIII in the setting of acute ischemic stroke among patients with suspected hypercoagulable state. Clin Appl Thromb Hemost. 2014;20:124–8.Google Scholar
Lam, A, Borda, IT, Inwood, MJ, and Thomson, S. Coagulation studies in ulcerative colitis and Crohn’s disease. Gastroenterology. 1975;68:245–51.Google Scholar
Kume, K, Yamasaki, M, Tashiro, M, Yoshikawa, I, and Otsuki, M. Activations of coagulation and fibrinolysis secondary to bowel inflammation in patients with ulcerative colitis. Intern Med. 2007;46:1323–9.Google Scholar
Payzin, B, Adakan, FY, Yalcin, HC, et al. Natural coagulation inhibitory proteins and activated protein C resistance in Turkish patients with inflammatory bowel disease. Turk J Gastroenterol. 2006;17:183–90.Google Scholar
Gris, JC, Schved, JF, Raffanel, C, et al. Impaired fibrinolytic capacity in patients with inflammatory bowel disease. Thromb Haemost. 1990;63:472–5.Google Scholar
Saibeni, S, Ciscato, C, Vecchi, M, et al. Antibodies to tissue-type plasminogen activator (t-PA) in patients with inflammatory bowel disease: High prevalence, interactions with functional domains of t-PA and possible implications in thrombosis. J Thromb Haemost. 2006;4:1510–6.Google Scholar
Koutroubakis, IE, Sfiridaki, A, Tsiolakidou, G, et al. Plasma thrombin-activatable fibrinolysis inhibitor and plasminogen activator inhibitor-1 levels in inflammatory bowel disease. Eur J Gastroenterol Hepatol. 2008;20:912–6.Google Scholar
Owczarek, D, Undas, A, Foley, JH, et al. Activated thrombin activatable fibrinolysis inhibitor (TAFIa) is associated with inflammatory markers in inflammatory bowel diseases. TAFIa level in patients with IBD. J Crohns Colitis. 2012;6:1320.Google Scholar
Hansson, GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685–95.Google Scholar
Theocharidou, E, Gossios, TD, Griva, T, et al. Is there an association between inflammatory bowel diseases and carotid intima–media thickness? Preliminary data. Angiology. 2014;65:543–50.Google Scholar
Zanoli, L, Cannavo, M, Rastelli, S, et al. Arterial stiffness is increased in patients with inflammatory bowel disease. J Hypertens. 2012;30:1775–81.Google Scholar
Aviles, RJ, Martin, DO, Apperson-Hansen, C, et al. Inflammation as a risk factor for atrial fibrillation. Circulation. 2003;108:3006–10.Google Scholar
Engelmann, MD and Svendsen, JH. Inflammation in the genesis and perpetuation of atrial fibrillation. Eur Heart J. 2005;26:2083–92.Google Scholar
Issac, TT, Dokainish, H, and Lakkis, NM. Role of inflammation in initiation and perpetuation of atrial fibrillation: A systematic review of the published data. J Am Coll Cardiol. 2007;50:2021–8.Google Scholar
Pattanshetty, DJ, Anna, K, Gajulapalli, RD, and Sappati-Biyyani, RR. Inflammatory bowel “cardiac” disease: Point prevalence of atrial fibrillation in inflammatory bowel disease population. Saudi J Gastroenterol. 2015;21:325–9.CrossRefGoogle ScholarPubMed
Kristensen, SL, Lindhardsen, J, Ahlehoff, O, et al. Increased risk of atrial fibrillation and stroke during active stages of inflammatory bowel disease: A nationwide study. Europace. 2014;16:477–84.Google Scholar
Takeuchi, K, Smale, S, Premchand, P, et al. Prevalence and mechanism of nonsteroidal anti-inflammatory drug-induced clinical relapse in patients with inflammatory bowel disease. Clin Gastroenterol Hepatol. 2006;4:196202.Google Scholar
Ananthakrishnan, AN, Higuchi, LM, Huang, ES, et al. Aspirin, nonsteroidal anti-inflammatory drug use, and risk for Crohn disease and ulcerative colitis: A cohort study. Ann Intern Med. 2012;156:350–9.Google Scholar
Vinod, J, Vadada, D, Korelitz, BI, et al. The effect of antiplatelet therapy in patients with inflammatory bowel disease. J Clin Gastroenterol. 2012;46:527–9.Google Scholar
Kohnke, T, Gomolka, B, Bilal, S, et al. Acetylsalicylic acid reduces the severity of dextran sodium sulfate-induced colitis and increases the formation of anti-inflammatory lipid mediators. Biomed Res Int. 2013;2013:748160.CrossRefGoogle ScholarPubMed
Shen, J, Ran, ZH, Tong, JL, and Xiao, SD. Meta-analysis: The utility and safety of heparin in the treatment of active ulcerative colitis. Aliment Pharmacol Ther. 2007;26:653–63.Google Scholar
Lee, JY, Kim, JS, Kim, JM, et al. Simvastatin inhibits NF-kappaB signaling in intestinal epithelial cells and ameliorates acute murine colitis. Int Immunopharmacol. 2007;7:241–8.CrossRefGoogle ScholarPubMed
Crockett, SD, Hansen, RA, Sturmer, T, et al. Statins are associated with reduced use of steroids in inflammatory bowel disease: A retrospective cohort study. Inflamm Bowel Dis. 2012;18:1048–56.Google Scholar
Tabibian, JH and Roth, BE. Local thrombolysis: A newer approach to treating inflammatory bowel disease-related thromboembolism. J Clin Gastroenterol. 2009;43:391–8.Google Scholar
Ilonczai, P, Toth, J, Toth, L, et al. Catheter-directed thrombolysis in inflammatory bowel diseases: Report of a case. World J Gastroenterol. 2012;18:4791–3.Google Scholar

References

Callen, J. P. 2002. Neutrophilic dermatosis. Dermatol Clin, 20, 409–19.Google Scholar
Campos, L. M. A., Castellanos, A. L. Z., Afiune, J. Y., et al. 2005. Takayasu’s arteritis with aortic aneurysm associated with Sweet’s syndrome in childhood. Ann Rheum Disease, 64, 168–69.Google Scholar
Charlson, R., Kister, I., Kaminetzky, D., et al. 2015. CNS neutrophilic vasculitis in neuro-Sweet disease. Neurology, 85, 829–30.Google Scholar
Chiba, S. 1983. Sweet’s syndrome with neurologic signs and psychiatric symptoms. Arch Neurol, 40, 829.Google Scholar
Cohen, P. R. 2007. Sweet’s syndrome: A comprehensive review of an acute febrile neutrophilic dermatosis. Orphanet J Rare Dis, 2, 34.Google Scholar
Cohen, P. R. 2009. Neutrophilic dermatoses: A review of current treatment options. Am J Clin Dermatol. 10, 301–12.Google Scholar
Cohen, P. R. and Kurzrock, R. 2000. Sweet’s syndrome: A neutrophilic dermatosis classically associated with acute onset and fever. Clin Dermatol, 18, 265–82.Google Scholar
Cohen, P. R., Kurzrock, R. 2003. Sweet’s syndrome revisited: A review of disease concepts. Int J Dermatol, 42, 761–78.Google Scholar
Crow, K. D., Kerdel-Vergas, F., and Rook, A. 1969. Acute febrile neutrophilic dermatosis: Sweet’s syndrome. Dermatologica, 139, 123–34.Google Scholar
Druschky, A., von den Driesch, P., Anders, M., et al. 1996. Sweet’s syndrome (acute febrile neutrophilic dermatosis) affecting the central nervous system. J Neurol, 243, 556–7.Google Scholar
Dunn, T. R., Saperstein, H. W., Biederman, A., et al. 1992. Sweet’s syndrome in a neonate with aseptic meningitis. Pediatr Dermatol, 9, 288–92.Google Scholar
Fett, D. L., Gibson, L. E., and Su, W. P. D. 1995. Sweet’s syndrome: Systemic signs and symptoms and associated disorders. Mayo Clin Proc. 70, 234–40.Google Scholar
Francisco, R. C., Patal, P. C., Cubillan, E. A., et al. 2011. Sweet’s syndrome associated with Hashimoto’s thyroiditis. BMJ Case Rep, doi: 10.1136/bcr.02.2011.3921.CrossRefGoogle Scholar
Fukishima, K., Hineno, A., Kodaira, M., et al. 2008. Reversible extensive leukoencephalopathy in Sweet disease: A case report. J Neurol Sci, 275, 178–80.Google Scholar
Furukawa, F., Toriyama, R., Kawanishi, T., et al. 2008. Neutrophils in cerebrospinal fluid of a patient with acute febrile neutrophilic dermatosis (Sweet’s syndrome). Int J Dermatol, 31, 670–1.Google Scholar
Ghoufi, L., Ortonne, N., Ingen-Housz-Oro, S., et al. 2016. Histiocytoid Sweet syndrome is more frequently associated with myelodysplastic syndromes than the classical neutrophilic variant: A comparative series of 62 patients. Medicine, 95: e3033.Google Scholar
Granel, F., Barbraud, A., Schmutz, J. L., et al. 2000. An unexpected factor VIII inhibitor in a patient with Sweet’s syndrome being treated with corticosteroids. Am J Med, 108, 434–35.Google Scholar
Guimera, F. J., Garcia-Bustinduy, M., Noda, A., et al. 2000. Diazepam-associated Sweet’s syndrome. Int J Dermatol, 39, 795800.Google Scholar
Haddow, L. J., Lehloenya, R., Mosam, A., et al. 2011. Sweet syndrome: Adverse drug reaction of novel manifestation of HIV-associated immune reconstitution inflammatory syndrome? J Am Acad Dermatol, 65, e235.Google Scholar
Halpern, J. and Salim, A. 2009. Pediatric Sweet syndrome: Case report and literature review. Pediatr Dermatol, 26, 452–7.Google Scholar
Hau, E., Pennamen, V., Battistella, M., et al. 2013. Neutrophilic skin lesions in autoimmune connective tissue diseases: Nine cases and literature review. Medicine, 93, e346.Google Scholar
Hisanaga, K. 2012. Neuro-Behçet disease and neuro-Sweet disease. Rinsho Shinkeigaku, 52, 1234–6.CrossRefGoogle ScholarPubMed
Hisanaga, K. 2016. Neuro-neutrophilic disease and dementia. Brain Nerve, 68, 353–64.Google Scholar
Hisanaga, K., Hosokawa, M., Sato, N., et al. 1999. Neuro-Sweet disease. Arch Neurol, 56, 1010–13.Google Scholar
Hisanaga, K., Iwasaki, Y., and Itoyama, Y. 2005. Neuro-Sweet disease: Clinical manifestations and criteria for diagnosis. Neurology, 64, 1756–61.Google Scholar
Hospach, T., von den Driesch, P., and Dannecker, G. E. 2009. Acute febrile neutrophilic dermatosis (Sweet’s syndrome) in childhood and adolescence: Two new patients and review of the literature on associated diseases. Eur J Pediatr, 168, 19.Google Scholar
Kazlouskaya, V., Junkins-Hopkins, J. M., Wu, K. N., et al. 2015. Sweet syndrome caused by oral contraceptives. Int J Dermatol, 54, e18991.Google Scholar
Koketsu, H., Ricotti, C., Kerdel, F. A. 2014. Treatment of giant cellulitis-like Sweet syndrome with dapsone. JAMA Dermatol, 150, 457–9.Google Scholar
Kokubo, Y., Kuzuhara, S., Isoda, K., et al. 2007. Neuro-Sweet disease: Report of the first autopsy case. J Neurol Neurosurg Psychiatry, 78, 9971000.Google Scholar
Ma, E. H., Akikusa, J. D., MacGregor, D., et al. 2012. Sweet’s syndrome with postinflammatory elastolysis and Takayasu arteritis in a child: A case report and literature review. Pediatrc Dermatol, 29, 645–50.Google Scholar
Maalouf, D., Battistella, M., and Bouaziz, J. D. 2015. Neutrophilic dermatosis: Disease mechanism and treatment. Curr Opin Hematol, 22, 23–9.Google Scholar
Martinez, E., Fernandez, A., Mayo, J., et al. 1995. Sweet’s syndrome associated with cerebrospinal fluid neutrophilic pleocytosis. Int J Dermatol, 34, 73–4.Google Scholar
Marzano, A. V., Ishak, R. S., Saibeni, S., et al. 2013. Autoinflammatory skin disorders in inflammatory bowel diseases, pyoderma gangrenosum and Sweet’s syndrome: A comprehensive review and disease classification. Clin Rev Allerg Immunol, 45, 202–10.Google Scholar
McNally, A., Ibbetson, J., and Sidhu, S. 2017. Azathioprine-induced Sweet’s syndrome: A case series and review of the literature. Australas J Dermatol, 58, 53–7.Google Scholar
Mehta, H. M., Malandra, M., and Corey, S. J. 2015. G-CSF and GM-CSF in neutropenia. J Immunol, 195, 1341–9.Google Scholar
Nobeyama, Y. and Kamide, R. 2003. Sweet’s syndrome with neurologic manifestation: Case report and literature review. Int J Dermatol, 42, 438–43.Google Scholar
Paydas, S. 2013. Sweet’s syndrome: A revisit for hematologists and oncologists. Crit Rev Oncol Hematol, 86, 8595.Google Scholar
Raza, S., Kirkland, R. S., Patel, A. A., et al. 2013. Insight into Sweet’s syndrome and associated-malignancy: A review of the current literature. Int J Oncol, 42, 1516–22.Google Scholar
Rochet, N. M., Chavan, R. N., Cappel, M. A., et al. 2013. Sweet syndrome: Clinical presentation, associations, and response to treatment in 77 patients. J Am Acad Dermatol, 69, 557–63.Google Scholar
Satra, K., Zalka, A., Cohen, P. R., et al. 1994. Sweet’s syndrome and pregnancy. J Am Acad Dermatol, 30, 297300.Google Scholar
Singh, J. S., Costello, F., Nadeau, J., et al. 2011. Case 176: Neuro-Sweet syndrome. Radiology, 261, 989–93.Google Scholar
Sitjas, D., Puig, L., Cuatrecasas, M., et al. 1993. Acute febrile neutrophilic dermatosis (Sweet’s syndrome). Intl J Dermatol, 32, 261–8.Google Scholar
Soto, R., Levy, Y., and Krause, J. R. 2015. Sweet syndrome and its association with hematopoietic neoplasms. Proc (Bayl Univ Med Cent), 28, 62–4.Google Scholar
Su, W. P. and Liu, H. N. 1986. Diagnostic criteria for Sweet’s syndrome. Cutis, 37, 167–74.Google Scholar
Sweet, R. D. 1964. An acute febrile neutrophilic dermatosis. Br J Dermatol, 76, 349–56.Google Scholar
Sweet, R. D. 1979. Acute febrile neutrophilic dermatosis – 1978. Br J Dermatol, 100, 93–9.Google Scholar
Thompson, D. F. and Montarella, K. E. 2007. Drug-induced Sweet’s syndrome. Ann Pharmacother, 41, 802–11.Google Scholar
von den Driesch, P. 1994. Sweet’s syndrome (acute febrile neutrophilic dermatosis). J Am Acad Dermatol, 31, 535–56.Google Scholar
Walker, D. C. and Cohen, P. R. 1996. Trimethoprim–sulfamethoxazole-associated acute febrile neutrophilic dermatosis: Case report and review of drug induced Sweet’s syndrome. J Am Acad Dermatol, 34, 918–23.Google Scholar
Webb, K., Hlela, C., Jordaan, H. F., et al. 2015. A review and proposed approach to the neutrophilic dermatoses of childhood. Pediatr Dermatol, 32, 437–46.Google Scholar

References

Akoglu, H., Agbaht, K., et al., 2012. High frequency of aspirin resistance in patients with nephrotic syndrome. Nephrology Dialysis Transplantation 27, no. 4: 1460–6.Google Scholar
Andrassy, K., Poertel, P. J., et al. 1983. Thromboembolic complications and haemostasis in the nephrotic syndrome: Is there a difference between children and adults? Proc Eur Dial Transplant Assoc, 19, 597601.Google Scholar
Arita, M., Iwane, M., Nakamura, Y., Nishio, I. 1998. Anticoagulants in Takayasu’s arteritis associated with crescentic glomerulonephritis and nephrotic syndrome: A case report. Angiology, 49, 75–8.Google Scholar
Arneil, G. C. 1971. The nephrotic syndrome. Pediatr Clin North Am, 18, 547–59.Google Scholar
Bagga, A. and Mantan, M. 2005. Nephrotic syndrome in children. Indian J Med Res, 122, 1328.Google Scholar
Barthélémy, M., Bousser, M. G., et al. 1980. Cerebral venous thrombosis, complication of the nephrotic syndrome (author’s transl). Nouv Presse Med, 9, 367–9.Google Scholar
Beamer, N. B., Coull, B. M., et al. 1999. Microalbuminuria in ischemic stroke. Arch Neurol, 56, 699702.Google Scholar
Bianchi, S., Bigazzi, R., et al. 1999. Microalbuminuria in essential hypertension: Significance, pathophysiology, and therapeutic implications. Am J Kidney Dis, 34, 973–95.Google Scholar
Bigazzi, R., Bianchi, S., et al. 1995. Increased thickness of the carotid artery in patients with essential hypertension and microalbuminuria. J Hum Hypertens, 9, 827–33.Google Scholar
Bloch, M. J. and Basile, J. 2005. Lower levels of microalbuminuria are associated with an increased risk of coronary heart disease and death in hypertensive subjects. J Clin Hypertens (Greenwich), 7, 555–7.Google Scholar
Boussen, K., Turki, S., et al., 1990. Occlusion of the central retinal artery in nephrotic syndrome. Rev Med Int, 12, 55–6.Google Scholar
Briasoulis, A. and Bakris, G. L. 2013. Chronic kidney disease as a coronary artery disease risk equivalent. Curr Cardiol Rep, 15, 16.Google Scholar
Burns, A., Wilson, E., et al. 1995. Cerebral venous sinus thrombosis in minimal change nephrotic syndrome. Nephrol Dial Transplant, 10, 30–4.Google Scholar
Cameron, J. S. 1984. Coagulation and thromboembolic complications in the nephrotic syndrome. Adv Nephrol Necker Hosp, 13, 75114.Google Scholar
Cameron, J. S. 1987. The nephrotic syndrome and its complications. Am J Kidney Dis, 10, 157–71.Google Scholar
Cao, J. J., Barzilay, J. I., et al. 2006. The association of microalbuminuria with clinical cardiovascular disease and subclinical atherosclerosis in the elderly: The Cardiovascular Health Study. Atherosclerosis, 187, 372–7. Epub 2005 Oct 20.Google Scholar
Chou, K. S. and Chen, J. Y. 1991. Nephrotic syndrome complicated with cerebral infarction: Report of one case. Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi, 32, 396402.Google Scholar
Citak, A., Emre, S., et al. 2000. Hemostatic problems and thromboembolic complications in nephrotic children. Pediatr Nephrol, 14, 138–42.Google Scholar
Cosson, E., Pham, I., et al. 2006. Impaired coronary endothelium-dependent vasodilation is associated with microalbuminuria in patients with type 2 diabetes and angiographically normal coronary arteries. Diabetes Care, 29, 107–12.Google Scholar
Crew, R. J., Radhakrishnan, J., et al. 2004. Complications of the nephrotic syndrome and their treatment. Clin Nephrol, 62, 245–59.Google Scholar
Curry, R. C. and Roberts, W. C. 1977. Status of the coronary arteries in the nephrotic syndrome: Analysis of 20 necropsy patients aged 15 to 35 years to determine if coronary atherosclerosis is accelerated. Am J Med, 63, 183–92.Google Scholar
Dlamini, N., Billinghurst, L., and Kirkham, F. J. 2010. Cerebral venous sinus (sinovenous) thrombosis in children. Neurosurg Clin N Am, 21, 511–27.Google Scholar
Eddy, A. A. and Symons, J. M. 2003. Nephrotic syndrome in childhood. Lancet, 362, 629–39.Google Scholar
Egli, F., Elmiger, P., et al. 1973. Thrombosis as a complication of nephrotic syndrome. Helv Paediatr Acta, 30(Suppl), 20–1.Google Scholar
Ehrich, J. H., Burchert, W., et al. 1995. Steroid resistant nephrotic syndrome associated with spondyloepiphyseal dysplasia, transient ischemic attacks and lymphopenia. Clin Nephrol, 43, 8995.Google Scholar
Fluss, J. and Geary, D. 2006. Cerebral sinovenous thrombosis and idiopathic nephrotic syndrome in childhood: Report of four new cases and review of the literature. E J Pediatr, 165, 709–16.Google Scholar
Fujigaki, Y., Kimura, M., et al. 1992. Acute aortic thrombosis associated with spinal cord infarction in nephrotic syndrome. Clin Invest, 70, 606–10.Google Scholar
Garcia, C., Renard, C., et al. 2004. A “pulseless” woman with proteinuria! Ann Biol Clin (Paris), 62, 4415.Google Scholar
Glassock, R. J. (2007). Prophylactic anticoagulation in nephrotic syndrome: A clinical conundrum. J Am Soc Nephrol, 18, 2221–5.Google Scholar
Haba, T., Hirai, J., et al. 1988. Myocardial and cerebral infarction in a 17-year-old man with hyper-lp (a) lipoproteinemia and hypercholesterolemia associated with nephrotic syndrome due to systemic lupus erythematosus. Nippon Naika Gakkai Zasshi, 77, 591–2.Google Scholar
Hillege, H. L., Fidler, V., et al. 2002. Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation, 106, 1777–82.Google Scholar
Hoyer, P. F., Gonda, S., et al. 1986. Thromboembolic complications in children with nephrotic syndrome. Risk and incidence. Acta Paediatr Scand, 75, 804–10.Google Scholar
Huang, C. L., Huang, C. C., et al. 2008. Cerebral thromboembolism and central retinal artery occlusion in nephrotic syndrome. Neuro-Ophthalmology, 32, 81–5.Google Scholar
Huemer, M., Emminger, W., et al. 1998. Kinking and stenosis of the carotid artery associated with homolateral ischaemic brain infarction in a patient treated with cyclosporin A. Eur J Pediatr, 157, 599601.Google Scholar
Huttunen, N. P. 1976. Congenital nephrotic syndrome of Finnish type. Study of 75 patients. Arch Dis Child, 51, 344–8.Google Scholar
Ito, S., Nezu, A., et al. 2002. Latent cerebral hypoperfusion in a boy with persistent nephrotic syndrome. Brain Dev, 24, 780–3.Google Scholar
Iwaki, H., Kuriyama, M., et al. 2015. Acute ischemic stroke associated with nephrotic syndrome: Incidence and significance − retrospective cohort study. eNeurologicalSci, 1, 4750.Google Scholar
Jager, A., Kostense, P. J., et al. 1999. Microalbuminuria and peripheral arterial disease are independent predictors of cardiovascular and all-cause mortality, especially among hypertensive subjects: Five-year follow-up of the Hoorn Study. Arterioscler Thromb Vasc Biol, 19, 617–24.Google Scholar
Jauch, E. C., Saver, J. L., et al. 2013. Guidelines for the early management of patients with acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 44, 870947.Google Scholar
Jaffe, J. A and Kimmel, P. L. 2006. Chronic nephropathies of cocaine and heroin abuse: A critical review. Clin J Am Soc Nephrol, 1, 65567.Google Scholar
Jensen, J. S., Feldt-Rasmussen, B., et al. 2000. Arterial hypertension, microalbuminuria, and risk of ischemic heart disease. Hypertension, 35, 898903.Google Scholar
Jha, V., Garcia-Garcia, G., et al. 2013. Chronic kidney disease: Global dimension and perspectives. Lancet, 382, 260–72.Google Scholar
Jones, C. A., Francis, M. E., et al. 2002. Microalbuminuria in the US population: Third National Health and Nutrition Examination Survey. Am J Kidney Dis, 39, 445–59.CrossRefGoogle ScholarPubMed
Kanfer, A. 1990. Coagulation factors in nephrotic syndrome. Am J Nephrol, 10(Suppl 1), 63–8.Google Scholar
Karalliedde, J. and Viberti, G. 2004. Microalbuminuria and cardiovascular risk. Am J Hypertens, 17, 986–93.Google Scholar
Kerlin, B. A., Ayoob, R., and Smoyer, W. E. 2012. Epidemiology and pathophysiology of nephrotic syndrome-associated thromboembolic disease. Clin J Am Soc Nephrol, 7, 513–20.Google Scholar
Kerlin, B. A., Haworth, K., and Smoyer, W. E. 2014. Venous thromboembolism in pediatric nephrotic syndrome. Pediatr Nephrol, 29, 989–97.Google Scholar
Kerlin, B. A., Waller, A. P., et al. 2015. Disease severity correlates with thrombotic capacity in experimental nephrotic syndrome. J Am Soc Nephrol, ASN-2014111097.Google Scholar
Kim, K. S., Koh, J. M., et al. 2004. Incidence of overt proteinuria and coronary artery disease in patients with type 2 diabetes mellitus: The role of microalbuminuria and retinopathy. Diabetes Res Clin Pract, 65, 159–65.Google Scholar
Kronenberg, F. 2005. Dyslipidemia and nephrotic syndrome: Recent advances. J Ren Nutr, 15, 195203.Google Scholar
Kronenberg, F., Utermann, G., et al. 1996. Lipoprotein(a) in renal disease. Am J Kidney Dis, 27, 125.Google Scholar
Kuge, Y., Nozaki, S., et al. 2004. A case of marked hyperlipoprotein(a)emia associated with nephrotic syndrome and advanced atherosclerosis. J Atheroscler Thromb, 11, 293–8.Google Scholar
Leung, T. F., Tsoi, W. C., et al. 1998. A Chinese adolescent girl with Fechtner-like syndrome. Acta Paediatr, 87, 705–7.Google Scholar
Levey, A. S. and Coresh, J. 2012. Chronic kidney disease. Lancet, 379, 165–80.Google Scholar
Levine, S. R., Quint, D. J., et al. 1989. Intraluminal clot in the vertebrobasilar circulation: Clinical and radiologic features. Neurology, 39, 515–22.Google Scholar
Lionaki, S., Derebail, V. K., et al. 2012. Venous thromboembolism in patients with membranous nephropathy. Clin J Am Soc Nephrol, 7, 4351.Google Scholar
Lin, C. C., Lui, C. C., et al. 2002. Thalamic stroke secondary to straight sinus thrombosis in a nephrotic child. Pediatr Nephrol, 17, 184–6.Google Scholar
Loscalzo, J. 2013. Venous thrombosis in the nephrotic syndrome. New Eng J Med, 368, 956–8.Google Scholar
Mahmoodi, B. K., ten Kate, M. K., et al. 2008. High absolute risks and predictors of venous and arterial thromboembolic events in patients with nephrotic syndrome results from a large retrospective cohort study. Circulation, 117, 224–30.Google Scholar
Malyszko, J., Malyszko, J. S., et al. 2004. Endothelial cell injury markers in chronic renal failure on conservative treatment and continuous ambulatory peritoneal dialysis. Kidney Blood Press Res, 27, 71–7.Google Scholar
Manaviat, M. R., Afkhami, M., et al. 2004. Retinopathy and microalbuminuria in type II diabetic patients. BMC Ophthalmol, 4, 9.Google Scholar
Mandai, K., Tamaki, N., et al. 1997. A case of intracranial hemorrhage following superior sagittal sinus thrombosis associated with nephrotic syndrome. No Shinkei Geka, 25, 1101–3.Google Scholar
Marsh, E. E., III, Biller, J., Adams, H. P. Jr., and Kaplan, J. M. 1991. Cerebral infarction in patients with nephrotic syndrome. Stroke, 22, 90–3.Google Scholar
Medjeral-Thomas, N., Ziaj, S., et al., 2014. Retrospective analysis of a novel regimen for the prevention of venous thromboembolism in nephrotic syndrome. Clin J Am Soc Nephrol, 9, 478–83.Google Scholar
Mirrakhimov, A. E., Ali, A. M., and Barbaryan, A. 2014. Primary nephrotic syndrome in adults as a risk factor for pulmonary embolism: An up-to-date review of the literature. Int J Nephrol, 2014, 916760.Google Scholar
Mogensen, C. E. and Christianson, C. K. 1994. Predicting diabetic nephropathy in insulin-dependent patients. N Engl J Med, 311, 8993.Google Scholar
Molino, D., De Santo, N. G., et al. 2004. Plasma levels of plasminogen activator inhibitor type 1, factor VIII, prothrombin activation fragment 1+2, anticardiolipin, and antiprothrombin antibodies are risk factors for thrombosis in hemodialysis patients. Semin Nephrol, 24, 495501.Google Scholar
Moorhead, J. F., El-Nahas, M., et al. 1982. Lipid nephrotoxicity in chronic progressive glomerular and tubulo-interstitial disease. Lancet, 320, 1309–11.Google Scholar
Muso, E., 2014. Beneficial effect of LDL-apheresis in refractory nephrotic syndrome. Clin Exp Nephrol, 18, 286–90.Google Scholar
Muso, E., Mune, M., et al. 2015. A prospective observational survey on the long-term effect of LDL apheresis on drug-resistant nephrotic syndrome. Nephron Extra, 5, 5866.Google Scholar
Mykkanen, L., Zaccaro, D. J., et al. 1997. Microalbuminuria and carotid artery intima–media thickness in nondiabetic and NIDDM subjects. The Insulin Resistance Atherosclerosis Study (IRAS). Stroke, 28, 1710–6.Google Scholar
Nagayasu, S., Hanakita, J., Miyake, H., Suzuki, T., and Nishi, S. 1986. A case of systemic lupus erythematosus associated with multiple intracranial aneurysms. No Shinkei Geka, 14, 1251–5.Google Scholar
Ocak, G., van Stralen, K. J., et al. 2012. Mortality due to pulmonary embolism, myocardial infarction, and stroke among incident dialysis patients. J Thromb Haemostas, 10, 2484–93.Google Scholar
Ohtani, H., Imai, H., et al. 1995. A combination of livedo racemosa, occlusion of cerebral blood vessels, and nephropathy: Kidney involvement in Sneddon’s syndrome. Am J Kidney Dis, 26, 511–5.Google Scholar
Olson, J. L. and Schwartz, M. 1998. The nephrotic syndrome: Minimal change disease, focal segmental glomerulosclerosis, and miscellaneous causes. In Heptinstall’s Pathology of the Kidney, 5th edn, Jenette, C., Olson, J., Schwartz, M., and Silva, F. (eds.). Boston: Lippincott-Raven, pp. 196–9.Google Scholar
Ordonez, J. D., Hiatt, R. A., et al. 1993. The increased risk of coronary heart disease associated with nephrotic syndrome. Kidney Int, 44, 638–42.Google Scholar
Orth, S. R. and Ritz, E. 1998. The nephrotic syndrome. N Engl J Med, 338, 1202–11.Google Scholar
Ortiz, A., Covic, A., et al. 2014. Epidemiology, contributors to, and clinical trials of mortality risk in chronic kidney failure. Lancet, 383, 1831–43.CrossRefGoogle ScholarPubMed
Powers, W. J., Derdeyn, C. P., et al., 2015. 2015 American Heart Association/American Stroke Association Focused Update of the 2013 Guidelines for the Early Management of Patients With Acute Ischemic Stroke Regarding Endovascular Treatment. A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke, 46, 3020–35.Google Scholar
Raghu, K., Malik, A. K., et al. 1981. Focal glomerulosclerosis with cerebral infarction in a young nephrotic patient. Indian Pediatr, 18, 754–6.Google Scholar
Ravera, M., Ratto, E., et al. 2002. Microalbuminuria and subclinical cerebrovascular damage in essential hypertension. J Nephrol, 15, 519–24.Google Scholar
Report of the International Study of Kidney Disease in Children. 1984. Minimal change nephrotic syndrome in children: Deaths during the first 5 to 15 years’ observation. Pediatrics, 73, 497501.Google Scholar
Resh, M., Mahmoodi, B. K., et al., 2011. Statin use in patients with nephrotic syndrome is associated with a lower risk of venous thromboembolism. Thrombosis Res, 127, 395–9.Google Scholar
Roldán, V., Marín, F., et al. 2013, Does chronic kidney disease improve the predictive value of the CHADS2 and CHA2DS2-VASc stroke stratification risk scores for atrial fibrillation? Thromb Haemost, 109, 956–60.Google Scholar
Romundstad, S., Holmen, J., et al. 2003. Microalbuminuria and all-cause mortality in 2089 apparently healthy individuals: A 4.4-year follow-up study. The Nord-Trondelag Health Study (HUNT), Norway. Am J Kidney Dis, 42, 466–73.Google Scholar
Saeed, F., Adil, M. M., et al. 2014. Acute renal failure is associated with higher death and disability in patients with acute ischemic stroke: Analysis of Nationwide Inpatient Sample. Stroke, 45, 1478–80.Google Scholar
Sasaki, Y., Raita, Y., et al. 2014. Carotid thromboembolism associated with nephrotic syndrome treated with dabigatran. Case Rep Nephrol Dialysis, 4, 4252.Google Scholar
Schlegel, N. 1996. Thromboembolic risks and complications in nephrotic children. In Semin Thromb Hemostasis, 23, 271–80.Google Scholar
Schnaper, H. W. and Robson, A. M. 1996. Nephrotic syndrome: minimal change disease, focal glomerulosclerosis, and related disorders. In Diseases of the Kidney, 6th edn, Schrier, R., and Gottschalk, C. (eds.). Boston: Little, Brown & Co., pp. 1747–9.Google Scholar
Sebire, G., Tabarki, B., et al. 2005. Cerebral venous sinus thrombosis in children: Risk factors, presentation, diagnosis and outcome. Brain, 128, 477–89.Google Scholar
Singh, S. K., Behre, A., et al. 2001. Diabetic retinopathy and microalbuminuria in lean type 2 diabetes mellitus. J Assoc Physicians India, 49, 439–41.Google Scholar
Singhal, R. and Brimble, K. S. 2006. Thromboembolic complications in the nephrotic syndrome: Pathophysiology and clinical management. Thromb Res, 118, 397407. Epub 2005 Jun 28.Google Scholar
Stenvinkel, P., Alvestrand, A., et al. 2000. LDL-apheresis in patients with nephrotic syndrome: Effects on serum albumin and urinary albumin excretion. Eur J Clin Invest, 30, 866–70.Google Scholar
Takegoshi, T., Haba, T., et al. 1990. A case of hyperLp(a)aemia, associated with systemic lupus erythematosus, suffering from myocardial infarction and cerebral infarction. Jpn J Med, 29, 7784.Google Scholar
Thomas, G., Sehgal, A. R., et al., (2011). Metabolic syndrome and kidney disease: A systematic review and meta-analysis. Clin J Am Soc Nephrol, 6, 2364–73.Google Scholar
Toyoda, K. & Ninomiya, T. 2014. Stroke and cerebrovascular diseases in patients with chronic kidney disease. Lancet Neurol, 13, 823–33.Google Scholar
Tsukamoto, Y., Takahashi, W., et al. (2012). Chronic kidney disease in patients with ischemic stroke. J Stroke Cerebrovasc Dis, 21, 547–50.Google Scholar
Turaj, W., Slowik, A., et al. 2001. The prognostic significance of microalbuminuria in non-diabetic acute stroke patients. Med Sci Monit, 7, 989–94.Google Scholar
Vaziri, N. D. 1983. Nephrotic syndrome and coagulation and fibrinolytic abnormalities. Am J Nephrol, 3, 16.Google Scholar
Vidailhet, M., Piette, J.-C., Wechsler, B., Bousser, M., and Brunet, P. 1990. Cerebral venous thrombosis in systemic lupus erythematosus. Stroke, 21, 1226–31.Google Scholar
Volhard, F. and Fahr, T. H. 1914. Die Brightsche Nierenkrankheit: Klinik, Pathlogie und Atlas. Berlin: Springer Verlag, vol. 2., pp. 247–65.Google Scholar
Yahalom, G., Schwartz, R., et al. 2009. Chronic kidney disease and clinical outcome in patients with acute stroke. Stroke, 40, 1296–303.Google Scholar
Yun, Y. W., Chung, S., et al. 2004. Cerebral infarction as a complication of nephrotic syndrome: A case report with a review of the literature. J Korean Med Sci, 19, 315–9.Google Scholar
Yuyun, M. F., Khaw, K. T., et al. 2004. Microalbuminuria and stroke in a British population: The European Prospective Investigation into Cancer in Norfolk (EPIC-Norfolk) population study. J Intern Med, 255.Google Scholar
Zhang, L., Wang, F., et al. 2012. Prevalence of chronic kidney disease in China: A cross-sectional survey. Lancet, 379, 815–22.Google Scholar
Zhang, L. J., Zhang, Z., et al. 2014. Pulmonary embolism and renal vein thrombosis in patients with nephrotic syndrome: Prospective evaluation of prevalence and risk factors with CT. Radiology, 273, 897906.Google Scholar

References

Almefty, K. K., Ducruet, A. F., Crowley, R. W., et al. (2013) Spinal arteriovenous malformation associated with Schimmelpenning syndrome. J Neurosurg Pediatr, 11, 600–4.Google Scholar
Canyigit, M. & Oguz, K. K. (2006) Epidermal nevus syndrome with internal carotid artery occlusion and intracranial and orbital lipomas. AJNR Am J Neuroradiol, 27, 1559–61.Google Scholar
Caux, F., Plauchu, H., Chibon, F., et al. (2007) Segmental overgrowth, lipomatosis, arteriovenous malformation and epidermal nevus (SOLAMEN) syndrome is related to mosaic PTEN nullizygosity. Eur J Hum Genet, 15, 767–73.Google Scholar
Choi, B. H. & Kudo, M. (1981) Abnormal neuronal migration and gliomatosis cerebri in epidermal nevus syndrome. Acta Neuropathol, 53, 319–25.Google Scholar
Cribier, B., Scrivener, Y., & Grosshans, E. (2000) Tumors arising in nevus sebaceous: A study of 596 cases. J Am Acad Dermatol, 42, 263–8.Google Scholar
Davies, D. & Rogers, M. (2002) Review of neurological manifestations in 196 patients with sebaceous naevi. Australas J Dermatol, 43, 20–3.Google Scholar
Dobyns, W. B. & Garg, B. P. (1991) Vascular abnormalities in epidermal nevus syndrome. Neurology, 41, 276–8.Google Scholar
Feuerstein, R. C. & Mims, L. C. (1962) Linear nevus sebaceus with convulsions and mental retardation. Am J Dis Child, 104, 675–9.Google Scholar
Grebe, T. A., Rimsza, M. E., Richter, S. F., Hansen, R. C., & Hoyme, H. E. (1993) Further delineation of the epidermal nevus syndrome: Two cases with new findings and literature review. Am J Med Genet, 47, 2430.Google Scholar
Gross, H. & Uiberrak, B. (1955) Clinical and anatomical findings in hemi-megalencephaly: Role of cerebral hyperplasia and of local gigantism associated with phacomatosis. Virchows Arch Pathol Anat Physiol Klin Med, 327, 577–89.Google Scholar
Gurecki, P. J., Holden, K. R., Sahn, E. E., Dyer, D. S., & Cure, J. K. (1996) Developmental neural abnormalities and seizures in epidermal nevus syndrome. Dev Med Child Neurol, 38, 716–23.Google Scholar
Hafner, C., Toll, A., Gantner, S., et al. (2012) Keratinocytic epidermal nevi are associated with mosaic Ras mutations. J Med Genet, 49, 249–53.Google Scholar
Holden, K. R. & Dekaban, A. S. (1972) Neurological involvement in nevus unis lateris and nevus linearis sebaceous. Neurology, 22, 879–87.Google Scholar
Jancar, J. (1970) Naevus syringocystadenomatosus papilliferus with skull and brain lesions, hemiparesis, epilepsy and mental retardation. Br J Dermatol, 82, 402–5.Google Scholar
Katz, B., Wiley, C. A., & Lee, V. W. (1987) Optic nerve hypoplasia and the syndrome of nevus sebaceous of Jadassohn. A new association. Ophthalmology, 94, 1570–6.Google Scholar
Kotulska, K., Jurkiewcz, E., Jóźwiak, S., & Kuczyński, D. (2006) Epidermal nevus syndrome and intraspinal hemorrhage. Brain Dev, 28, 541–3.Google Scholar
McAuley, D. L., Isenberg, D. A., & Gooddy, W. (1978) Neurological involvement in the epidermal naevus syndrome. J Neurol Neurosurg Psychiatry, 41, 466–9.Google Scholar
Meschia, J. F., Junkins, E., & Hofman, K. J. (1992) Familial systematized epidermal nevus syndrome. Am J Med Genet, 44, 664–7.Google Scholar
Neumann, L. M., Scheer, I., Kunze, J., & Stöver, B. (2003) Cerebral manifestations, hemihypertrophy and lymphoedema of one leg in a child with epidermal nevus syndrome (Schimmelpenning–Feuerstein–Mims). Pediatr Radiol, 33, 637–40.Google Scholar
Pavone, L., Curatolo, P., Rizzo, R., et al. (1991) Epidermal nevus syndrome: A neurologic variant with hemimegalencephaly, gyral malformation, mental retardation, seizures, and facial hemihypertrophy. Neurology, 41, 266–71.Google Scholar
Pereira, S., Serra, D., Freitas, P. M., Santiago, B., & Brito, O. (2009) Epidermal nevus syndrome: An unusual cerebellar involvement. J Neuroradiol, 36, 237–9.Google Scholar
Rogers, M. (1992) Epidermal nevi and the epidermal nevus syndromes: A review of 233 cases. Pediatr Dermatol, 9, 342–4.Google Scholar
Rogers, M., McCrossin, I., & Commens, C. (1989) Epidermal nevi and the epidermal nevus syndrome. A review of 131 cases. J Am Acad Dermatol, 20, 476–88.Google Scholar
Saraswat, A., Dogra, S., Bansali, A., & Kumar, B. (2003) Phakomatosis pigmentokeratotica associated with hypophosphataemic vitamin D-resistant rickets: Improvement in phosphate homeostasis after partial laser ablation. Br J Dermatol, 148, 1074–6.Google Scholar
Schimmelpfennig, G. W. (1957) Clinical contribution to symptomatology of phacomatosis. Fortschr Geb Rontgenstr Nuklearmed, 87, 716–20.Google Scholar
Schulz, U. & O’Leary, C. P. (2001) Spinal AVM, epidermal nevus, and rhabdomyosarcoma: A rare neurocutaneous syndrome? Neurology, 56, 395–7.Google Scholar
Solomon, L. M. & Esterly, N. B. (1975) Epidermal and other congenital organoid nevi. Curr Probl Pediatr, 6, 156.Google Scholar
Solomon, L. M., Fretzin, D. F., & Dewald, R. L. (1968) The epidermal nevus syndrome. Arch Dermatol, 97, 273–85.Google Scholar
Zhang, W., Simos, P. G., Ishibashi, H., et al. (2003) Neuroimaging features of epidermal nevus syndrome. AJNR Am J Neuroradiol, 24, 1468–70.Google Scholar

References

Adair, J. C., Digre, K. B., Swanda, R. M., et al. 2001. Sneddon’s syndrome: A cause of cognitive decline in young adults. Neuropsychiatry Neuropsychol Behav Neurol, 14, 197204.Google Scholar
Alegre, V. A., Winkelmann, R. K., and Gastineau, D. A. 1990. Cutaneous thrombosis, cerebrovascular thrombosis, and lupus anticoagulant: The Sneddon syndrome. Int J Dermatol, 29, 45–9.Google Scholar
Antoine, J. C., Michel, D., Garnnier, P., et al. 1994. Syndrome de Sneddon: 9 cas. Rev Neurol (Paris), 150, 435–43.Google Scholar
Ayoub, N., Esposito, G., Barete, S., et al. 2004. Protein Z deficiency in antiphospholipid-negative Sneddon’s syndrome. Stroke, 35, 1329–32.Google Scholar
Baleva, M., Chauchev, A., Dikova, C., et al. 1995. Sneddon’s syndrome: Echocardiographic, neurological, and immunological findings. Stroke, 26, 1303–4.Google Scholar
Berciano, J. 1988. Sneddon syndrome: Another Mendelian etiology of stroke. Ann Neurol, 24, 586–7.Google Scholar
Besnier, R., Frances, C., Ankri, A., Aiach, M., and Piette, J. C. 2003. Factor V Leiden mutation in Sneddon syndrome. Lupus, 12, 406–8.Google Scholar
Bladin, C., Alexandrov, A., Bellevance, A., et al., for the Seizures After Stroke Study Group. 2000. Seizures after stroke. A prospective multicenter study. Arch Neurol, 57, 1617–22.Google Scholar
Boesch, S. M., Plorer, A. L., Auer, A. J., et al. 2003. The natural course of Sneddon syndrome: Clinical and magnetic resonance imaging findings in a prospective six year observation study. J Neurol Neurosurg Psychiatry, 74, 542–4.Google Scholar
Boortz-Marx, R. L., Clark, H. B., Taylor, S., Wesa, K. M., and Anderson, D. C. 1995. Sneddon’s syndrome with granulomatous leptomeningeal infiltration. Stroke, 26, 492–5.Google Scholar
Bottin, L., Francés, C., de Zuttere, D., et al. 2015. Strokes in Sneddon syndrome without antiphospholipid antibodies. Ann Neurol, 77, 817–29.Google Scholar
Bras, J, Guerreiro, R, Santo, GC, 2014. Mutant ADA2 in vasculopathies. N Eng J Med, 371, 478–80Google Scholar
Caplan, L. R. and Manning, W. J. 2006. Cardiac sources of embolism: The usual suspects. In Brain Embolism, Caplan, L. R. and Manning, W. J. (eds.), New York: Informa Healthcare, pp. 129–59.Google Scholar
Daoud, M. S., Wilmoth, G. J., Su, W. P. D., and Pittelkow, M. R. 1995. Sneddon syndrome. Semin Dermatol, 14, 166–72.Google Scholar
Da Silva, A. M., Rocha, N., Pinto, M., et al. 2005. Tremor as the first neurological manifestation of Sneddon’s syndrome. Mov Dis, 20, 248–51.Google Scholar
De Reuck, J., De Reus, R., and De Koninck, J. 1987. Sneddon’s syndrome. A not unusual cause of stroke in young women. In Cerebral Vascular Disease 6. Proceedings of the World Federation of Neurology 13th International Salzburg Conference, Meyer, J. S., Lechner, H., Reivich, M., and Ott, E. O. (eds.), Amsterdam: Excerpta Medica, pp. 171–4.Google Scholar
De Reuck, J., Goethals, M., Vonck, K., and Van Maele, G. 2005. Clinical predictors of late-onset seizures and epilepsy in patients with cerebrovascular disease. Eur Neurol, 54, 6872.Google Scholar
De Reus, R., De Reuck, J., Vermander, F., Kint, A., and Van de Velde, E. 1985. Livedo racemosa generalisata and stroke. Clin Neurol Neurosurg, 87, 143–8.Google Scholar
Donders, R., Kappelle, L. J., Derksen, R., et al. 1998. Transient monocular blindness and antiphospholipid antibodies in systemic lupus erythematosus. Neurology, 51, 535–40.Google Scholar
Dupont, S., Fénelon, G., Saiag, P., and Sirmai, J. 1996. Warfarin in Sneddon’s syndrome. Neurology, 46, 1781–2.Google Scholar
Floel, A., Imai, T., Lohmann, H., et al. 2002. Therapy of Sneddon syndrome. Eur Neurol, 48, 126–32.Google Scholar
Frances, C. and Piette, J. C. 2000. The mystery of Sneddon syndrome: Relationship with antiphospholipid syndrome and systemic lupus erythematosus. J Autoimmunol, 15, 139–43.Google Scholar
Geschwind, D., FitzPatrick, M., Mischel, P., and Cummings, J. 1995. Sneddon’s syndrome is a thrombotic vasculopathy: Neuropathologic and neuroradiologic evidence. Neurology, 45, 557–60.Google Scholar
Gibson, G. E., Su, W. P., and Pittelkow, M. R. 1997. Antiphospholipid syndrome and the skin. J Am Acad Dermatol, 36, 970–82.Google Scholar
Hachulla, E., Piette, A. M., Hatron, P. Y., and Blétry, O. 2000. Aspirin and antiphospholipid syndrome. Rev Med Interne, 21(Suppl 1), 83–8s.Google Scholar
Hilton, D. A. and Footitt, D. 2003. Neuropathological findings in Sneddon’s syndrome. Neurology, 60, 1181–2.Google Scholar
Kalashnikova, L. A., Korczyn, A. D., Shavit, S., et al. 1999. Antibodies to prothrombin in patients with Sneddon’s syndrome. Neurology, 53, 223–5.Google Scholar
Khamashta, M. A., Cuadrado, M. J., Mujic, F., et al. 1995. The management of thrombosis in the antiphospholipid syndrome. N Engl J Med, 332, 993–7.Google Scholar
Khoo, L. A., and Belli, A. M. 1999. Superior mesenteric artery stenting for mesenteric ischaemia in Sneddon’s syndrome. Br J Radiol, 72, 607–9.Google Scholar
Kraemer, M., Linden, D., and Berlit, P. 2005. The spectrum of differential diagnosis in neurological patients with livedo reticularis and livedo racemosa. A literature review. J Neurol, 252, 1155–66.Google Scholar
Krnic-Barrie, S., O’Connor, C. R., Looney, S. W., Pierangeli, S. S., and Harris, E. N. 1997. A retrospective review of 61 patients with antiphospholipid syndrome. Analysis of factors influencing recurrent thrombosis. Arch Intern Med, 157, 2101–8.Google Scholar
Lewandowska, E., Wierzba-Bobrowicz, T., Wagner, T., et al. 2005. Sneddon’s syndrome as a disorder of small arteries with endothelial cells proliferation: Ultrastructural and neuroimaging study. Folia Neuropathol, 43, 345–54.Google Scholar
Lockshin, M. D. 1992. Antiphospholipid antibody syndrome. JAMA, 268, 1451–3.Google Scholar
Lubach, D., Schwabe, C., Weissenborn, K., et al. 1992. Livedo racemosa generalisata: An evaluation of thirty-four cases. Stroke, 23, 1182–3.Google Scholar
Macario, F., Macario, M. C., Ferro, A., et al. 1997. Sneddon’s syndrome: A vascular systemic disease with kidney involvement? Nephron, 75, 94–7.Google Scholar
Martinez-Menendez, B., Perez-Sempere, A., Gonzalez-Rubio, M., et al. 1990. Sneddon’s syndrome with negative antiphospholipid antibodies. Stroke, 21, 1510–1.Google Scholar
Matsumura, Y., Tomimoto, H., Yamamoto, M., Imamura, S., and Miyachi, Y. 2001. Sneddon syndrome with multiple cerebral infarctions 12 years after the onset of livedo vasculitis: A possible involvement of platelet activation. J Dermatol, 28, 508–10.Google Scholar
Menzel, C., Reinhold, U., Grunwald, F., et al. 1994. Cerebral blood flow in Sneddon syndrome. J Nucl Med, 35, 461–4.Google Scholar
Michel, M., Bourquelot, P., and Hermine, O. 1996. Essential thrombocythaemia: a cause of Sneddon’s syndrome. Lancet, 347, 395.Google Scholar
Moral, A., Vidal, J. M., Moreau, I., Olhaberriague, L., and Montalban, J. 1991. Sneddon’s syndrome with antiphospholipid antibodies and arteriopathy. Stroke, 22, 1327–8.Google Scholar
Pauranik, A., Parwani, S., and Jain, S. 1987. Simultaneous bilateral central retinal artery occlusion in a patient with Sneddon syndrome: Case history. J Vasc Dis, 12, 158–63.Google Scholar
Pettee, A. D., Wasserman, B. A., Adams, N. L., et al. 1994. Familial Sneddon’s syndrome. Clinical, hematological, and radiographic findings in two brothers. Neurology, 44, 399405.Google Scholar
Pinol-Aguade, J., Ferrandiz, C., Ferrer-Roca, O., and Ingelmo, M. 1999. Livedo reticularis y accidentes cerebrovasculares. Med Cutan Ibero Lat Am, 3, 257–65.Google Scholar
Rebollo, M., Val, J. F., Garijo, F., Quintana, F., and Berg, E. L. 1983. Livedo reticularis and cerebrovascular lesions (Sneddon’s syndrome). Brain, 106, 965–79.Google Scholar
Rehany, U., Kassif, Y., and Rumelt, S. 1998. Sneddon’s syndrome: Neuro-ophthalmologic manifestations in a possible autosomal recessive pattern. Neurology, 51, 1185–7.Google Scholar
Rosenberg, R. D., and Aird, W. C. 1999. Vascular-bed-specific hemostasis and hypercoagulable states. N Engl J Med, 340, 1555–64.Google Scholar
Ruscalleda, J., Coscojuela, P., Guardia, E., and De Juan, M. 1991. General case of the day. Radiographics, 11, 929–31.Google Scholar
Scheuermann, S. and Schlundt, C. 2014. STEMI of the anterior wall associated with Sneddon’s syndrome. Herz, 39, 352–3.Google Scholar
Schellong, S. M., Weissenborn, K., Niedermeyer, J., et al. 1997. Vasa, 26, 215–21.Google Scholar
Serrano-Pozo, A., Gomez-Aranda, F., Franco-Macias, E., and Serrano-Cabrera, A. 2004. Cerebral haemorrhage in Sneddon’s syndrome: Case report and literature review. Rev Neurol, 39, 731–3.Google Scholar
Sitzer, M., Sohngen, D., Siebler, M., et al. 1995. Cerebral microembolism in patients with Sneddon’s syndrome. Arch Neurol, 52, 271–5.Google Scholar
Sneddon, I. B. 1965. Cerebro-vascular lesions and livedo reticularis. Br J Dermatol, 77, 777–82.Google Scholar
Stephens, W. P. and Ferguson, I. T. 1982. Livedo reticularis and cerebro-vascular disease. Postgrad Med J, 58, 70–3.Google Scholar
Sun, J., Zhang, F., Gao, F., Wang, J., Selim, M., and Lou, M. 2012. Intravenous thrombolysis in Sneddon’s syndrome. J Clin Neurosci, 19, 326–8.Google Scholar
Szmyrka-Kaczmarek, M., Daikeler, T., Benz, D., and Koetter, I. 2005. Familial inflammatory Sneddon’s syndrome-case report and review of the literature. Clin Rheumatol, 24, 7982.Google Scholar
Tanne, D., Triplett, D. A., and Levine, S. R. 1998. Antiphospholipid-protein antibodies and ischemic stroke. Not just cardiolipin anymore. Stroke, 29, 1755–8.Google Scholar
Thomas, D. J., Kirby, J. D. T., Britton, K. E., and Galton, D. J. 1982. Livedo reticularis and neurological lesions. Br J Dermatol, 106, 711–2.Google Scholar
Tietjen, G., Al-Qasmi, M., Gunda, P., and Herial, N. 2006. Sneddon’s syndrome: Another migraine–stroke association? Cephalgia, 26, 225–32.Google Scholar
Toubi, E., Krause, I., Fraser, A., Lev, S., et al. 2005. Livedo reticularis is a marker for predicting multi-system thrombosis in antiphospholipid syndrome. Clin Exp Rheumatol, 23, 499504.Google Scholar
Tourbah, A., Piette, J., Iba-Zizen, M. T., et al. 1997. The natural course of cerebral lesions in Sneddon’s syndrome. Arch Neurol, 54, 5360.Google Scholar
Wohlrab, J., Fischer, M., Wolter, M., and Marsch, W. C. 2001. Diagnostic impact and sensitivity of skin biopsies in Sneddon’s syndrome. A report of 15 cases. Br J Dermatol, 145, 285–8.Google Scholar
Zelger, B., Sepp, N., Stockhammer, G., et al. 1993. Sneddon’s syndrome. A long-term follow-up of 21 patients. Arch Neurol, 129, 437–47.Google Scholar

References

Allen, HA, Haney, P, Rao, KC (1982). Vascular involvement in cranial hyperostosis. AJNR Am J Neuroradiol 3: 193–5.Google Scholar
Armitage, GC (2000). Periodontal infections and cardiovascular disease: How strong is the association? Oral Dis 6: 335–50.Google Scholar
Bansal, S, Brown, W, Dayal, A, Carpenter, JL (2014). Posterior spinal cord infarction due to fibrocartilaginous embolization in a 16-year-old athlete. Pediatrics 134: 289–92.Google Scholar
Beck, J, Garcia, R, Heiss, G, Vokonas, PS, Offenbacher, S (1996). Periodontal disease and cardiovascular disease. J Periodont 67: 1123–37.Google Scholar
Boerkoel, CF, Nowaczyk, MJ, Blaser, SI, Meschino, WS, Weksberg, R (1998). Schimke immunoosseous dysplasia complicated by moyamoya phenomenon. Am J Med Genet 78: 118–22.Google Scholar
Bollerslev, J (1987).Osteopetrosis. A genetic and epidemiological study. Clin Genet 31 : 86–90.Google Scholar
Bots, GT, Wattendorff, AR, Buruma, OJ, Roos, RA, Endtz, LJ (1981). Acute myelopathy caused by fibrocartilaginous emboli. Neurology 31: 1250–6.Google Scholar
Browner, WS, Pressman, AR, Nevitt, MC, Cauley, JA, Cummings, SR (1993). Association between low bone density and stroke in elderly women. The study of osteoporotic fractures. Stroke 24: 940–6.Google Scholar
Browner, WS, Lui, LY, Cummings, SR (2001). Associations of serum osteoprotegerin levels with diabetes, stroke, bone density, fractures, and mortality in elderly women. J Clin Endocrinol Metab 86: 631–7.Google Scholar
Campos-Xavier, AB, Saraiva, JM, Savarirayan, R, et al. (2001). Phenotypic variability at the TGF-β1 locus in Camurati–Engelmann disease. Hum Genet 109: 653–8.Google Scholar
Carroll, GC, Sebor, RJ (1980). Flossing and its relationship to transient bacteremia. J Periodontol 51: 691–2.Google Scholar
Cerrato, P, Baima, C, Bergui, M, et al. (2005). Juvenile vertebrobasilar ischaemic stroke in a patient with Camurati–Engelmann disease. Cerebrovasc Dis 20: 283–4.Google Scholar
Chamberlain, J (2001). Transforming growth factor-β: A promising target for antistenosis therapy. Cardiovasc Drug Rev 19: 329–44.Google Scholar
Cook, R (1988). Fibrocartilaginous embolism. Vet Clin N Am Small Anim Pract 18: 581–92.Google Scholar
David, LR, Wilson, JA, Watson, NE, Argenta, LC (1996). Cerebral perfusion defects secondary to simple craniosynostosis. J Craniofac Surg 7: 177–85.Google Scholar
Dörfer, CE, Becher, H, Ziegler, CM, et al. (2004). The association of gingivitis and periodontitis with ischemic stroke. J Clin Periodontol 31: 396401.Google Scholar
Ehrich, JH, Burchert, W, Schirg, E, et al. (1995). Steroid resistant nephrotic syndrome associated with spondyloepiphyseal dysplasia, transient ischemic attacks and lymphopenia. Clin Nephrol 43: 8995.Google Scholar
Farre, JM, Declambre, B (1989). Functional consequences and complications of Paget’s disease. Rev Prat 39: 1129–36.Google Scholar
Fournie, A, Fournie, B, Lassoued, S (1989). Paget’s disease: Errors to be avoided. Rev Prat 39: 1143–6.Google Scholar
Gouicem, D, Palcau, L, Hello, CL, et al. (2013). Gigantic clavicle osteochondroma with carotid compression as a rare cause of stroke. J Vasc Surg 57: 845–7.CrossRefGoogle ScholarPubMed
Grau, AJ, Buggle, F, Ziegler, C, et al. (1997). Association between acute cerebrovascular ischemia and chronic and recurrent infection. Stroke 28: 1724–9.Google Scholar
Han, JJ, Massagli, TL, Jaffe, KM (2004). Fibrocartilaginous embolism: An uncommon cause of spinal cord infarction. A case report and review of the literature. Arch Phys Med Rehabil 85: 153–7.Google Scholar
Haraszthy, VI, Zambon, JJ, Trevisan, M, Zeid, M, Genco, RJ (1998). Identification of pathogens in atheromatous plaques [abstract]. J Dent Res 77: abstract 273.Google Scholar
Herzberg, MC, Meyer, MW (1996). Effects of oral flora on platelets: Possible consequence in cardiovascular disease. J Periodontol 67(suppl 10): 1138–42.Google Scholar
Hujoel, PP, Drangsholt, M, Spiekerman, C, DeRouen, TA (2002). Pre-existing cardiovascular disease and periodontitis: A follow-up study. J Dent Res 81: 186–91.Google Scholar
Janssens, K, Gershoni-Baruch, R, Guanabens, N, et al. (2000). Mutations in the gene encoding the latency-associated peptide of TGFB1 cause Camurati–Engelmann disease. Nat Genet 26: 273–5.Google Scholar
Jeffrey, M and Weels, GA (1986). Multifocal ishemic encephalomyelopathy associated with fibrocartilaginous emboli in the lamb. Neuropathol Appl Neurobiol 12: 415–24.Google Scholar
Johnson, C, Anderson, WI, King, JM (1988). Acute pelvic limb paralysis induced by a lumbar fibrocartilaginous embolism in a sow. Cornell Vet 78: 231–4.Google Scholar
Jørgensen, L, Jacobsen, BK, Wilsgaard, T, Magnus, JH (2000). Walking after stroke: does it matter? Changes in bone mineral density within the first 12 months after stroke. A longitudinal study. Osteoporos Int 11: 381–7.Google Scholar
Jørgensen, L, Engstad, T, Jacobsen, BK (2001). Bone mineral density in acute stroke patients. Low bone mineral density may predict first stroke in women. Stroke 32: 4751.Google Scholar
Kon, M, de Visser, AC (1981). A poly (HEMA) sponge for restoration of articular cartilage defects. Plast Reconstr Surg 63: 288–94.Google Scholar
Lafon, A, Pereira, B, Dufour, T, et al. (2014). Periodontal disease and stroke: a meta-analysis of cohort studies. Eur J Neurol 21: 1155–61.Google Scholar
Lerman-Sagie, T, Levi, Y, Kidron, D, Grunebaum, M, Nitzan, M (1987). Syndrome of osteopetrosis and muscular degeneration associated with cerebro-oculo-facio-skeletal changes. Am J Med Genet 28: 137–42.Google Scholar
Makin, GJ, Coates, RK, Pelz, D, Drake, CG, Barnett, HJ (1986). Major cerebral arterial and venous disease in osteopetrosis. Stroke 17: 106–10.Google Scholar
Massagué, J (1990). The transforming growth factor-beta family. Ann Rev Cell Biol 6: 597641.Google Scholar
Metcalfe, JC, Grainger, DJ (1995). Transforming growth factor-beta and the protection from cardiovascular injury hypothesis. Biochem Soc Trans 23: 403–6.Google Scholar
Miyamoto, RT, House, WF, Brackmann, DE (1980). Neurotologic manifestations of the osteopetroses. Arch Otolaryngol 106: 210–14.Google Scholar
Mussolino, ME, Madans, JH, Gillum, RF (2003). Bone mineral density and stroke. Stroke 34: e202.Google Scholar
Myint, PK, Clark, AB, Kwok, CS, et al. (2014). Bone mineral density and incidence of stroke: European Prospective Investigation into Cancer – Norfolk population-based study, systematic review, and meta-analysis. Stroke 45: 373–82.Google Scholar
Neer, TM (1992). Fibrocartilaginous emboli. Vet Clin N Am Small Anim Pract 22: 1017–26.Google Scholar
Piao, YS, Lu, DH, Su, YY, Yang, XP (2009). Anterior spinal cord infarction caused by fibrocartilaginous embolism. Neuropathology 29: 172–5.Google Scholar
Pihlstrom, BL, Michalowicz, BS, Johnson, NW (2005). Periodontal diseases. Lancet 366: 1809–20.Google Scholar
Qu, X, Huang, X, Jin, F, et al. (2013). Bone mineral density and all-cause, cardiovascular and stroke mortality: A meta-analysis of prospective cohort studies. Int J Cardiol 166: 385–93.Google Scholar
Renier, JC (1989). What is Paget’s disease? Rev Prat 39: 1104–8.Google Scholar
Ryan, LM, Cheung, HS, McCarty, DJ (1981). Release of pyrophosphate by normal mammalian articular hyaline and fibrocartilage in organ culture. Arthritis Rheum 24: 1522–7.Google Scholar
Scannapieco, FA, Bush, RB, Paju, S (2003). Associations between periodontal disease and risk for atherosclerosis, cardiovascular disease, and stroke. A systematic review. Ann Periodontol 8: 3853.Google Scholar
Schimke, RN, Horton, WA, King, CR (1971). Chondroitin-6-sulphaturia, defective cellular immunity, and nephrotic syndrome. Lancet 13: 1088–9.Google Scholar
Schubert, TA (1980). Fibrocartilaginous infarct in a German shepherd dog. Vet Med Small Anim Clin 75: 839–42.Google Scholar
Solver, JG, Martin, AW, McBride, BC (1977). Experimental transient bacteremias in human subjects with varying degrees of plaque accumulation and gingival inflammation. J Clin Periodontol 4: 92–9.Google Scholar
Song, TJ, Kim, J, Yang, SH, et al. (2012). Association of plasma osteoprotegerin levels with stroke severity and functional outcome in acute ischaemic stroke patients. Biomarkers 17: 738–44.CrossRefGoogle ScholarPubMed
Sparkes, RS, Graham, CB (1972). Camurati–Engelmann disease. Genetics and clinical manifestations with a review of the literature. J Med Genet 9: 7385.Google Scholar
Syrjanen, J, Peltola, J, Valtonen, V, et al. (1989). Dental infections in association with cerebral infarction in young and middle-aged men. J Intern Med 225: 179–84.Google Scholar
Tasdemir, HA, Dagdemir, A, Celenk, C, Albayrak, D (2001). Middle cerebral arterial occlusion in a child with osteopetrosis major. Eur Radiol 11: 145–7.Google Scholar
Toro, G, Roman, GC, Navarro-Roman, L, et al. (1994). Natural history of spinal cord infarction caused by nucleus pulposus embolism. Spine 19: 360–6.Google Scholar
Toro-Gonzalez, G, Havarro-Roman, L, Roman, GC, et al. (1993). Acute ischemic stroke from fibrocartilaginous embolism to the middle cerebral artery. Stroke 24: 738–40.Google Scholar
Trivedi, DP, Khaw, KT (2001). Bone mineral density at the hip predicts mortality in elderly men. Osteoporosis Int 12: 259–65.Google Scholar
Uhthoff, HK, Rahn, BA (1981). Healing patterns of metaphyseal fractures. Clin Orthop Relat Res 160: 295303.Google Scholar
Wilms, G, Casaer, P, Alliet, P, et al. (1990). Cerebrovascular occlusive complications in osteopetrosis major. Neuroradiology 32: 511–13.Google Scholar
Wu, T, Trevisan, M, Genco, RJ, et al. (2000). Periodontal disease and risk of cerebrovascular disease: The first national health and nutrition examination survey and its follow-up study. Arch Intern Med 160: 2749–55.Google Scholar

References

Au, K., Singh, M. K., Bodukam, V., et al. 2011. Atherosclerosis in systemic sclerosis: A systematic review and meta-analysis. Arthritis Rheum, 63, 2078–90.Google Scholar
Averbuch-Heller, L., Steiner, I., & Abramsky, O. 1992. Neurologic manifestations of progressive systemic sclerosis. Arch Neurol, 49, 1292–5.Google Scholar
Bourne, F. M., Howell, D. A., & Root, H. S. 1960. Renal and cerebral scleroderma. Can Med Assoc J, 82, 881–6.Google Scholar
Cecchi, P. C., Caramaschi, P., Pinna, G., Schwarz, A., & Bricolo, A. 2006. Haemorrhagic stroke and vasculitic-like cerebral angiography in a patient with eosinophilic fasciitis. Case report. J Neurosurg Sci, 50, 119–22.Google Scholar
Chiang, C. H., Liu, C. J., Huang, C. C., et al. 2013. Systemic sclerosis and risk of ischaemic stroke: A nationwide cohort study. Rheumatology, 52, 161–5.Google Scholar
Das, C. P., Prabhakar, S., Lal, V., & Kharbanda, P. S. 2002. Scleroderma, stroke, optic neuropathy: A rare association. Neurol India, 50, 504–7.Google Scholar
Estey, E., Lieberman, A., Pinto, R., Meltzer, M., & Ransohoff, J. 1979. Cerebral arteritis in scleroderma. Stroke, 10, 595–7.Google Scholar
Evans, D. J., Cashman, S. J., & Walport, M. 1987. Progressive systemic sclerosis: Autoimmune arteriopathy. Lancet, 1, 480–2.Google Scholar
Furey, N. L., Schmid, F. R., Kwaan, H. C., & Friederici, H. H. 1975. Arterial thrombosis in scleroderma. Br J Dermatol, 93, 683–93.Google Scholar
Giallafos, I., Triposkiadis, F., Oikonomou, E., et al. 2014. Incident atrial fibrillation in systemic sclerosis: The predictive role of B-type natriuretic peptide. Hellenic J Cardiol, 55, 313–21.Google Scholar
Hennekam, R. C. 2006. Hutchinson–Gilford progeria syndrome: Review of the phenotype. Am J Med Genet A, 140, 2603–24.Google Scholar
Holland, K. E., Steffes, B., Nocton, J. J., et al. 2006. Linear scleroderma en coup de sabre with associated neurologic abnormalities. Pediatrics, 117, e1326.Google Scholar
Ishida, K., Kamata, T., Tsukagoshi, H., & Tanizaki, Y. 1993. Progressive systemic sclerosis with CNS vasculitis and cyclosporin A therapy. J Neurol Neurosurg Psychiatry, 56, 720.Google Scholar
Kahaleh, M. B. 1991. Endothelin, an endothelial-dependent vasoconstrictor in scleroderma. Enhanced production and profibrotic action. Arthritis Rheum, 34, 978–83.CrossRefGoogle ScholarPubMed
Kahaleh, M. B. & Fan, P. S. 1997. Mechanism of serum-mediated endothelial injury in scleroderma: Identification of a granular enzyme in scleroderma skin and sera. Clin Immunol Immunopathol, 83, 3240.Google Scholar
Kawano, H., Hayashi, M., Handa, Y., & Miyazaki, S. 1990. A case of progressive systemic sclerosis associated with a hemorrhagic infarction of the cerebellum. No To Shinkei, 42, 189–91.Google Scholar
Kill, A., Tabeling, C., Undeutsch, R., et al. 2014. Autoantibodies to angiotensin and endothelin receptors in systemic sclerosis induce cellular and systemic events associated with disease pathogenesis. Arthritis Res Ther, 16, R29.Google Scholar
Kupetsky, E. A. & Rincon, F. 2013. The prevalence of systemic diseases associated with dermatoses and stroke in the United States: A cross-sectional study. Dermatology, 227, 330–7.Google Scholar
Lee, J. E. & Haynes, J. M. 1967. Carotid arteritis and cerebral infarction due to scleroderma. Neurology, 17, 1822.Google Scholar
Malia, R. G., Greaves, M., Rowlands, L. M., et al. 1988. Anticardiolipin antibodies in systemic sclerosis: Immunological and clinical associations. Clin Exp Immunol, 73, 456–60.Google Scholar
Man, A., Zhu, Y., Zhang, Y., et al. 2013. The risk of cardiovascular disease in systemic sclerosis: A population-based cohort study. Ann Rheum Dis, 72, 1188–93.Google Scholar
Marie, I., Borg, J. Y., Hellot, M. F., & Levesque, H. 2008. Plasma D-dimer concentration in patients with systemic sclerosis. Br J Dermatol, 158, 392–5.Google Scholar
Marks, R. M., Czerniecki, M., Andrews, B. S., & Penny, R. 1988. The effects of scleroderma serum on human microvascular endothelial cells. Induction of antibody-dependent cellular cytotoxicity. Arthritis Rheum, 31, 1524–34.Google Scholar
Menni, S., Marzano, A. V., & Passoni, E. 1997. Neurologic abnormalities in two patients with facial hemiatrophy and sclerosis coexisting with morphea. Pediatr Dermatol, 14, 113–6.Google Scholar
Morrisroe, K. B., Stevens, W., Nandurkar, H., et al. 2014. The association of antiphospholipid antibodies with cardiopulmonary manifestations of systemic sclerosis. Clin Exp Rheumatol, 32 (Suppl 86), S1337.Google Scholar
Nobili, F., Cutolo, M., Sulli, A., et al. 1997. Impaired quantitative cerebral blood flow in scleroderma patients. J Neurol Sci, 152, 6371.Google Scholar
Poursadegh Fard, M. & Karami Magham, S. 2012. Cerebral sinus thrombosis in scleroderma: A case report. Acta Med Iran, 50, 288–91.Google Scholar
Renard, D. & Heroum, C. 2007. Carotid thrombus formation and extension during anticoagulation: A case report of large vessel disease and hypercoagulable state in systemic sclerosis. Acta Neurol Belg, 107, 55–7.Google Scholar
Ruiz-Sandoval, J. L., Romero-Vargas, S., Gutierrez-Aceves, G. A., et al. 2005. Linear scleroderma en coup de sabre: Neurological symptoms, images and review. Rev Neurol, 41, 534–7.Google Scholar
Takahashi, T., Asano, Y., Oka, T., et al. 2016. Scleroderma en coup de sabre with recurrent episodes of brain hemorrhage. J Dermatol, 43, 203–6.Google Scholar
Terajima, K., Shimohata, T., Watanabe, M., et al. 2001. Cerebral vasculopathy showing moyamoya-like changes in a patient with CREST syndrome. Eur Neurol, 46, 163–5.CrossRefGoogle Scholar
Ungprasert, P., Sanguankeo, A., & Upala, S. 2015. Risk of ischemic stroke in patients with systemic sclerosis: A systematic review and meta-analysis. Mod Rheumatol, 14.Google Scholar
van den Hoogen, F., Dinesh, K., Jaap, F., et al. 2013. Classification Criteria for Systemic Sclerosis: An ACR-EULAR Collaborative Initiative. Arthritis Rheum, 65, 2737-47.Google Scholar

References

Cheng, M. J., Huang, P. H., Liao, P. W., Chen, J. T., & Chiang, T. R. (2012). Multiple cerebral and cerebellar infarcts as the first clinical manifestation in a patient with Churg–Strauss syndrome: Case report and literature review. Acta Neurol Taiwan, 21, 169–75.Google Scholar
Crane, M. M., Chang, C. M., Kobayashi, M. G., & Weller, P.F. (2010). Incidence of myeloproliferative hypereosinophilic syndrome in the United States and an estimate of all hypereosinophilic syndrome incidence. J Allergy Clin Immunol, 126, 179–81.Google Scholar
Churg, A. (2001). Recent advances in the diagnosis of Churg Strauss syndrome. Mod Pathol, 14, 1284–93.Google Scholar
Chusid, M. J., Dale, D. C., West, B. C., & Wolff, S. M. (1975). The hypereosinophilic syndrome: Analysis of fourteen cases with review of the literature. Medicine (Baltimore), 54, 127.Google Scholar
Ghaeni, L., Siebert, E., Ostendorf, F., Endres, M., & Reuter, U. (2010). Multiple cerebral infarctions in a patient with Churg–Strauss syndrome. J Neurol, 257, 678–80.CrossRefGoogle Scholar
Grigoryan, M., Geisler, S. D., St Louis, E. K., Baumbach, G. L., & Davis, P. H. (2009). Cerebral arteriolar thromboembolism in idiopathic hypereosinophilic syndrome. Arch Neurol, 66, 528–31.Google Scholar
Kanno, H., Ouchi, N., Sato, M., Wada, T., & Sawai, T. (2005). Hypereosinophilia with systemic thrombophlebitis. Hum Pathol, 36, 585–9.Google Scholar
Khoury, P., Grayson, P. C., & Klion, A. D. (2014). Eosinophils in vasculitis: characteristics and roles in pathogenesis. Nat Rev Rheumatol, 10, 474–83.Google Scholar
Klion, A. D., Bochner, B. S., Gleich, G. J., et al. (2006). Approaches to the treatment of hypereosinophilic syndromes: A workshop summary report. J Allergy Clin Immunol, 117, 1292–302.Google Scholar
Klion, A. D. (2015). How I treat hypereosinophilic syndromes. Blood, 126, 1069–77.Google Scholar
Legrand, F., Renneville, A., Macintyre, E., et al. (2013). The spectrum of FIP1L1-PDGFRA-associated chronic eosinophilic leukemia: New insights based on a survey of 44 cases. Medicine (Baltimore), 92, e19.Google Scholar
Lin, C. H., Chang, W. N., Chua, S., et al. (2009) Idiopathic hypereosinophilia syndrome with loeffler endocarditis, embolic cerebral infarction, and left hydranencephaly: A case report. Acta Neurol Taiwan, 18, 207–12.Google Scholar
Ogbogu, P. U., Rosing, D. R., & Horne, M. K. 3rd (2007). Cardiovascular manifestations of hypereosinophilic syndromes. Immunol Allergy Clin North Am, 27, 457–75.Google Scholar
Ogbogu, P. U., Bochner, B. S., Butterfield, J. H., et al. (2009). Hypereosinophilic syndrome: A multicenter, retrospective analysis of clinical characteristics and response to therapy. J Allergy Clin Immunol, 124, 1319–25.Google Scholar
Sarazin, M., Caumes, E., Cohen, A., & Amarenco, P. (2004). Multiple microembolic borderzone brain infarctions and endomyocardial fibrosis in idiopathic hypereosinophilic syndrome and in Schistosoma mansoni infestation. J Neurol Neurosurg Psychiatry, 75, 305–7.Google Scholar
Tong, L. S., Wan, J. P., Cai, X., & Lou, M. (2014). Global hypoperfusion: A new explanation of border zone strokes in hypereosinophilia. CNS Neurosci Ther, 20, 794–6.Google Scholar
Valent, P., Klion, A. D., Horny, H. P. et al. (2012). Contemporary consensus proposal on criteria and classification of eosinophilic disorders and related syndromes. J Allergy Clin Immunol, 130, 607–12.CrossRefGoogle ScholarPubMed
Wang, J. G., Mahmud, S. A., Thompson, J. A., Geng, J. G., Key, N. S., & Slungaard, A. (2006) The principal eosinophil peroxidase product, HOSCN, is a uniquely potent phagocyte oxidant inducer of endothelial cell tissue factor activity: A potential mechanism for thrombosis in eosinophilic inflammatory states. Blood, 107, 558–65.Google Scholar
Weller, P. F. & Bubley, G. J. (1994). The idiopathic hypereosinophilic syndrome. Blood, 83, 2759–79.Google Scholar

References

Atkinson, JL, Sundt, TM Jr., Dale, AJ, Cascino, TL, Nichols, DA. 1989. Radiation-associated atheromatous disease of the cervical carotid artery: Report of seven cases and review of the literature. Neurosurgery 24:171–8.Google Scholar
Balentova, S, Adamkov, M. 2015. Molecular, cellular and functional effects of radiation-induced brain injury: A review. Int J Mol Sci 16:27796–815.Google Scholar
Black, DF, Bartleson, JD, Bell, ML, Lachance, DH. 2006. SMART: Stroke-like migraine attacks after radiation therapy. Cephalalgia 26:1137–42.Google Scholar
Black, DF, Morris, JM, Lindell, EP, et al. 2013. Stroke-like migraine attacks after radiation therapy (SMART) syndrome is not always completely reversible: A case series. Am J Neuroradiol 34:2298–303.Google Scholar
Bowers, DC, McNeil, DE, Liu, Y, et al. 2005. Stroke as a late treatment effect of Hodgkin’s disease: A report from the Childhood Cancer Survivor Study. J Clin Oncol 23:6508–15.Google Scholar
Bowers, DC, Liu, Y, Leisenring, W, et al. 2006. Late-occurring stroke among long-term survivors of childhood leukemia and brain tumors: A report from the Childhood Cancer Survivor Study. J Clin Oncol 24:5277–82.Google Scholar
Brandsma, D, Stalpers, L, Taal, W, Sminia, P, van den Bent, MJ. 2008. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 9:453–61.Google Scholar
Brown, WR, Blair, RM, Moody, DM, et al. 2007. Capillary loss precedes the cognitive impairment induced by fractionated whole-brain irradiation: A potential rat model of vascular dementia. J Neurol Sci 257:6771.Google Scholar
Campen, CJ, Kranick, SM, Kasner, SE, et al. 2012. Cranial irradiation increases risk of stroke in pediatric brain tumor survivors. Stroke 43:3035–40.Google Scholar
Conomy, JP, Kellermeyer, RW. 1975. Delayed cerebrovascular consequences of therapeutic radiation. A clinicopathologic study of a stroke associated with radiation-related carotid arteriopathy. Cancer 36:1702–8.Google Scholar
Cullere, X, Plovie, E, Bennett, PM, MacRae, CA, Mayadas, TN. 2015. The cerebral cavernous malformation proteins CCM2L and CCM2 prevent the activation of the MAP kinase MEKK3. Proc Natl Acad Sci USA 112:14284–9.Google Scholar
DeAngelis, LM, Delattre, JY, Posner, JB. 1989. Radiation-induced dementia in patients cured of brain metastases. Neurology 39:789–96.Google Scholar
Fajardo, LF, Berthrong, M. 1988. Vascular lesions following radiation. Pathol Annual 23:297330.Google Scholar
Glantz, MJ, Burger, PC, Friedman, AH, et al. 1994. Treatment of radiation-induced nervous system injury with heparin and warfarin. Neurology 44:2020–7.Google Scholar
Gómez-Cibeira, E, Calleja-Castaño, P, Gonzalez de la Aleja, J, et al. 2015. Brain magnetic resonance spectroscopy findings in the stroke-like migraine attacks after radiation therapy (SMART) syndrome. J Neuroimaging 25:1056–8.Google Scholar
Haymaker, W, Ibrahim, MZ, Miquel, J, Call, N, Riopelle, AJ. 1968. Delayed radiation effects in the brains of monkeys exposed to X- and gamma-rays. J Neuropathol Exp Neurol 27:5079.Google Scholar
Jabbour, P, Gault, J, Murk, SE, Awad, IA. 2004. Multiple spinal cavernous malformations with atypical phenotype after prior irradiation: Case report. Neurosurgery 55:1431.Google Scholar
Johannesen, TB, Lien, HH, Hole, KH, Lote, K. 2003. Radiological and clinical assessment of long-term brain tumour survivors after radiotherapy. Radiother Oncol 69:169–76.Google Scholar
Kölzer, M, Arenz, C, Ferlinz, K, et al. 2003. Phosphatidylinositol-3,5-bisphosphate is a potent and selective inhibitor of acid sphingomyelinase. Biol Chem 384:1293–8.Google Scholar
Li, YQ, Chen, P, Haimovitz-Friedman, A, Reilly, RM, Wong, CS. 2003. Endothelial apoptosis initiates acute blood–brain barrier disruption after ionizing radiation. Cancer Res 63:5950–6.Google Scholar
Ljubimova, NV, Levitman, MK, Plotnikova, ED, Eidus, LKh. 1991. Endothelial cell population dynamics in rat brain after local irradiation. Br J Radiol 64:934–40.Google Scholar
Maraire, JN, Abdulrauf, SI, Berger, S, Knisely, J, Awad, IA. 1999. De novo development of a cavernous malformation of the spinal cord. J Neurosurg 90:S2348.Google Scholar
Marchi, S, Corricelli, M, Trapani, E, et al. 2015. Defective autophagy is a key feature of cerebral cavernous malformations. EMBO Mol Med 7:1403–17.Google Scholar
Mueller, S, Fullerton, HJ, Stratton, K, et al. 2013. Radiation, atherosclerotic risk factors, and stroke risk in survivors of pediatric cancer: A report from the Childhood Cancer Survivor Study. Int J Radiat Oncol Biol Phys 86:649–55.Google Scholar
Nieder, C, Zimmermann, FB, Adam, M, Molls, M. 2005. The role of pentoxifylline as a modifier of radiation therapy. Cancer Treat Rev 6:448–55.Google Scholar
Nimjee, SM, Powers, CJ, Bulsara, KR. 2006. Review of the literature system after radiation therapy. Neurosurg Focus 21: e4.Google Scholar
Nordal, RA, Nagy, A, Pintilie, M, Wong, CS. 2004. Hypoxia and hypoxia-inducible factor-1 target genes in central nervous system radiation injury: A role for vascular endothelial growth factor. Clin Cancer Res 10:3342–53.Google Scholar
Olsen, AL, Miller, JJ, Bhattacharyya, S, Voinescu, PE, Klein, JP. 2016. Cerebral perfusion in stroke-like migraine attacks after radiation therapy syndrome. Neurology 86:787–9.Google Scholar
Otite, F, Mink, S, Tan, CO, et al. 2014. Impaired cerebral auto-regulation is associated with vasospasm and delayed cerebral ischemia in subarachnoid hemorrhage. Stroke 45:677–82.Google Scholar
Peña, LA, Fuks, Z, Kolesnick, RN. 2000. Radiation-induced apoptosis of endothelial cells in the murine central nervous system: Protection by fibroblast growth factor and sphingomyelinase deficiency. Cancer Res 60:321–7.Google Scholar
Peterson, K, Clark, HB, Hall, WA, Truwit, CL. 1995. Multifocal enhancing magnetic resonance imaging lesions following cranial irradiation. Ann Neurol 38:237–44.Google Scholar
Proescholdt, MA, Heiss, JD, Walbridge, S, et al. 1999. Vascular endothelial growth factor (VEGF) modulates vascular permeability and inflammation in rat brain. J Neuropathol Exp Neurol 58:613–27.Google Scholar
Rizzoli, HV, Paganelli, DM. 1984. Treatment of delayed radiation necrosis of the brain. A clinical observation. J Neurosurg 60:589–94.Google Scholar
Rotolo, J, Stancevic, B, Zhang, J, et al. 2012. Anti-ceramide antibody prevents the radiation gastrointestinal syndrome in mice. J Clin Invest 122:1786–90.Google Scholar
Santana, P, Peña, LA, Haimovitz-Friedman, A, et al. 1996. Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 86:189–99.Google Scholar
Schultheiss, TE, Stephens, LC. 1992. Permanent radiation myelopathy. Br J Radiol 65:737–53.Google Scholar
Siegal, T, Pfeffer, MR. 1995. Radiation-induced changes in the profile of spinal cord serotonin, prostaglandin synthesis, and vascular permeability. Int J Radiat Oncol Biol Phys 31:5764.Google Scholar
Silverberg, GD, Britt, RH, Goffinet, DR. 1978. Radiation-induced carotid artery disease. Cancer 41:130–7.Google Scholar
Smith, ER. 2015. Structural causes of ischemic and hemorrhagic stroke in children: Moyamoya and arteriovenous malformations. Curr Opin Pediatr 27:706–11.Google Scholar
Stancevic, B, Varda-Bloom, N, Cheng, J, et al. 2013. Adenoviral transduction of human acid sphingomyelinase into neo-angiogenic endothelium radiosensitizes tumor cure. PLoS One 8:e69025.Google Scholar
Tsao, MN, Li, YQ, Lu, G, Xu, Y, Wong, CS. 1999. Upregulation of vascular endothelial growth factor is associated with radiation-induced blood–spinal cord barrier breakdown. J Neuropathol Exp Neurol 58:1051–60.Google Scholar
Ullrich, NJ, Robertson, R, Kinnamon, DD, et al. 2007. Moyamoya following cranial irradiation for primary brain tumors in children. Neurology 68:932–8.Google Scholar
Warrington, JP, Csiszar, A, Mitschelen, M, Lee, YW, Sonntag, WE. 2012. Whole brain radiation-induced impairments in learning and memory are time-sensitive and reversible by systemic hypoxia. PLoS One 7:e30444.Google Scholar
Yoshino, M, Morita, A, Shibahara, J, Kirino, T. 2005. Radiation-induced spinal cord cavernous malformation. Case report. J Neurosurg 102:S1014.Google Scholar
Yuan, H, Gaber, MW, McColgan, T, et al. 2003. Radiation-induced permeability and leukocyte adhesion in the rat blood–brain barrier: Modulation with anti-ICAM-1 antibodies. Brain Res 969:5969.CrossRefGoogle ScholarPubMed
Yuan, H, Gaber, MW, Boyd, K, et al. 2006. Effects of fractionated radiation on the brain vasculature in a murine model: Blood–brain barrier permeability, astrocyte proliferation, and ultrastructural changes. Int J Radiat Oncol Biol Phys 66:860–6.Google Scholar

References

Beaty, M. W., Toro, J., Sorbara, L., et al. (2001) Cutaneous lymphomatoid granulomatosis. Correlation of clinical and biologic features. Am J Surg Pathol, 25, 1111–20.Google Scholar
Bhagavatula, K. and Scott, T. F. (1997) Magnetic resonance appearance of cerebral lymphomatoid granulomatosis. J Neuroimaging, 7, 120–1.Google Scholar
Calfee, C. S., Shah, S. J., Woloters, P. J., Saint, S., and King, T. E. Jr. (2007) Anchors away. N Engl J Med, 356, 504–9.Google Scholar
Canovas, D., Vinas, J., Martinez, J., et al. (2009) Lymphomatoid granulomatosis with exclusively neurological involvement. Neurologia, 24, 140–1.Google Scholar
Carone, D. A., Benedict, R. H., Zivadinov, R., Singh, B., and Ambrus, J. L. (2006) Progressive cerebral disease in lymphomatoid granulomatosis causes anterograde amnesia and neuropsychiatric disorder. J Neuroimaging, 16, 163166.Google Scholar
Cohen, J. I., Kimura, H., Nakamura, S., et al. (2009) Epstein–Barr virus-associated lymphoproliferative disease in non-immunocompromised hosts: A status report and summary of an international meeting, 8–9 September 2008. Ann Oncol, 2009, 1472–82.Google Scholar
Fauci, A. S., Haynes, B. F., Costa, J., Katz, P., and Wolff, S. M. (1982) Lymphomatoid granulomatosis: prospective clinical and therapeutic experience over10 years. N Engl J Med, 306, 6874.Google Scholar
Hochberg, E. P., Gilman, M. D., and Hasserjian, R. P. (2006) Case records of the Massachusetts General Hospital. Case 17–2006: A 34-year-old man with cavitary lung lesions. N Engl J Med, 354, 2485–93.Google Scholar
Hu, Y., Shao, E., Wu, J., and Meng, X. (2010) Isolated neurological involvement of lymphomatoid granulomatosis. Chin Med J 123, 3163–6.Google Scholar
Ishiura, H., Morikawa, M., Hamada, M., et al. (2008) Lymphomatoid granulomatosis involving central nervous system successfully treated with rituximab alone. Arch Neurol 65, 662–5.Google Scholar
Johnston, A., Coyle, L., and Nevell, D. (2006) Prolonged remission of refractory lymphomatoid granulomatosis after autologous hemopoietic stem cell transplantation with post-transplantation maintenance interferon. Leuk Lymph 47, 323–8.Google Scholar
Jung, K. H., Sung, H. J., Lee, J.-H., et al. (2009) A case of pulmonary lymphomatoid granulomatosis successfully treated by combination chemotherapy with rituximab. Chemotherapy, 55, 386–90.Google Scholar
Katzenstein, A.-L. A., Carrington, C. B., and Liebow, A. (1979) Lymphomatoid granulomatosis. A clinicopathologic study of 152 cases. Cancer, 43, 360–73.Google Scholar
Katzenstein, A.-L. A., Doxtader, E., and Narendra, S. (2010) Lymphomatoid granulomatosis: Insights gained over 4 decades. Am J Surg Pathol, 34, e3548.Google Scholar
Koss, M. N., Hochholzer, I., Langloss, J. M., et al. (1986) Lymphomatoid granulomatosis: A clinicopathologic study of 42 patients. Pathology, 18, 283–8.Google Scholar
Kwon, E. J., Katz, K. A., Draft, K. S., et al. (2006) Posttransplantation lymphoproliferative disease with features of lymphomatoid granulomatosis in a lung transplant patient. J Am Acad Dermatol, 54, 657–63.Google Scholar
Liebow, A. A., Carrington, C. R. B., and Friedman, P. J. (1972) Lymphomatoid granulomatosis. Hum Pathol, 3, 457558.Google Scholar
Mizuno, T., Takanashi, Y., Onodera, H., et al. (2003). A case of lymphomatoid granulomatosis/angiocentric immunoproliferative lesion with long clinical course and diffuse brain involvement. J Neurol Sci, 213, 6776.Google Scholar
Moertel, C. L., Carlson-Green, B., Watterson, J., et al. (2001) Lymphomatoid granulomatosis after childhood acute lymphoblastic leukemia: Report of effective therapy. Pediatrics, 107, e82.Google Scholar
Myers, J. L. (1990) Lymphomatoid granulomatosis: Past, present, & future. Mayo Clin Proc, 65, 274–8.Google Scholar
Patsalides, A. D., Atac, G., Hedge, U., et al. (2005) Lymphomatoid granulomatosis: Abnormalities of the brain at MR imaging. Radiology, 237, 265–73.Google Scholar
Pisani, R. J. and DeRemee, R. A. (1990). Clinical implications of the histopathologic diagnosis of pulmonary lymphomatoid granulomatosis. Mayo Clin Proc, 65, 151–63.Google Scholar
Roschewski, M. and Wilson, W. H. (2012) Lymphomatoid granulomatosis. Cancer J, 18, 469–74.Google Scholar
Schmidley, J. W. (2008) An unusual case of multiple discrete brain lesions. Rev Neurol Dis, 5, 2728, 3841.Google Scholar
Tateishi, U., Terae, S., Ogata, A., et al. (2001) MR imaging of the brain in lymphomatoid granulomatosis. AJNR Am J Neuroradiol, 22, 1283–90.Google Scholar
Wilson, W. H., Kingma, D. W., Raffeld, M., Wittes, R. E., and Jaffe, E. S. (1996) Association of lymphomatoid granulomatosis with Epstein–Barr viral infection of B lymphocytes and response to interferon-alpha 2b. Blood, 87, 4531–7.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×