Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-18T10:03:39.295Z Has data issue: false hasContentIssue false

1 - Introduction

Published online by Cambridge University Press:  23 December 2009

Zafer Sahinoglu
Affiliation:
Mitsubishi Electric Research Laboratories, Cambridge, Massachusetts
Sinan Gezici
Affiliation:
Bilkent University, Ankara
Ismail Güvenc
Affiliation:
DoCoMo Communications Laboratories USA, California
Get access

Summary

Wireless communications are becoming an integral part of our daily lives. Satellite communications, cellular networks, wireless local area networks (WLANs), and wireless sensor networks (WSNs) are only a few of the wireless technologies that we use every day. They make our daily lives easier by keeping us connected anywhere, anytime.

Since more and more devices are going wireless every day, it is essential that future wireless technologies can coexist with each other. Ultra-wideband (UWB) is a promising solution to this problem which became popular after the Federal Communications Commission (FCC) in the USA allowed the unlicensed use of UWB devices in February 2002 subject to emission constraints. Due to its unlicensed operation and low-power transmission, UWB can coexist with other wireless devices, and its low-cost, low-power transceiver circuitry makes it a good candidate for short- to medium-range wireless systems such as WSNs and wireless personal area networks (WPANs).

One of the most promising aspects of UWB radios are their potential for high-precision localization. Due to their large bandwidths, UWB receivers can resolve individual multipath components (MPCs); therefore, they are capable of accurately estimating the arrival time of the first signal path. This implies that the distance between a wireless transmitter and a receiver can be accurately determined, yielding high localization accuracy.

Such unique aspects of UWB make it an attractive technology for diverse communications, ranging, and radar applications such as robotics, emergency support, intelligent ambient sensing, health-care, asset tracking, and medical imaging (see Fig. 1.1).

Type
Chapter
Information
Ultra-wideband Positioning Systems
Theoretical Limits, Ranging Algorithms, and Protocols
, pp. 1 - 19
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×