Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-18T21:18:21.501Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  23 December 2009

Zafer Sahinoglu
Affiliation:
Mitsubishi Electric Research Laboratories, Cambridge, Massachusetts
Sinan Gezici
Affiliation:
Bilkent University, Ankara
Ismail Güvenc
Affiliation:
DoCoMo Communications Laboratories USA, California
Get access

Summary

Ability to locate assets and people will be driving not only emerging location-based services, but also mobile advertising, and safety and security applications. Cellular subscribers are increasingly using their handsets already as mapping and navigation tools. Location-aware vehicle-to-vehicle communication networks are being researched widely to increase traffic safety and efficiency. Asset management in warehouses, and equipment and personnel localization/tracking in hospitals are among other location-based applications that address vast markets. It is a fact that application space for localization technologies is very diverse, and performance requirements of such applications vary to a great extent.

The Global Positioning System (GPS) requires communication with at least four GPS satellites, and offers location accuracy of several meters. It is used mainly for outdoor location-based applications, because its accuracy can degrade significantly in indoor scenarios. Wireless local area network (WLAN) technology has recently become a candidate technology for indoor localization, but the location accuracy it offers is poor, and also high power consumption of WLAN terminals is an issue for power-sensitive mobile applications. Ultra-wideband technologies (UWB) promise to overcome power consumption and accuracy limitations of both GPS and WLAN, and are more suitable for indoor location-based applications.

The Federal Communications Commission (FCC) and European Commission (EC) regulate certain frequency bands for UWB systems. These have prompted worldwide research and development efforts on UWB. Another consequence was development of international wireless communication standards that adopt UWB technology such as IEEE 802.15.4a WPAN and IEEE 802.15.3c WPAN.

The writing of this book was prompted by the fact that UWB is the most promising technology for indoor localization and tracking.

Type
Chapter
Information
Ultra-wideband Positioning Systems
Theoretical Limits, Ranging Algorithms, and Protocols
, pp. ix - xii
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×