Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-21T15:58:56.515Z Has data issue: false hasContentIssue false

8 - The Pathophysiology of Dystonia

from Section I - Basics

Published online by Cambridge University Press:  31 May 2018

Dirk Dressler
Affiliation:
Hannover Medical School
Eckart Altenmüller
Affiliation:
Hochschule für Musik, Theater und Medien, Hannover
Joachim K. Krauss
Affiliation:
Hannover Medical School
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbruzzese, G, Marchese, R, Buccolieri, A, Gasparetto, B and Trompetto, C (2001). Abnormalities of sensorimotor integration in focal dystonia: a transcranial magnetic stimulation study. Brain 124(Pt 3): 537545.Google Scholar
Albanese, A, Bhatia, K, Bressman, SB, Delong, MR, Fahn, S, Fung, VS, Hallett, M, Jankovic, J, Jinnah, HA, Klein, C, Lang, AE, Mink, JW and Teller, JK (2013). Phenomenology and classification of dystonia: a consensus update. Mov Disord 28(7): 863873.CrossRefGoogle ScholarPubMed
Amadio, S, Panizza, M, Pisano, F, Maderna, L, Miscio, C, Nilsson, J, Volonte, MA, Comi, G and Galardi, G (2000). Transcranial magnetic stimulation and silent period in spasmodic torticollis. Am J Phys Med Rehabil 79(4): 361368.CrossRefGoogle ScholarPubMed
Amadio, S, Houdayer, E, Bianchi, F, Tesfaghebriel Tekle, H, Urban, IP, Butera, C, Guerriero, R, Cursi, M, Leocani, L, Comi, G and Del Carro, U (2014). Sensory tricks and brain excitability in cervical dystonia: a transcranial magnetic stimulation study. Mov Disord 29(9): 11851188.Google Scholar
Arai, N, Lu, MK, Ugawa, Y and Ziemann, U (2012). Effective connectivity between human supplementary motor area and primary motor cortex: a paired-coil TMS study. Exp Brain Res 220(1): 7987.CrossRefGoogle ScholarPubMed
Asmussen, MJ, Zapallow, CM, Jacobs, MF, Lee, KG, Tsang, P and Nelson, AJ (2014). Modulation of short-latency afferent inhibition depends on digit and task-relevance. PLoS One 9(8): e104807.CrossRefGoogle ScholarPubMed
Balint, B and Bhatia, KP (2014). Dystonia: an update on phenomenology, classification, pathogenesis and treatment. Curr Opin Neurol 27(4): 468476.CrossRefGoogle ScholarPubMed
Bara-Jimenez, W, Catalan, MJ, Hallett, M and Gerloff, C (1998). Abnormal somatosensory homunculus in dystonia of the hand. Ann Neurol 44(5): 828831.Google Scholar
Bara-Jimenez, W, Shelton, P and Hallett, M (2000). Spatial discrimination is abnormal in focal hand dystonia. Neurology 55(12): 18691873.CrossRefGoogle ScholarPubMed
Beck, S and Hallett, M (2010). Surround inhibition is modulated by task difficulty. Clin Neurophysiol 121(1): 98103.Google Scholar
Beck, S, Richardson, SP, Shamim, EA, Dang, N, Schubert, M and Hallett, M (2008). Short intracortical and surround inhibition are selectively reduced during movement initiation in focal hand dystonia. J Neurosci 28(41): 1036310369.Google Scholar
Beck, S, Houdayer, E, Richardson, SP and Hallett, M (2009a). The role of inhibition from the left dorsal premotor cortex in right-sided focal hand dystonia. Brain Stimul 2(4): 208214.Google Scholar
Beck, S, Schubert, M, Richardson, SP and Hallett, M (2009b). Surround inhibition depends on the force exerted and is abnormal in focal hand dystonia. J Appl Physiol 107(5): 15131518.Google Scholar
Benninger, DH, Lomarev, M, Lopez, G, Pal, N, Luckenbaugh, DA and Hallett, M (2011). Transcranial direct current stimulation for the treatment of focal hand dystonia. Mov Disord 26(9): 16981702.CrossRefGoogle ScholarPubMed
Brighina, F, Romano, M, Giglia, G, Saia, V, Puma, A, Giglia, F and Fierro, B (2009). Effects of cerebellar TMS on motor cortex of patients with focal dystonia: a preliminary report. Exp Brain Res 192(4): 651656.Google Scholar
Butterworth, S, Francis, S, Kelly, E, McGlone, F, Bowtell, R and Sawle, GV (2003). Abnormal cortical sensory activation in dystonia: an fMRI study. Mov Disord 18(6): 673682.Google Scholar
Catalan, MJ, Ishii, K, Bara-Jimenez, W and Hallett, M (2012). Reorganization of the human somatosensory cortex in hand dystonia. J Mov Disord 5(1): 58.CrossRefGoogle ScholarPubMed
Chen, R, Wassermann, EM, Canos, M and Hallett, M (1997). Impaired inhibition in writer’s cramp during voluntary muscle activation. Neurology 49(4): 10541059.CrossRefGoogle ScholarPubMed
Chen, R, Corwell, B and Hallett, M (1999a). Modulation of motor cortex excitability by median nerve and digit stimulation. Exp Brain Res 129(1): 7786.CrossRefGoogle ScholarPubMed
Chen, R, Lozano, AM and Ashby, P (1999b). Mechanism of the silent period following transcranial magnetic stimulation. Evidence from epidural recordings. Exp Brain Res 128(4): 539542.CrossRefGoogle ScholarPubMed
Chen, RS, Tsai, CH and Lu, CS (1995). Reciprocal inhibition in writer’s cramp. Mov Disord 10(5): 556561.CrossRefGoogle ScholarPubMed
Daskalakis, ZJ, Paradiso, GO, Christensen, BK, Fitzgerald, PB, Gunraj, C and Chen, R (2004). Exploring the connectivity between the cerebellum and motor cortex in humans. J Physiol 557(Pt 2): 689700.Google Scholar
Davare, M, Andres, M, Cosnard, G, Thonnard, JL and Olivier, E (2006). Dissociating the role of ventral and dorsal premotor cortex in precision grasping. J Neurosci 26(8): 22602268.Google Scholar
Davare, M, Lemon, R and Olivier, E (2008). Selective modulation of interactions between ventral premotor cortex and primary motor cortex during precision grasping in humans. J Physiol 586(Pt 11): 27352742.Google Scholar
Davare, M, Rothwell, JC and Lemon, RN (2010). Causal connectivity between the human anterior intraparietal area and premotor cortex during grasp. Curr Biol 20(2): 176181.CrossRefGoogle ScholarPubMed
Day, BL, Marsden, CD, Obeso, JA and Rothwell, JC (1984). Reciprocal inhibition between the muscles of the human forearm. J Physiol 349: 519534.Google Scholar
Defazio, G, Conte, A, Gigante, AF, Fabbrini, G and Berardelli, A (2015). Is tremor in dystonia a phenotypic feature of dystonia? Neurology 84(10): 10531059.Google Scholar
Delnooz, CC, Helmich, RC, Toni, I and van de Warrenburg, BP (2012). Reduced parietal connectivity with a premotor writing area in writer’s cramp. Mov Disord 27(11): 14251431.CrossRefGoogle ScholarPubMed
Deuschl, G, Seifert, C, Heinen, F, Illert, M and Lucking, CH (1992). Reciprocal inhibition of forearm flexor muscles in spasmodic torticollis. J Neurol Sci 113(1): 8590.Google Scholar
Di Lazzaro, V, Oliviero, A, Meglio, M, Cioni, B, Tamburrini, G, Tonali, P and Rothwell, JC (2000a). Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. Clin Neurophysiol 111(5): 794799.Google Scholar
Di Lazzaro, V, Oliviero, A, Profice, P, Pennisi, MA, Di Giovanni, S, Zito, G, Tonali, P and Rothwell, JC (2000b). Muscarinic receptor blockade has differential effects on the excitability of intracortical circuits in the human motor cortex. Exp Brain Res 135(4): 455461.Google Scholar
Edwards, MJ, Huang, YZ, Wood, NW, Rothwell, JC and Bhatia, KP (2003). Different patterns of electrophysiological deficits in manifesting and non-manifesting carriers of the DYT1 gene mutation. Brain 126(Pt 9): 20742080.CrossRefGoogle ScholarPubMed
Espay, AJ, Morgante, F, Purzner, J, Gunraj, CA, Lang, AE and Chen, R (2006). Cortical and spinal abnormalities in psychogenic dystonia. Ann Neurol 59(5): 825834.Google Scholar
Frima, N, Nasir, J and Grunewald, RA (2008). Abnormal vibration-induced illusion of movement in idiopathic focal dystonia: an endophenotypic marker? Mov Disord 23(3): 373377.CrossRefGoogle ScholarPubMed
Gallea, C, Horovitz, SG, Najee-Ullah, M and Hallett, M (2016). Impairment of a parteio-premotor network specialized for handwriting in writer’s cramp. Hum Brain Mapp 37: 43634375.CrossRefGoogle ScholarPubMed
Grunewald, RA, Yoneda, Y, Shipman, JM and Sagar, HJ (1997). Idiopathic focal dystonia: a disorder of muscle spindle afferent processing? Brain 120 (Pt 12): 21792185.CrossRefGoogle ScholarPubMed
Hallett, M (2011). Neurophysiology of dystonia: the role of inhibition. Neurobiol Dis 42(2): 177184.CrossRefGoogle ScholarPubMed
Hanajima, R, Nomura, Y, Segawa, M and Ugawa, Y (2007). Intracortical inhibition of the motor cortex in Segawa disease (DYT5). Neurology 68(13): 10391044.CrossRefGoogle ScholarPubMed
Horovitz, SG, Gallea, C, Najee-Ullah, M and Hallett, M (2013). Functional anatomy of writing with the dominant hand. PLoS One 8(7): e67931.Google Scholar
Houdayer, E, Beck, S, Karabanov, A, Poston, B and Hallett, M (2012). The differential modulation of the ventral premotor–motor interaction during movement initiation is deficient in patients with focal hand dystonia. Eur J Neurosci 35(3): 478485.CrossRefGoogle ScholarPubMed
Huang, YZ (2010). The modulation of cortical motor circuits and spinal reflexes using theta burst stimulation in healthy and dystonic subjects. Restor Neurol Neurosci 28(4): 449457.Google Scholar
Jones, SJ, Halonen, JP and Shawkat, F (1989). Centrifugal and centripetal mechanisms involved in the ‘gating’ of cortical SEPs during movement. Electroencephalogr Clin Neurophysiol 74(1): 3645.CrossRefGoogle ScholarPubMed
Kanai, R, Paulus, W and Walsh, V (2010). Transcranial alternating current stimulation (tACS) modulates cortical excitability as assessed by TMS-induced phosphene thresholds. Clin Neurophysiol 121(9): 15511554.CrossRefGoogle ScholarPubMed
Kang, JS, Terranova, C, Hilker, R, Quartarone, A and Ziemann, U (2011). Deficient homeostatic regulation of practice-dependent plasticity in writer’s cramp. Cereb Cortex 21(5): 12031212.CrossRefGoogle ScholarPubMed
Kassavetis, P, Hoffland, BS, Saifee, TA, Bhatia, KP, van de Warrenburg, BP, Rothwell, JC and Edwards, MJ (2011). Cerebellar brain inhibition is decreased in active and surround muscles at the onset of voluntary movement. Exp Brain Res 209(3): 437442.Google Scholar
Kessler, KR, Ruge, D, Ilic, TV and Ziemann, U (2005). Short latency afferent inhibition and facilitation in patients with writer’s cramp. Mov Disord 20(2): 238242.CrossRefGoogle ScholarPubMed
Kinugawa, K, Vidailhet, M, Clot, F, Apartis, E, Grabli, D and Roze, E (2009). Myoclonus-dystonia: an update. Mov Disord 24(4): 479489.CrossRefGoogle ScholarPubMed
Koch, G, Fernandez Del Olmo, M, Cheeran, B, Ruge, D, Schippling, S, Caltagirone, C and Rothwell, JC (2007). Focal stimulation of the posterior parietal cortex increases the excitability of the ipsilateral motor cortex. J Neurosci 27(25): 68156822.CrossRefGoogle ScholarPubMed
Koch, G, Schneider, S, Baumer, T, Franca, M, Munchau, A, Cheeran, B, Fernandez del Olmo, M, Cordivari, C, Rounis, E, Caltagirone, C, Bhatia, K and Rothwell, JC (2008). Altered dorsal premotor–motor interhemispheric pathway activity in focal arm dystonia. Mov Disord 23(5): 660668.Google Scholar
Koch, G, Ruge, D, Cheeran, B, Fernandez Del Olmo, M, Pecchioli, C, Marconi, B, Versace, V, Lo Gerfo, E, Torriero, S, Oliveri, M, Caltagirone, C and Rothwell, JC (2009). TMS activation of interhemispheric pathways between the posterior parietal cortex and the contralateral motor cortex. J Physiol 587(Pt 17): 42814292.Google Scholar
Kujirai, T, Caramia, MD, Rothwell, JC, Day, BL, Thompson, PD, Ferbert, A, Wroe, S, Asselman, P and Marsden, CD (1993). Corticocortical inhibition in human motor cortex. J Physiol 471: 501519.CrossRefGoogle ScholarPubMed
Lalli, S, Piacentini, S, Franzini, A, Panzacchi, A, Cerami, C, Messina, G, Ferre, F, Perani, D and Albanese, A (2012). Epidural premotor cortical stimulation in primary focal dystonia: clinical and 18F-fluoro deoxyglucose positron emission tomography open study. Mov Disord 27(4): 533538.CrossRefGoogle ScholarPubMed
Marsden, CD, Merton, PA and Morton, HB (1983). Direct electrical stimulation of corticospinal pathways through the intact scalp in human subjects. Adv Neurol 39: 387391.Google Scholar
McDonnell, MN, Thompson, PD and Ridding, MC (2007). The effect of cutaneous input on intracortical inhibition in focal task-specific dystonia. Mov Disord 22(9): 12861292.CrossRefGoogle ScholarPubMed
McDougall, L, Kiernan, D, Kiss, ZH, Suchowersky, O and Welsh, TN (2015). Abnormal surround inhibition does not affect asymptomatic limbs in people with cervical dystonia. Neurosci Lett 14:711.CrossRefGoogle Scholar
Meunier, S, Garnero, L, Ducorps, A, Mazieres, L, Lehericy, S, du Montcel, ST, Renault, B and Vidailhet, M (2001). Human brain mapping in dystonia reveals both endophenotypic traits and adaptive reorganization. Ann Neurol 50(4): 521527.CrossRefGoogle ScholarPubMed
Murase, N, Kaji, R, Shimazu, H, Katayama-Hirota, M, Ikeda, A, Kohara, N, Kimura, J, Shibasaki, H and Rothwell, JC (2000). Abnormal premovement gating of somatosensory input in writer’s cramp. Brain 123(Pt 9): 18131829.CrossRefGoogle ScholarPubMed
Nelson, AJ, Blake, DT and Chen, R (2009). Digit-specific aberrations in the primary somatosensory cortex in writer’s cramp. Ann Neurol 66(2): 146154.CrossRefGoogle ScholarPubMed
Nelson, AJ, Hoque, T, Gunraj, C, Ni, Z and Chen, R (2010). Impaired interhemispheric inhibition in writer’s cramp. Neurology 75(5): 441447.Google Scholar
O’Dwyer, JP, O’Riordan, S, Saunders-Pullman, R, Bressman, SB, Molloy, F, Lynch, T and Hutchinson, M (2005). Sensory abnormalities in unaffected relatives in familial adult-onset dystonia. Neurology 65(6): 938940.CrossRefGoogle ScholarPubMed
Pirio Richardson, S (2015). Enhanced dorsal premotor-motor inhibition in cervical dystonia. Clin Neurophysiol 126(7): 13871391.CrossRefGoogle ScholarPubMed
Pirio Richardson, S, Bliem, B, Voller, B, Dang, N and Hallett, M (2009). Long-latency afferent inhibition during phasic finger movement in focal hand dystonia. Exp Brain Res 193(2): 173179.Google Scholar
Pirio Richardson, S, Beck, S, Bliem, B and Hallett, M (2014). Abnormal dorsal premotor–motor inhibition in writer’s cramp. Mov Disord 29(6): 797803.CrossRefGoogle ScholarPubMed
Porcacchia, P, Palomar, FJ, Caceres-Redondo, MT, Huertas-Fernandez, I, Martin-Rodriguez, JF, Carrillo, F, Koch, G and Mir, P (2014). Parieto-motor cortical dysfunction in primary cervical dystonia. Brain Stimul 7(5): 650657.Google Scholar
Poston, B, Kukke, SN, Paine, RW, Francis, S and Hallett, M (2012). Cortical silent period duration and its implications for surround inhibition of a hand muscle. Eur J Neurosci 36(7): 29642971.CrossRefGoogle ScholarPubMed
Putzki, N, Stude, P, Konczak, J, Graf, K, Diener, HC and Maschke, M (2006). Kinesthesia is impaired in focal dystonia. Mov Disord 21(6): 754760.Google Scholar
Quartarone, A and Hallett, M (2013). Emerging concepts in the physiological basis of dystonia. Mov Disord 28(7): 958967.CrossRefGoogle ScholarPubMed
Quartarone, A, Bagnato, S, Rizzo, V, Siebner, HR, Dattola, V, Scalfari, A, Morgante, F, Battaglia, F, Romano, M and Girlanda, P (2003). Abnormal associative plasticity of the human motor cortex in writer’s cramp. Brain 126(Pt 12): 25862596.Google Scholar
Quartarone, A, Rizzo, V, Bagnato, S, Morgante, F, Sant’Angelo, A, Romano, M, Crupi, D, Girlanda, P, Rothwell, JC and Siebner, HR (2005). Homeostatic-like plasticity of the primary motor hand area is impaired in focal hand dystonia. Brain 128(Pt 8): 19431950.Google Scholar
Quartarone, A, Siebner, HR and Rothwell, JC (2006). Task-specific hand dystonia: can too much plasticity be bad for you? Trends Neurosci 29(4): 192199.Google Scholar
Quartarone, A, Morgante, F, Sant’Angelo, A, Rizzo, V, Bagnato, S, Terranova, C, Siebner, HR, Berardelli, A and Girlanda, P (2008). Abnormal plasticity of sensorimotor circuits extends beyond the affected body part in focal dystonia. J Neurol Neurosurg Psychiatry 79(9): 985990.Google Scholar
Ramos, VF, Karp, BI and Hallett, M (2014). Tricks in dystonia: ordering the complexity. J Neurol Neurosurg Psychiatry 85(9): 987993.CrossRefGoogle ScholarPubMed
Richardson, SP, Bliem, B, Lomarev, M, Shamim, E, Dang, N and Hallett, M (2008). Changes in short afferent inhibition during phasic movement in focal dystonia. Muscle Nerve 37(3): 358363.Google Scholar
Roze, E, Soumare, A, Pironneau, I, Sangla, S, de Cock, VC, Teixeira, A, Astorquiza, A, Bonnet, C, Bleton, JP, Vidailhet, M and Elbaz, A (2009). Case-control study of writer’s cramp. Brain 132(Pt 3): 756764.Google Scholar
Sabine, M, George, L, Roze, E, Apartis, E, Trocello, JM and Marie, V (2008). Cortical excitability in DYT-11 positive myoclonus dystonia. Mov Disord 23(5): 761764.CrossRefGoogle Scholar
Samargia, S, Schmidt, R and Kimberley, TJ (2014). Shortened cortical silent period in adductor spasmodic dysphonia: evidence for widespread cortical excitability. Neurosci Lett 560: 1215.Google Scholar
Sattler, V, Dickler, M, Michaud, M, Meunier, S and Simonetta-Moreau, M (2014). Does abnormal interhemispheric inhibition play a role in mirror dystonia? Mov Disord 29(6): 787796.CrossRefGoogle ScholarPubMed
Scontrini, A, Conte, A, Defazio, G, Fiorio, M, Fabbrini, G, Suppa, A, Tinazzi, M and Berardelli, A (2009). Somatosensory temporal discrimination in patients with primary focal dystonia. J Neurol Neurosurg Psychiatry 80(12): 13151319.CrossRefGoogle ScholarPubMed
Sheehy, MP and Marsden, CD (1982). Writers’ cramp: a focal dystonia. Brain 105(Pt 3): 461480.CrossRefGoogle ScholarPubMed
Siebner, HR, Tormos, JM, Ceballos-Baumann, AO, Auer, C, Catala, MD, Conrad, B and Pascual-Leone, A (1999). Low-frequency repetitive transcranial magnetic stimulation of the motor cortex in writer’s cramp. Neurology 52(3): 529537.Google Scholar
Siebner, HR, Lang, N, Rizzo, V, Nitsche, MA, Paulus, W, Lemon, RN and Rothwell, JC (2004). Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex. J Neurosci 24(13): 33793385.CrossRefGoogle ScholarPubMed
Sohn, YH and Hallett, M (2004a). Disturbed surround inhibition in focal hand dystonia. Ann Neurol 56(4): 595599.CrossRefGoogle ScholarPubMed
Sohn, YH and Hallett, M (2004b). Surround inhibition in human motor system. Exp Brain Res 158(4): 397404.Google Scholar
Sohn, YH, Jung, HY, Kaelin-Lang, A and Hallett, M (2003). Excitability of the ipsilateral motor cortex during phasic voluntary hand movement. Exp Brain Res 148(2): 176185.Google Scholar
Sommer, M, Ruge, D, Tergau, F, Beuche, W, Altenmuller, E and Paulus, W (2002). Intracortical excitability in the hand motor representation in hand dystonia and blepharospasm. Mov Disord 17(5): 10171025.CrossRefGoogle ScholarPubMed
Starr, A and Cohen, LG (1985). ‘Gating’ of somatosensory evoked potentials begins before the onset of voluntary movement in man. Brain Res 348(1): 183186.Google Scholar
Stefan, K, Kunesch, E, Cohen, LG, Benecke, R and Classen, J (2000). Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123(Pt 3): 572584.CrossRefGoogle ScholarPubMed
Stinear, CM and Byblow, WD (2004). Impaired modulation of intracortical inhibition in focal hand dystonia. Cereb Cortex 14(5): 555561.Google Scholar
Stinear, CM and Byblow, WD (2005). Task-dependent modulation of silent period duration in focal hand dystonia. Mov Disord 20(9): 11431151.CrossRefGoogle ScholarPubMed
Tamura, Y, Matsuhashi, M, Lin, P, Ou, B, Vorbach, S, Kakigi, R and Hallett, M (2008). Impaired intracortical inhibition in the primary somatosensory cortex in focal hand dystonia. Mov Disord 23(4): 558565.CrossRefGoogle ScholarPubMed
Tamura, Y, Ueki, Y, Lin, P, Vorbach, S, Mima, T, Kakigi, R and Hallett, M (2009). Disordered plasticity in the primary somatosensory cortex in focal hand dystonia. Brain 132(Pt 3): 749755.Google Scholar
Thirugnanasambandam, N, Khera, R, Wang, H, Kukke, SN and Hallett, M (2015). Distinct interneuronal networks influence excitability of the surround during movement initiation. J Neurophysiol 114(2):11021108.Google Scholar
Tinazzi, M, Priori, A, Bertolasi, L, Frasson, E, Mauguiere, F and Fiaschi, A (2000). Abnormal central integration of a dual somatosensory input in dystonia: evidence for sensory overflow. Brain 123 (Pt 1): 4250.CrossRefGoogle ScholarPubMed
Tinazzi, M, Farina, S, Edwards, M, Moretto, G, Restivo, D, Fiaschi, A and Berardelli, A (2005). Task-specific impairment of motor cortical excitation and inhibition in patients with writer’s cramp. Neurosci Lett 378(1): 5558.CrossRefGoogle ScholarPubMed
Tisch, S, Limousin, P, Rothwell, JC, Asselman, P, Quinn, N, Jahanshahi, M, Bhatia, KP and Hariz, M (2006a). Changes in blink reflex excitability after globus pallidus internus stimulation for dystonia. Mov Disord 21(10): 16501655.CrossRefGoogle ScholarPubMed
Tisch, S, Limousin, P, Rothwell, JC, Asselman, P, Zrinzo, L, Jahanshahi, M, Bhatia, KP and Hariz, MI (2006b). Changes in forearm reciprocal inhibition following pallidal stimulation for dystonia. Neurology 66(7): 10911093.CrossRefGoogle ScholarPubMed
Turrigiano, GG, Leslie, KR, Desai, NS, Rutherford, LC and Nelson, SB (1998). Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391(6670): 892896.CrossRefGoogle ScholarPubMed
Ugawa, Y, Uesaka, Y, Terao, Y, Hanajima, R and Kanazawa, I (1995). Magnetic stimulation over the cerebellum in humans. Ann Neurol 37(6): 703713.CrossRefGoogle ScholarPubMed
van der Salm, SM, van Rootselaar, AF, Foncke, EM, Koelman, JH, Bour, LJ, Bhatia, KP, Rothwell, JC and Tijssen, MA (2009). Normal cortical excitability in myoclonus-dystonia: a TMS study. Exp Neurol 216(2): 300305.Google Scholar
Voller, B, St Clair Gibson, A, Dambrosia, J, Pirio Richardson, S, Lomarev, M, Dang, N and Hallett, M (2006). Short-latency afferent inhibition during selective finger movement. Exp Brain Res 169(2): 226231.Google Scholar
Weise, D, Schramm, A, Stefan, K, Wolters, A, Reiners, K, Naumann, M and Classen, J (2006). The two sides of associative plasticity in writer’s cramp. Brain 129(Pt 10): 27092721.Google Scholar
Werhahn, KJ, Kunesch, E, Noachtar, S, Benecke, R and Classen, J (1999). Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. J Physiol 517(Pt 2): 591597.Google Scholar
Yoneda, Y, Rome, S, Sagar, HJ and Grunewald, RA (2000). Abnormal perception of the tonic vibration reflex in idiopathic focal dystonia. Eur J Neurol 7(5): 529533.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×