Skip to main content Accessibility help
×
Home
  • Print publication year: 2019
  • Online publication date: May 2019

Chapter 25 - Neurorehabilitation Practice for Stroke Patients

from Section 4 - Therapeutic Strategies and Neurorehabilitation

Related content

Powered by UNSILO
1.Feigin, VL, Abajobir, AA, Abate, KH, et al. Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet Neurol 2017; 16: 877–97.
2.World Health Organization. WHO Global Disability Action Plan 2014–2021: Better Health for All People with Disability. Geneva: World Health Organization; 2014.
3.Langhorne, P, Sandercock, P, Prasad, K. Evidence-based practice for stroke. Lancet Neurol 2009; 8: 308–9.
4.Langhorne, P, Bernhardt, J, Kwakkel, G. Stroke rehabilitation. Lancet 2011; 377: 1693–702.
5.Bernhardt, J, Thuy, MN, Collier, JM, Legg, LA. Very early versus delayed mobilisation after stroke. Cochrane Database Syst Rev 2009; 1: CD006187.
6.Bernhardt, J, The AVERT Trial Collaboration group. Efficacy and safety of very early mobilisation within 24 h of stroke onset (AVERT): a randomised controlled trial. Lancet 2015; 386: 4655.
7.Bernhardt, J, Churilov, L, Ellery, F, et al. Prespecified dose-response analysis for a very early rehabilitation trial (AVERT). Neurology 2016; 86: 2138–45.
8.Bernhardt, J, Hayward, KS, Kwakkel, G, et al. Agreed definitions and a shared vision for new standards in stroke recovery research: the Stroke Recovery and Rehabilitation Roundtable Taskforce. Neurorehabil Neural Repair 2017; 31: 793–9.
9.Schiemanck, SK, Kwakkel, G, Post, MW, Prevo, AJ. Predictive value of ischemic lesion volume assessed with magnetic resonance imaging for neurological deficits and functional outcome poststroke: a critical review of the literature. Neurorehabil Neural Repair 2006; 20: 492502.
10.Schiemanck, SK, Kwakkel, G, Post, MW, Kappelle, LJ, Prevo, AJ. Predicting long-term independency in activities of daily living after middle cerebral artery stroke: does information from MRI have added predictive value compared with clinical information? Stroke 2006; 37: 1050–4.
11.Veerbeek, JM, van Wegen, EE, Harmeling-van der Wel, BC, Kwakkel, G, Investigators, E. Is accurate prediction of gait in nonambulatory stroke patients possible within 72 hours poststroke? The EPOS Study. Neurorehabil Neural Repair 2011; 25: 268–74.
12.Nijland, RH, van Wegen, EE, Harmeling-van der Wel, BC, Kwakkel, G, EPOS Investigators. Presence of finger extension and shoulder abduction within 72 hours after stroke predicts functional recovery: early prediction of functional outcome after stroke: the EPOS Cohort Study. Stroke 2010; 41: 745–50.
13.Scrutinio, D, Lanzillo, B, Guida, P, et al. Development and validation of a predictive model for functional outcome after stroke rehabilitation. The Maugeri Model. Stroke 2017; 48: 3308–15.
14.Breitenstein, C, Grewe, T, Floel, A, et al. Intensive speech and language therapy in patients with chronic aphasia after stroke: a randomised, open-label, blinded-endpoint, controlled trial in a health-care setting. Lancet 2017; 389: 1528–38.
15.Charidimou, A, Kasselimis, D, Varkanitsa, M, et al. Why is it difficult to predict language impairment and outcome in patients with aphasia after stroke? J Clin Neurol 2014; 10: 7583.
16.Terre, R, Mearin, F. Resolution of tracheal aspiration after the acute phase of stroke-related oropharyngeal dysphagia. Am J Gastroenterol 2009; 104: 923–32.
17.Mann, G, Hankey, GJ, Cameron, D. Swallowing function after stroke: prognosis and prognostic factors at 6 months. Stroke 1999; 30: 744–8.
18.Winstein, CJ, Stein, J, Arena, R, et al. Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2016; 47: e98169.
19.Carr, J, Shephard, R. Optimizing functional motor recovery after stroke. In: Mehrholz, J, ed. Physical Therapy for the Stroke Patient: Early Stage Rehabilitation. Stuttgart: Thieme; 2012: 51133.
20.Carr, J, Shepherd, R. Stroke Rehabilitation: Guidelines for Exercises and Training. London: Butterworth Heinemann; 2003.
21.Wulf, G, Lewthwaite, R. Optimizing performance through intrinsic motivation and attention for learning: the OPTIMAL theory of motor learning. Psychon Bull Rev 2016; 23: 1382–414.
22.Wolf, SL, Kwakkel, G, Bayley, M, McDonnell, MN. Best practice for arm recovery post stroke: an international application. Physiotherapy 2016; 102: 14.
23.Reinkensmeyer, DJ, Burdet, E, Casadio, M, et al. Computational neurorehabilitation: modeling plasticity and learning to predict recovery. J Neuroeng Rehabil 2016; 13: 125.
24.Askim, T, Indredavik, B, Vangberg, T, Haberg, A. Motor network changes associated with successful motor skill relearning after acute ischemic stroke: a longitudinal functional magnetic resonance imaging study. Neurorehabil Neural Repair 2009; 23: 295304.
25.Nudo, RJ. Mechanisms for recovery of motor function following cortical damage. Curr Opin Neurobiol 2006; 16: 638–44.
26.Winstein, CJ, Kay, DB. Translating the science into practice: shaping rehabilitation practice to enhance recovery after brain damage. Prog Brain Res 2015; 218: 331–60.
27.Wulf, G, Shea, C, Lewthwaite, R. Motor skill learning and performance: a review of influential factors. Med Educ 2010; 44: 7584.
28.Schmidt, R, Lee, T. Motor Control and Learning – a Behavioral Emphasis. Champaign, IL: Human Kinetics; 2011.
29.Schmidt, R, Lee, T. Motor Learning and Control. Champaign, IL: Human Kinetics; 2005.
30.Veerbeek, JM, van Wegen, E, van Peppen, R, et al. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One 2014; 9: e87987.
31.Lohse, KR, Lang, CE, Boyd, LA. Is more better? Using metadata to explore dose-response relationships in stroke rehabilitation. Stroke 2014; 45: 2053–8.
32.Kwakkel, G, van Peppen, R, Wagenaar, RC, et al. Effects of augmented exercise therapy time after stroke: a meta-analysis. Stroke 2004; 35: 2529–39.
33.ATTEND Collaborative Group. Family-led rehabilitation after stroke in India (ATTEND): a randomised controlled trial. Lancet 2017; 390: 588–99.
34.Winstein, CJ, Wolf, SL, Dromerick, AW, et al. Effect of a task-oriented rehabilitation program on upper extremity recovery following motor stroke: the ICARE randomized clinical trial. JAMA 2016; 315: 571–81.
35.Saposnik, G, Cohen, LG, Mamdani, M, et al. Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial. Lancet Neurol 2016; 15: 1019–27.
36.Buma, F, Kwakkel, G, Ramsey, N. Understanding upper limb recovery after stroke. Restor Neurol Neurosci 2013; 31: 707–22.
37.Walshe, FM. Contributions of John Hughlings Jackson to neurology. A brief introduction to his teachings. Arch Neurol 1961; 5: 119–31.
38.Gracies, J. Pathophysiology of spastic paresis. II: Emergence of muscle overactivity. Muscle Nerve 2005; 31: 552–71.
39.Gracies, JM. Pathophysiology of spastic paresis. I: Paresis and soft tissue changes. Muscle Nerve 2005; 31: 535–51.
40.O'Dwyer, NJ, Ada, L. Reflex hyperexcitability and muscle contracture in relation to spastic hypertonia. Curr Opin Neurol 1996; 9: 451–5.
41.O'Dwyer, NJ, Ada, L, Neilson, PD. Spasticity and muscle contracture following stroke. Brain 1996; 119: 1737–49.
42.Carr, J, Shepperd, R. Optimizing functional motor recovery after stroke. In: Mehrholz, J, ed. Physical Therapy for the Stroke Patient: Early Stage Rehabilitation. New York, Stuttgart: Thieme; 2012: 51133.
43.Lance, JW. Symposium synopsis. In: Feldman, RG, Young, RR, Koella, WP, eds. Spasticity: Disordered Motor Control. Chicago Year Book Medical Publications; 1980: 485–94.
44.Pandyan, AD, Gregoric, M, Barnes, MP, et al. Spasticity: clinical perceptions, neurological realities and meaningful measurement. Disabil Rehabil 2005; 27: 26.
45.Pohl, M, Rockstroh, G, Rückriem, S, et al. Measurement of the effect of a bolus dose of intrathecal baclofen by continuous measurement of force under fibreglass casts. J Neurol 2002; 249: 1254–62.
46.Pohl, M, Rockstroh, G, Rückriem, S, et al. Time course of the effect of a bolus dose of intrathecal baclofen on severe cerebral spasticity. J Neurol 2003; 250: 1195–200.
47.Tardieu, G, Shentoub, S, Delarue, R. A la recherche d'une technique de mesure de la spasticité. Rev Neurol 1954; 91: 143–4.
48.Held, J, Pierrot-Deseilligny, E. Reeducation motrice des affections neurologiques. Paris: J-B Baillière; 1969.
49.Fosang, AL, Galea, MP, McCoy, AT, Reddihough, DS, Story, I. Measures of muscle and joint performance in the lower limb of children with cerebral palsy. Dev Med Child Neurol 2003; 45: 664–70.
50.Mehrholz, J, Major, Y, Meißner, D, et al. The influence of contractures and variation in measurement stretching velocity on the reliability of the modified Ashworth scale in patients with severe brain injury. Clin Rehabil 2005; 19: 6372.
51.Boyd, R, Ada, L. Physiotherapy management of spasticity. In: Barnes, M, Johnson, G, eds. Upper Motor Neuron Syndrome and Spasticity: Clinical Management and Neurophysiology. Cambridge University Press; 2001: 96121.
52.Boyd, R, Graham, H. Objective measurement of clinical findings in the use of botulinum toxin type A in the management of spasticity in children with cerebral palsy. Eur J Neurol 1999; 6: S23–36.
53.Mehrholz, J, Wagner, K, Meißner, D, et al. Reliability of the modified Tardieu Scale and the modified Ashworth scale in adult patients with severe brain injury: a comparison study. Clin Rehabil 2005; 19: 751–9.
54.Walshe, FMR. On certain tonic or postural reflexes in hemiplegia, with special reference to the so-called “associated movements.” Brain 1923; 46: 137.
55.Ada, L, O'Dwyer, N. Do associated reactions in the upper limb after stroke contribute to contracture formation? Clin Rehabil 2001; 15: 186–94.
56.Ada, L, Canning, CG, Low, SL. Stroke patients have selective muscle weakness in shortened range. Brain 2003; 126: 724–31.
57.Hwang, IS, Tung, LC, Yang, JF, et al. Electromyographic analyses of global synkinesis in the paretic upper limb after stroke. Phys Ther 2005; 85: 755–65.
58.Platz, T, Eickhof, C, Nuyens, G, Vuadens, P. Clinical scales for the assessment of spasticity, associated phenomena, and function: a systematic review of the literature. Disabil Rehabil 2005; 27: 718.
59.Pohl, M, Rückriem, S, Mehrholz, J, et al. Effectiveness of serial casting in patients with severe cerebral spasticity: a comparison study. Arch Phys Med Rehabil 2002; 83: 784–90.
60.Cramer, SC. Editorial comment – spasticity after stroke: what's the catch? Stroke 2004; 35: 139–40.
61.Sommerfeld, DK, Eek, EU, Svensson, AK, Holmqvist, LW, von Arbin, MH. Spasticity after stroke: its occurrence and association with motor impairments and activity limitations. Stroke 2004; 35: 134–9.
62.Walker, MF, Hoffmann, TC, Brady, MC, et al. Improving the development, monitoring and reporting of stroke rehabilitation research: consensus-based core recommendations from the stroke recovery and rehabilitation roundtable. Int J Stroke 2017; 12: 472–9.
63.Kwakkel, G, Lannin, NA, Borschmann, K, et al. Standardized measurement of sensorimotor recovery in stroke trials: consensus-based core recommendations from the stroke recovery and rehabilitation roundtable. Neurorehabil Neural Repair 2017; 31: 784–92.
64.Bernhardt, J, Borschmann, K, Boyd, L, et al. Moving rehabilitation research forward: developing consensus statements for rehabilitation and recovery research. Neurorehabil Neural Repair 2017; 31: 694–8.
65.Pollock, A, Gray, C, Culham, E, Durward, BR, Langhorne, P. Interventions for improving sit-to-stand ability following stroke. Cochrane Database Syst Rev 2014; 5: CD007232.
66.Pollock, A, Baer, G, Campbell, P, et al. Physical rehabilitation approaches for the recovery of function and mobility following stroke. Cochrane Database Syst Rev 2014; 4: CD001920.
67.Mehrholz, J, Elsner, B, Werner, C, Kugler, J, Pohl, M. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev 2013; 7: CD006185.
68.Colombo, G, Joerg, M, Schreier, R, Dietz, V. Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Devel 2000; 37: 693700.
69.Hesse, S, Sarkodie-Gyan, T, Uhlenbrock, D. Development of an advanced mechanised gait trainer, controlling movement of the centre of mass, for restoring gait in non-ambulant subjects. Biomedizinische Technik 1999; 44: 194201.
70.Schmidt, H, Hesse, S, Bernhardt, R, Krüger, J. Hapticwalker – a novel haptic foot device. ACM Transactions on Applied Perception 2005; 2: 166–80.
71.Louie, DR, Eng, JJ. Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review. J Neuroeng Rehabil 2016; 13: 110.
72.Wall, A, Borg, J, Palmcrantz, S. Clinical application of the hybrid assistive limb (HAL) for gait training: a systematic review. Front Syst Neurosci 2015; 9: 48.
73.Hesse, S, Schmidt, H, Werner, C, Bardeleben, A. Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Curr Opin Neurol 2003; 16: 705–10.
74.Mehrholz, J, Thomas, S, Elsner, B. Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev 2017; 8: CD002840.
75.Mehrholz, J, Kugler, J, Elsner, B. Network meta-analysis on randomized trials focusing on the effects of interventions for improving ambulation and gait related outcomes after stroke. Deutsches Ärzteblatt 2018; 115: 639–45.
76.Pohl, M, Mehrholz, J, Ritschel, C, Ruckriem, S. Speed-dependent treadmill training in ambulatory hemiparetic stroke patients: a randomized controlled trial. Stroke 2002; 33: 553–8.
77.Pollock, A, Farmer, SE, Brady, MC, et al. Interventions for improving upper limb function after stroke. Cochrane Database Syst Rev 2014; 11: CD010820.
78.Kwakkel, G, Veerbeek, JM, van Wegen, EE, Wolf, SL. Constraint-induced movement therapy after stroke. Lancet Neurol 2015; 14: 224–34.
79.Barzel, A, Ketels, G, Stark, A, et al. Home-based constraint-induced movement therapy for patients with upper limb dysfunction after stroke (HOMECIMT): a cluster-randomised, controlled trial. Lancet Neurol 2015; 14: 893902.
80.Nakayama, H, Jørgensen, HS, Raaschou, HO, Olsen, TS. Recovery of upper extremity function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil 1994; 75: 394–8.
81.Platz, T. Impairment-oriented training (IOT) – scientific concept and evidence-based treatment strategies. Restor Neurol Neurosci 2004; 22: 301–15.
82.Platz, T, Elsner, B, Mehrholz, J. Arm basis training and arm ability training: two impairment-oriented exercise training techniques for improving arm function after stroke. Cochrane Database Syst Rev 2015; 9: CD011854.
83.Platz, T. IOT impairment-oriented training. Schädigungs-orientiertes Training. Theorie und deutschsprachige Manuale für Therapie und Assessment. Arm-Basis-Training, Arm-Fähigkeits-training, Fugl-Meyer Test (Arm), TEMPA. Baden-Baden: Deutscher Wissenschafts-Verlag (DWV); 2006.
84.Platz, T, Winter, T, Müller, N, et al. Arm ability training for stroke and traumatic brain injury patients with mild arm paresis: a single-blind, randomized, controlled trial. Arch Phys Med Rehabil 2001; 82: 961–8.
85.Platz, T, van Kaick, S, Mehrholz, J, et al. Best conventional therapy versus modular impairment-oriented training for arm paresis after stroke: a single-blind, multicenter randomized controlled trial. Neurorehabil Neural Repair 2009; 23: 706–16.
86.Platz, T, Eickhof, C, van Kaick, S, et al. Impairment-oriented training or Bobath therapy for severe arm paresis after stroke: a single-blind, multicentre randomized controlled trial. Clin Rehabil 2005; 19: 714–24.
87.Hatem, SM, Saussez, G, Della Faille, M, et al. Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery. Front Human Neurosci 2016; 10: 442.
88.Ramachandran, VS. Phantom limbs, neglect syndromes, repressed memory, and Freudian psychology. Int Rev Neurobiol 1994; 37: 291333.
89.Ramachandran, VS, Altschuler, EL. The use of visual feedback, in particular mirror visual feedback, in restoring brain function. Brain 2009; 132: 1693–710.
90.Ramachandran, VS, Rogers-Ramachandran, D, Cobb, S. Touching the phantom limb. Nature 1995; 377: 489–90.
91.Ramachandran, VS, Rogers-Ramachandran, D. Synaesthesia in phantom limbs induced with mirrors. Biological Sci 1996; 263: 377–86.
92.Thieme, H, Morkisch, N, Mehrholz, J, et al. Mirror therapy for improving motor function after stroke. Cochrane Database Syst Rev 2018; 7: CD008449.
93.Thieme, H, Morkisch, N, Rietz, C, Dohle, C, Borgetto, B. The efficacy of movement representation techniques for treatment of limb pain – a systematic review and meta-analysis. Journal Pain 2016; 17: 167–80.
94.Burgar, C, Lum, P, Shor, P, van der Loos, H. Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience. J Rehabil Res Dev 2000; 37: 663–73.
95.Krebs, HI, Hogan, N, Aisen, ML, Volpe, BT. Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng 1998; 6: 7587.
96.Reinkensmeyer, DJ, Kahn, LE, Averbuch, M, et al. Understanding and treating arm movement impairment after chronic brain injury: progress with the arm guide. J Rehabil Res Dev 2000; 37: 653–62.
97.Fazekas, G, Horvath, M, Troznai, T, Toth, A. Robot-mediated upper limb physiotherapy for patients with spastic hemiparesis: a preliminary study. J Rehabil Med 2007; 39: 580–2.
98.Coote, S, Stokes, EK. The effect of robot mediated therapy on upper extremity function following stroke – initial results. Ir J Med Sci 2003; 172: 26–7.
99.Riener, R, Nef, T, Colombo, G. Robot-aided neurorehabilitation of the upper extremities. Med Biol Eng Comput 2005; 43: 210.
100.Hwang, CH, Seong, JW, Son, DS. Individual finger synchronized robot-assisted hand rehabilitation in subacute to chronic stroke: a prospective randomized clinical trial of efficacy. Clin Rehabil 2012; 26: 696704.
101.Kwakkel, G, Kollen, BJ, Krebs, HI. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair 2008; 22: 111–21.
102.Prange, GB, Jannink, MJ, Groothuis-Oudshoorn, CG, Hermens, HJ, Ijzerman, MJ. Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev 2006; 43: 171–84.
103.Mehrholz, J, Pohl, M, Platz, T, Kugler, J, Elsner, B. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev 2018; 9: CD006876.
104.Kwakkel, G, van Wegen, EE, Meskers, CM. Invited commentary on comparison of robotics, functional electrical stimulation, and motor learning methods for treatment of persistent upper extremity dysfunction after stroke: a randomized controlled trial. Arch Phys Med Rehabil 2015; 96: 991–3.
105.Meyer, S, Karttunen, AH, Thijs, V, Feys, H, Verheyden, G. How do somatosensory deficits in the arm and hand relate to upper limb impairment, activity, and participation problems after stroke? A systematic review. Phys Ther 2014; 94: 1220–31.
106.Carey, L, Macdonell, R, Matyas, TA. Sense: study of the effectiveness of neurorehabilitation on sensation: a randomized controlled trial. Neurorehabil Neural Repair 2011; 25: 304–13.
107.Saunders, DH, Sanderson, M, Hayes, S, et al. Physical fitness training for stroke patients. Cochrane Database Syst Rev 2016; 3: CD003316.
108.Högg, S. Die Effekte von Krafttraining auf die obere Extremität in der Rehabilitation nach Schlaganfall. Eine systematische Übersichtsarbeit. BSc thesis, SRH Hochschule für Gesundheit Gera; 2016.
109.Barker, AT, Jalinous, R, Freeston, IL. Non-invasive magnetic stimulation of human motor cortex. Lancet 1985; 1: 1106–7.
110.Bindman, LJ, Lippold, OC, Redfearn, JW. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J Physiol 1964; 172: 369–82.
111.Nitsche, MA, Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 2000; 527: 633–9.
112.Priori, A, Berardelli, A, Rona, S, Accornero, N, Manfredi, M. Polarization of the human motor cortex through the scalp. Neuroreport 1998; 9: 2257–60.
113.Antal, A, Boros, K, Poreisz, C, et al. Comparatively weak after-effects of transcranial alternating current stimulation (TACS) on cortical excitability in humans. Brain Stimul 2008; 1: 97105.
114.Tufail, Y, Matyushov, A, Baldwin, N, et al. Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron 2010; 66: 681–94.
115.Nitsche, MA, Paulus, W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 2001; 57: 1899–901.
116.Nitsche, MA, Nitsche, MS, Klein, CC, et al. Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clin Neurophysiol 2003; 114: 600–4.
117.List, J, Lesemann, A, Kubke, JC, et al. Impact of tDCS on cerebral autoregulation in aging and in patients with cerebrovascular diseases. Neurology 2015; 84: 626–8.
118.Vines, BW, Cerruti, C, Schlaug, G. Dual-hemisphere tDCS facilitates greater improvements for healthy subjects’ non-dominant hand compared to uni-hemisphere stimulation. BMC Neurosci 2008; 9: 103.
119.Liebetanz, D, Nitsche, MA, Tergau, F, Paulus, W. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain 2002; 125: 2238–47.
120.Nitsche, MA, Fricke, K, Henschke, U, et al. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol 2003; 553: 293301.
121.Stagg, CJ, Best, JG, Stephenson, MC, et al. Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J Neurosci 2009; 29: 5202–6.
122.Francis, JT, Gluckman, BJ, Schiff, SJ. Sensitivity of neurons to weak electric fields. J Neurosci 2003; 23: 7255–61.
123.Polania, R, Nitsche, MA, Paulus, W. Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Hum Brain Mapp 2011; 32: 1236–49.
124.Bikson, M, Inoue, M, Akiyama, H, et al. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol 2004; 557: 175–90.
125.Antal, A, Keeser, D, Priori, A, Padberg, F, Nitsche, MA. Conceptual and procedural shortcomings of the systematic review “evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: a systematic review” by Horvath and co-workers. Brain Stimul 2015; 8: 846–9.
126.Batsikadze, G, Moliadze, V, Paulus, W, Kuo, MF, Nitsche, MA. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol 2013; 591: 19872000.
127.Bikson, M, Name, A, Rahman, A. Origins of specificity during tDCS: anatomical, activity-selective, and input-bias mechanisms. Front Hum Neurosci 2013; 7: 688.
128.Nowak, DA, Grefkes, C, Ameli, M, Fink, GR. Interhemispheric competition after stroke: brain stimulation to enhance recovery of function of the affected hand. Neurorehabil Neural Repair 2009; 23: 641–56.
129.Elsner, B, Pohl, M, Kugler, J, Mehrholz, J. Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke. Cochrane Database Syst Rev 2016; 3: CD009645.
130.Elsner, B, Kugler, J, Pohl, M, Mehrholz, J. Transcranial direct current stimulation for improving spasticity after stroke. A systematic review with meta-analysis. J Rehabil Med 2016; 48: 565–70.
131.Elsner, B, Pohl, M, Kugler, J, Mehrholz, J. Transcranial direct current stimulation (tDCS) for improving aphasia and cognition in patients with aphasia after stroke (updated review). Cochrane Database Syst Rev 2015; 11: CD009645.
132.Elsner, B, Kugler, J, Pohl, M, Mehrholz, J. Transcranial direct current stimulation (tDCS) for idiopathic Parkinson's disease. Cochrane Database Syst Rev 2016; 7: CD010916.
133.Floel, A. tDCS-enhanced motor and cognitive function in neurological diseases. Neuroimage 2014; 85: 934–47.
134.Di Pino, G, Pellegrino, G, Assenza, G, et al. Modulation of brain plasticity in stroke: a novel model for neurorehabilitation. Nat Rev Neurol 2014; 10: 597608.
135.Moos, K, Vossel, S, Weidner, R, Sparing, R, Fink, GR. Modulation of top-down control of visual attention by cathodal tDCS over right IPS. J Neurosci 2012; 32: 163608.
136.Ulm, L, McMahon, K, Copland, D, de Zubicaray, GI, Meinzer, M. Neural mechanisms underlying perilesional transcranial direct current stimulation in aphasia: a feasibility study. Front Hum Neurosci 2015; 9: 550.
137.Elsner, B, Kwakkel, G, Kugler, J, Mehrholz, J. Network meta-analysis of randomised trials on the effects of transcranial direct current stimulation (tDCS) for improving capacity in activities of daily living (ADL) and paretic arm function after stroke. J Neuroeng Rehabil 2017; 14: 95.
138.Zhang, L, Xing, G, Fan, Y, et al. Short- and long-term effects of repetitive transcranial magnetic stimulation on upper limb motor function after stroke: a systematic review and meta-analysis. Clin Rehabil 2017; 31: 1137–53.
139.Brady, MC, Kelly, H, Godwin, J, Enderby, P, Campbell, P. Speech and language therapy for aphasia following stroke. Cochrane Database Syst Rev 2016; 6: CD000425.
140.Meinzer, M, Darkow, R, Lindenberg, R, Floel, A. Electrical stimulation of the motor cortex enhances treatment outcome in post-stroke aphasia. Brain 2016; 139: 1152–63.
141.Goldenberg, G. Apraxia. Handb Clin Neurol 2008; 88: 323–38.
142.Park, JE. Apraxia: review and update. J Clin Neurol 2017; 13: 317–24.
143.Vanbellingen, T, Bohlhalter, S. Apraxia in neurorehabilitation: classification, assessment and treatment. NeuroRehabil 2011; 28: 91–8.
144.Bjorneby, ER, Reinvang, IR. Acquiring and maintaining self-care skills after stroke. The predictive value of apraxia. Scand J Rehabil Med 1985; 17: 7580.
145.Sunderland, A, Shinner, C. Ideomotor apraxia and functional ability. Cortex 2007; 43: 359–67.
146.Vanbellingen, T, Kersten, B, Van Hemelrijk, B, et al. Comprehensive assessment of gesture production: a new test of upper limb apraxia (TULIA). Eur J Neurol 2010; 17: 5966.
147.Liepmann, H. Apraxie. Vienna; Berlin: Urban & Schwarzenberg; 1920.
148.De Renzi, E, Motti, F, Nichelli, P. Imitating gestures. A quantitative approach to ideomotor apraxia. Arch Neurol 1980; 37: 610.
149.Zadikoff, C, Lang, AE. Apraxia in movement disorders. Brain 2005; 128: 1480–97.
150.Daumuller, M, Goldenberg, G. Therapy to improve gestural expression in aphasia: a controlled clinical trial. Clin Rehabil 2010; 24: 5565.
151.Donkervoort, M, Stehmann-Saris, J, Deelman, BG. Efficacy of strategy training in left-hemisphere stroke patients with apraxia: a randomized controlled trial. Neuropsychol Rehabil 2001; 11: 549–66.
152.Smania, N, Aglioti, SM, Girardi, F, et al. Rehabilitation of limb apraxia improves daily life activities in patients with stroke. Neurology 2006; 67: 2050–2.
153.Vanbellingen, T, Kersten, B, van de Winckel, A, et al. A new bedside test of gestures in stroke: the apraxia screen of TULIA (AST). J Neurol Neurosurg Psychiatry 2011; 82: 389–92.
154.Vanbellingen, T, Lungu, C, Lopez, G, et al. Short and valid assessment of apraxia in Parkinson's disease. Parkinsonism Relat Disord 2012; 18: 348–50.
155.Kamm, CP, Heldner, MR, Vanbellingen, T, et al. Limb apraxia in multiple sclerosis: prevalence and impact on manual dexterity and activities of daily living. Arch Phys Med Rehabil 2012; 93: 1081–5.
156.Bowen, A, Hazelton, C, Pollock, A, Lincoln, NB. Cognitive rehabilitation for spatial neglect following stroke. Cochrane Database Syst Rev 2013; 7: CD003586.
157.Pollock, A, Hazelton, C, Henderson, CA, et al. Interventions for visual field defects in patients with stroke. Stroke 2012; 43: e37–8.
158.Chung, CS, Pollock, A, Campbell, T, Durward, BR, Hagen, S. Cognitive rehabilitation for executive dysfunction in adults with stroke or other adult non-progressive acquired brain damage. Cochrane Database Syst Rev 2013: 4: CD008391.
159.Elsner, B, Kugler, J, Pohl, M, Mehrholz, J. Transcranial direct current stimulation (tDCS) for improving aphasia in patients with aphasia after stroke. Cochrane Database Syst Rev 2015: 5: CD009760.
160.George, S, Crotty, M, Gelinas, I, Devos, H. Rehabilitation for improving automobile driving after stroke. Cochrane Database Syst Rev 2014; 2: CD008357.
161.Loetscher, T, Lincoln, NB. Cognitive rehabilitation for attention deficits following stroke. Cochrane Database Syst Rev 2013; 5: CD002842.