Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-18T18:06:46.947Z Has data issue: false hasContentIssue false

9 - Plasticity, learning and cognition

Published online by Cambridge University Press:  05 June 2012

Elizabeth Jakob
Affiliation:
University of Massachusetts, USA
Christa Skow
Affiliation:
Wellesley College, USA
Skye Long
Affiliation:
University of Massachusetts Amherst, USA
Marie Elisabeth Herberstein
Affiliation:
Macquarie University, Sydney
Get access

Summary

As is becoming increasingly clear, spiders are not entirely instinct driven and inflexible in their behaviour. Here we review evidence for behavioural plasticity, learning and other cognitive processes such as attentional priming and memory. We first examine these attributes in several natural contexts: predation, interactions with conspecifics and potential predators, and spatial navigation. Next we examine two somewhat more artificial experimental approaches, heat aversion and rearing in enriched versus impoverished environments. We briefly describe the neurobiological underpinnings of these behaviours. Finally, we point to areas where our knowledge gaps are greatest, and we offer advice for researchers beginning their own studies of spider learning.

Overview

The history of the study of spider learning parallels that of insect learning, but lags well behind. At the start of the twentieth century, the general view was that insect learning was generally guided by instinct, but a steady accumulation of data has transformed our view of the importance of learning in their daily lives (reviewed in Dukas, 2008). In spite of their tiny brains, insects are capable of learning a multitude of tasks related to foraging, anti-predatory behaviour, aggression, social interactions, courtship and mate choice (Dukas, 2008). The study of spider behaviour is undergoing a similar transformation. Beginning over a century ago, researchers have periodically delved into the question of whether spider behaviour is primarily instinctual or can be modified with experience.

Type
Chapter
Information
Spider Behaviour
Flexibility and Versatility
, pp. 307 - 347
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, M. R. (2000). Choosing hunting sites: web site preferences of the orb weaver spider, Neosconsa crucifera, relative to light cues. Journal of Insect Behavior, 13, 299–305.CrossRefGoogle Scholar
Ades, C. (1982). Immediate stimulation and recent experiences as controlling factors in the predatory sequence of the spider Argiope argentata (Fabricius). Interamerican Journal of Psychology, 16, 57–63.Google Scholar
Andersson, M. A. (1994). Sexual Selection. Princeton, NJ: Princeton University Press.Google Scholar
Baker, L., Kelty, E. C. and Jakob, E. M. (2009). The effect of visual features on jumping spider movements across gaps. Journal of Insect Behavior, 22, 350–361.CrossRefGoogle Scholar
Balda, R. P. and Kamil, A. C. (1998). The ecology and evolution of southwestern seed caching corvids: the perplexing pinyon jay. In Animal Cognition in Nature (ed. Balda, R. P., Pepperberg, I. and Kamil, A. C.). San Diego, CA: Academic Press, pp. 29–64.CrossRefGoogle Scholar
Barth, F. G. (2002). A Spider's World: Senses and Behavior. Berlin: Springer.CrossRefGoogle Scholar
Bays, S. (1962). A study of the training possibilities of Araneus diadematus Cl. Experientia, 18, 423–424.CrossRefGoogle Scholar
Benhamou, S., Sauvé, J. P. and Bovet, P. (1990). Spatial memory in large scale movements: efficiency and limitation of the egocentric coding process. Journal of Theoretical Biology, 145, 1–12.CrossRefGoogle Scholar
Bilde, T., Maklakov, A. A., Taylor, P. W. and Lubin, Y. (2002). State-dependent decisions in nest site selection by a web-building spider. Animal Behaviour, 64, 447–452.CrossRefGoogle Scholar
Blamires, S. J., Hochuli, D. F. and Thompson, M. B. (2009). Prey protein influences growth and decoration building in the orb spider Argiope keyserlingi. Ecological Entomology, 34, 545–550.CrossRefGoogle Scholar
Bonduriansky, R. (2001). The evolution of male mate choice in insects: a synthesis of ideas and evidence. Biological Reviews, 76, 305–339.CrossRefGoogle ScholarPubMed
Boutry, C. and Blackledge, T. (2008). The common house spider alters the material and mechanical properties of cobweb silk in response to different prey. Journal of Experimental Zoology, 309A, 542–552.CrossRefGoogle ScholarPubMed
Breidbach, O., Dircksen, H. and Wegerhoff, R. (1995). Common general morphological pattern of peptidergic neurons in the arachnid brain: crustacean cardioactive peptide-immunoreactive neurons in the protocerebrum of 7 arachnid species. Cell and Tissue Research, 279, 183–197.CrossRefGoogle Scholar
Bruce, M. J. and Herberstein, M. E. (2006). The influence of predator cues on orb-web spider foraging behavior. Ethology, Ecology and Evolution, 18, 91–98.CrossRefGoogle Scholar
Cangialosi, K. R. and Uetz, G. W. (1987). Spacing in colonial spiders: effects of environment and experience. Ethology, 76, 236–246.CrossRefGoogle Scholar
Carducci, J. P. and Jakob, E. M. (2000). Rearing environment affects behaviour of jumping spiders. Animal Behaviour, 59, 39–46.CrossRefGoogle ScholarPubMed
Castanho, L. M. and Oliveira, P. S. (1997). Biology and behaviour of the neotropical ant-mimicking spider Aphantochilus rogersi (Araneae: Aphantochilidae): nesting, maternal care and ontogeny of ant-hunting techniques. Journal of Zoology, 242, 643–650.CrossRefGoogle Scholar
Cerveira, A. M., Jackson, R. R. and Guseinov, E. F. (2003). Stalking decisions of web-invading araneophagic jumping spiders from Australia, Azerbaijan, Israel, Kenya, Portugal, and Sri Lanka: the opportunistic smokescreen tactics of Brettus, Cocalus, Cyrba, and Portia. New Zealand Journal of Zoology, 30, 21–30.CrossRefGoogle Scholar
Cheng, K., Narenda, A., Sommer, S. and Wehner, R. (2009). Traveling in clutter: navigation in the Central Australian desert ant Melophorus bagoti. Behavioral Processes, 80, 261–268.CrossRefGoogle ScholarPubMed
Chien, S. A. and Morse, D. H. (1998). The roles of prey and flower quality in the choice of hunting sites by adult male crab spiders Misumena vatia (Araneae, Thomisidae). Journal of Arachnology, 26, 238–243.Google Scholar
Chmiel, K., Herberstein, M. E. and Elgar, M. A. (2000). Web damage and feeding experience influence web site tenacity in the orb-web spider Argiope keyserlingi Karsch. Animal Behaviour, 60, 821–826.CrossRefGoogle ScholarPubMed
Clark, D. L. and Uetz, G. W. (1990). Video image recognition by the jumping spider Maevia inclemens (Araneae, Salticidae). Animal Behaviour, 40, 884–890.CrossRefGoogle Scholar
Clark, R. J. and Jackson, R. R. (2000). Web use during predatory encounters between Portia fimbriata, an araneophagic jumping spider, and its preferred prey, other jumping spiders. New Zealand Journal of Zoology, 27, 129–136.CrossRefGoogle Scholar
Clark, R. J., Jackson, R. R. and Waas, J. R. (1999). Draglines and assessment of fighting ability in cannibalistic jumping spiders. Journal of Insect Behavior, 12, 753–766.CrossRefGoogle Scholar
Craig, C. L., Weber, R. S. and Bernard, G. D. (1996). Evolution of predator-prey systems: spider foraging plasticity in response to the visual ecology of prey. American Naturalist, 147, 205–229.CrossRefGoogle Scholar
Cramer, K. L. (2008). Are brown recluse spiders, Loxosceles reclusa (Araneae, Sicariidae) scavengers? The influence of predator satiation, prey size, and prey quality. Journal of Arachnology, 36, 140–144.CrossRefGoogle Scholar
Cross, F. R. and Jackson, R. R. (2006). From eight-legged automatons to thinking spiders. In Diversity of Cognition (ed. Fujita, K. and Itakura, S.). Kyoto, Japan: Kyoto University Press, pp. 188–215.Google Scholar
Cross, F. R. and Jackson, R. R. (2009a). Cross-modality priming of visual and olfactory selective attention by a spider that feeds indirectly on vertebrate blood. Journal of Experimental Biology, 212, 1869–1875.CrossRefGoogle ScholarPubMed
Cross, F. R. and Jackson, R. R. (2009b). How cross-modality effects during intraspecific interactions of jumping spiders differ depending on whether a female-choice or mutual-choice mating system is adopted. Behavioural Processes, 80, 162–168.CrossRefGoogle ScholarPubMed
Cross, F. R. and Jackson, R. R. (2010). The attentive spider: search-image use by a mosquito-eating predator. Ethology, 116, 1–8.CrossRefGoogle Scholar
Cross, F. R., Jackson, R. R. and Pollard, S. D. (2007a). Male and female mate-choice decisions by Evarcha culicivora, an East African jumping spider. Ethology, 113, 901–908.CrossRefGoogle Scholar
Cross, F. R., Jackson, R. R., Pollard, S. D. and Walker, M. W. (2006). Influence of optical cues from conspecific females on escalation decisions during male-male interactions of jumping spiders. Behavioral Processes, 73, 136–141.CrossRefGoogle ScholarPubMed
Cross, F. R., Jackson, R. R., Pollard, S. D and Walker, M. W. (2007b). Cross-modality effects during male-male interactions of jumping spiders. Behavioural Processes, 75, 290–296.CrossRefGoogle ScholarPubMed
Dacke, M., Doan, T. A. and O'Carroll, D. C. (2001). Polarized light detection in spiders. Journal of Experimental Biology, 204, 2481–2490.Google ScholarPubMed
Dacke, M., Nilsson, D.-E., Warrant, E. J., Blest, A. D. and Land, M. F. (1999). Built-in polarizers form part of a compass organ in spiders. Nature, 401, 470–473.CrossRefGoogle Scholar
Diaz-Fleischer, F. (2005). Predatory behavior and prey-capture decision-making by the web-weaving spider Micrathena sagittata. Canadian Journal of Zoology, 83, 268–273.CrossRefGoogle Scholar
Dodson, G. N. and Schwaab, A. T. (2001). Body size, leg autotomy, and prior experience as factors in the fighting success of male crab spiders, Misumenoides formosipes. Journal of Insect Behavior, 14, 841–855.CrossRefGoogle Scholar
Domjan, M. (2006). The Principles of Learning and Behavior: Active Learning Edition, 5th edn. Belmont, CA: Thomson Wadsworth.Google Scholar
Dukas, R. (2004a). Causes and consequences of limited attention. Brain, Behavior and Evolution, 63, 197–210.CrossRefGoogle ScholarPubMed
Dukas, R. (2004b). Evolutionary biology of animal cognition. Annual Review of Ecology, Evolution and Systematics, 35, 347–374.CrossRefGoogle Scholar
Dukas, R. (2008). Evolutionary biology of insect learning. Annual Review of Entomology, 53, 145–60.CrossRefGoogle ScholarPubMed
Edwards, G. B. and Jackson, R. R. (1994). The role of experience in the development of predatory behaviour in Phidippus regius, a jumping spider (Araneae, Salticidae) from Florida. New Zealand Journal of Zoology, 21, 269–277.CrossRefGoogle Scholar
Eiben, B. and Persons, M. (2007). The effect of prior exposure to predator cues on chemically-mediated defensive behavior and survival in the wolf spider Rabidosa rabida (Araneae: Lycosidae). Behaviour, 144, 889–906.CrossRefGoogle Scholar
Elias, D. O., Kasumovic, M. M., Punzalan, D., Andrade, M. C. B. and Mason, A. (2008). Assessment during aggressive contests between male jumping spiders. Animal Behaviour, 76, 901–910.CrossRefGoogle ScholarPubMed
Farris, S. M. (2005). Evolution of insect mushroom bodies: old clues, new insights. Arthropod Structure and Development, 34, 211–234.CrossRefGoogle Scholar
Fernández Campón, F. (2008). More sharing when there is less: insights on spider sociality from an orb-weaver's perspective. Animal Behaviour, 75, 1063–1073.CrossRefGoogle Scholar
Foelix, R. F. (1996). Biology of Spiders, 2nd edn. New York: Oxford University Press.Google Scholar
Forster, L. M. (1977). Some factors affecting feeding behaviour in jumping spiders (Araneae: Salticidae). New Zealand Journal of Zoology, 4, 435–443.CrossRefGoogle Scholar
Fritz, R. S. and Morse, D. H. (1985). Reproductive success, growth rate and foraging decisions of the crab spider Misumena vatia. Oecologia, 65, 194–200.CrossRefGoogle Scholar
Gaskett, A. C., Herberstein, M. E., Downes, B. J. and Elgar, M. A. (2004). Changes in male mate choice in a sexually cannibalistic orb-web spider (Araneae: Araneidae). Behaviour, 141, 1197–1210.CrossRefGoogle Scholar
Gronenberg, W. (1989). Anatomical and physiological observations on the organization of mechanoreceptors and local interneurons in the central nervous-system of the wandering spider Cupiennius salei. Cell and Tissue Research, 258, 163–175.CrossRefGoogle ScholarPubMed
Gronenberg, W. (1990). The organization of plurisegmental mechanosensitive interneurons in the central nervous system of the wandering spider Cupiennius salei. Cell and Tissue Research, 260, 49–61.CrossRefGoogle ScholarPubMed
Harland, D. P. and Jackson, R. R. (2000). Cues by which Portia fimbriata, an araneophagic jumping spider, distinguishes jumping-spider prey from other prey. Journal of Experimental Biology, 203, 3485–3494.Google ScholarPubMed
Harland, D. P. and Jackson, R. R. (2001). Prey classification by Portia fimbriata, a salticid spider that specializes at preying on other salticids: species that elicit cryptic stalking. Journal of Zoology, 255, 445–460.CrossRefGoogle Scholar
Harland, D. P. and Jackson, R. R. (2002). Influence of cues from the anterior medial eyes of virtual prey on Portia fimbriata, an araneophagic jumping spider. Journal of Experimental Biology, 205, 1861–1868.Google ScholarPubMed
Healy, S. (1998). Spatial Representation in Animals. Oxford, UK: Oxford University Press.Google Scholar
Hebets, E. A. (2003). Subadult experience influences adult mate choice in an arthropod: exposed female wolf spiders prefer males of a familiar phenotype. Proceedings of the National Academy of Sciences of the USA, 100, 13 390–13 395.CrossRefGoogle Scholar
Hebets, E. A. (2007). Subadult female experience does not influence species recognition in the wolf spider Schizocosa uetzi Stratton 1997. Journal of Arachnology, 35, 1–10.CrossRefGoogle Scholar
Hebets, E. A. and Vink, C. J. (2007). Experience leads to preference: experienced females prefer brush-legged males in a population of syntopic wolf spiders. Behavioral Ecology, 18, 1010–1020.CrossRefGoogle Scholar
Hebets, E. A., Wesson, J. and Shamble, P. S. (2008). Diet influences mate choice selectivity in adult female wolf spiders. Animal Behaviour, 76, 355–363.CrossRefGoogle Scholar
Heiling, A. M. and Herberstein, M. E. (1999). The role of experience in web-building spiders (Araneae). Animal Cognition, 2, 171–177.CrossRefGoogle Scholar
Heiling, A. M. and Herberstein, M. E. (2000). Interpretations of orb-web variability: a review of past and current ideas. Ekológia (Bratislava), 19, 97–106.Google Scholar
Henschel, J. R. (2002). Long-distance wandering and mating by the dancing white lady spider (Leucorchestris arenicola) (Araneae, Sparassidae) across Namib dunes. Journal of Arachnology, 30, 321–330.CrossRefGoogle Scholar
Herberstein, M. E., Gaskett, A. C., Glenross, D., et al. (2000). Does the presence of potential prey affect web design in Argiope keyserlingi (Araneae, Araneidae)?Journal of Arachnology, 28, 346–350.CrossRefGoogle Scholar
Higgins, L. (2008). Juvenile Nephila (Araneae, Nephilidae) use various attack strategies for novel prey. Journal of Arachnology, 35, 530–534.CrossRefGoogle Scholar
Hoefler, C. D. (2002). Is contest experience a trump card? The interaction of residency status, experience, and body size on fighting success in Misumenoides formosipes (Araneae: Thomisidae). Journal of Insect Behavior, 15, 779–790.CrossRefGoogle Scholar
Hoefler, C. D. (2008). The costs of male courtship and potential benefits of male choice for large mates in Phidippus clarus (Araneae, Salticidae). Journal of Arachnology, 36, 210–212.CrossRefGoogle Scholar
Hoefler, C. D. and Jakob, E. M. (2006). Jumping spiders in space: movement patterns, nest site fidelity and the use of beacons. Animal Behaviour, 71, 109–116.CrossRefGoogle Scholar
Hoefler, C. D., Taylor, M. and Jakob, E. M. (2002). Chemosensory response to prey in Phidippus audax (Araneae, Salticidae) and Pardosa milvina (Araneae, Lycosidae). Journal of Arachnology, 30, 155–158.CrossRefGoogle Scholar
Hollis, K. L. (1982). Pavlovian conditioning of signal-centered action patterns and autonomic behavior: a biological analysis of function. Advances in the Study of Behavior, 12, 1–64.CrossRefGoogle Scholar
Hoyer, S. C., Eckart, A., Herrel, A., et al. (2008). Octopamine in male aggression of Drosophila. Current Biology, 18, 159–167.CrossRefGoogle ScholarPubMed
Huseynov, E. F., Cross, F. R. and Jackson, R. R. (2005). Natural diet and prey-choice behaviour of Aelurillus muganicus (Araneae: Salticidae), a myrmecophagic jumping spider from Azerbaijan. Journal of Zoology, 267, 159–165.CrossRefGoogle Scholar
Huseynov, E. F., Jackson, R. R. and Cross, F. R. (2008). The meaning of predatory specialization as illustrated by Aelurillus m-nigrum, an ant-eating jumping spider (Araneae: Salticidae) from Azerbaijan. Behavioural Processes, 77, 389–399.CrossRefGoogle ScholarPubMed
Jackson, R. R. (1979). Nests of Phidippus johnsoni (Araneae, Salticidae): characteristics, pattern of occupation, and function. Journal of Arachnology, 7, 47–58.Google Scholar
Jackson, R. R. (2002). Trial-and-error derivation of aggressive-mimicry signals by Brettus and Cyrba, spartaeine jumping spiders (Araneae: Salticidae) from Israel, Kenya, and Sri Lanka. New Zealand Journal of Zoology, 29, 95–117.CrossRefGoogle Scholar
Jackson, R. R. and Blest, A. D. (1982). The distances at which a primitive jumping spider, Portia fimbriata, makes visual discriminations. Journal of Experimental Biology, 97, 441–445.Google Scholar
Jackson, R. R. and Carter, C. M. (2001). Geographic variation in reliance on trial-and-error signal derivation by Portia labiata, an araneophagic jumping spider from the Philippines. Journal of Insect Behavior, 14, 799–827.CrossRefGoogle Scholar
Jackson, R. R. and Li, D. Q. (1998). Prey preferences and visual discrimination ability of Cyrba algerina, an araneophagic jumping spider (Araneae: Salticidae) with primitive retinae. Israel Journal of Zoology, 44, 227–242.Google Scholar
Jackson, R. R. and Li, D. Q. (2001). Prey-capture techniques and prey preferences of Zenodorus durvillei, Z. metallescens and Z. orbiculatus, tropical ant-eating jumping spiders (Araneae: Salticidae) from Australia. New Zealand Journal of Zoology, 28, 299–341.CrossRefGoogle Scholar
Jackson, R. R. and Li, D. Q. (2004). One-encounter search-image formation by araneophagic spiders. Animal Cognition, 7, 247–254.CrossRefGoogle ScholarPubMed
Jackson, R. R. and Wilcox, R. S. (1993a). Spider flexibly chooses aggressive mimicry signals for different prey by trial and error. Behaviour, 127, 21–36.CrossRefGoogle Scholar
Jackson, R. R. and Wilcox, R. S. (1993b). Observations in nature of detouring behaviour by Portia fimbriata, a web-building araneophagic jumping spider (Araneae, Salticidae) from Queensland. Journal of Zoology, 230, 135–139.CrossRefGoogle Scholar
Jackson, R. R., Carter, C. M. and Tarsitano, M. S. (2001). Trial-and-error solving of a confinement problem by a jumping spider, Portia fimbriata. Behaviour, 138, 1215–1234.CrossRefGoogle Scholar
Jackson, R. R., Clark, R. J. and Harland, D. P. (2002a). Behavioural and cognitive influences of kairomones on an araneophagic jumping spider. Behaviour, 139, 749–775.CrossRefGoogle Scholar
Jackson, R. R., Li, D., Fijn, N. and Barrion, A. (1998). Predator-prey interactions between aggressive-mimic jumping spiders (Salticidae) and araneophagic spitting spiders (Scytodidae) from the Philippines. Journal of Insect Behavior, 11, 319–342.CrossRefGoogle Scholar
Jackson, R. R., Pollard, S. D. and Cerveira, A. M. (2002b). Opportunistic use of cognitive smokescreens by araneophagic jumping spiders. Animal Cognition, 5, 147–157.CrossRefGoogle ScholarPubMed
Jackson, R. R., Pollard, S. D., Li, D. and Fijn, N. (2002c). Interpopulation variation in the risk-related decisions of Portia labiata, an araneophagic jumping spider (Araneae, Salticidae), during predatory sequences with spitting spiders. Animal Cognition, 5, 215–223.CrossRefGoogle Scholar
Jackson, R. R., Walker, M. W., Pollard, S. D. and Cross, F. R. (2006). Influence of seeing a female on the male-male interactions of a jumping spider, Hypoblemum albovittatum. Journal of Ethology, 24, 231–238.CrossRefGoogle Scholar
Jakob, E. M. (1991). Costs and benefits of group living for pholcid spiders: losing food, saving silk. Animal Behaviour, 41, 711–722.CrossRefGoogle Scholar
Jakob, E. M. (1994). Contests over prey by group-living pholcids (Holocnemus pluchei). Journal of Arachnology, 22, 39–45.Google Scholar
Jakob, E. M. (2004). Individual decisions and group dynamics: why pholcid spiders join and leave groups. Animal Behaviour, 68, 9–20.CrossRefGoogle Scholar
Jakob, E. M., Skow, C. D., Haberman, M. P. and Plourde, A. (2007). Jumping spiders associate food with color in a T maze. Journal of Arachnology, 35, 487–492.CrossRefGoogle Scholar
Japyassu, H. F. and Caires, R. A. (2008). Hunting tactics in a cobweb spider (Araneae-Theridiidae) and the evolution of behavioral plasticity. Journal of Insect Behavior, 21, 258–284.CrossRefGoogle Scholar
Japyassu, H. F. and Viera, C. (2002). Predatory plasticity in Nephilengys cruentata (Araneae: Tetragnathidae): relevance for phylogeny reconstruction. Behaviour, 139, 529–544.CrossRefGoogle Scholar
Johnson, J. C. (2005). Cohabitation of juvenile females with mature males promotes sexual cannibalism in fishing spiders. Behavioral Ecology, 16, 269–273.CrossRefGoogle Scholar
Johnson, O., Becnel, J. and Nichols, C. D. (2009). Serotonin 5-HT2 and 5-HT1A-like receptors differentially modulate aggressive behaviors in Drosophila melanogaster. Neuroscience, 158, 1292–1300.CrossRefGoogle Scholar
Kasumovic, M., Elias, D. O., Punzalan, D., Mason, A. C. and Andrade, M. C. B. (2009). Experience affects the outcome of agonistic contests without affecting the selective advantage of size. Animal Behaviour, 77, 1533–1538.CrossRefGoogle ScholarPubMed
Kawecki, T. J. (2010). Evolutionary ecology of learning: insights from fruit flies. Population Ecology, 52, 15–25.CrossRefGoogle Scholar
Koh, T. H. and Li, D. Q. (2003). State-dependent prey type preferences of a kleptoparasitic spider Argyrodes flavescens (Araneae: Theridiidae). Journal of Zoology, 260, 227–233.CrossRefGoogle Scholar
Kreiter, N. and Wise, D. H. (1996). Age-related changes in movement patterns in the fishing spider, Dolomedes triton (Araneae, Pisauridae). Journal of Arachnology, 24, 24–33.Google Scholar
LeGuelte, L. (1969). Learning in spiders. American Zoologist, 9, 145–152.CrossRefGoogle ScholarPubMed
Li, D. Q. (2000). Prey preferences of Phaeacius malayensis, a spartaeine jumping spider (Araneae: Salticidae) from Singapore. Canadian Journal of Zoology, 78, 2218–2226.CrossRefGoogle Scholar
Li, D. and Jackson, R. R. (2003). A predator's preference for egg-carrying prey: a novel cost of parental care. Behavioral Ecology and Sociobiology, 55, 129–136.CrossRefGoogle Scholar
Li, D. and Lee, W. S. (2004). Predator-induced plasticity in web-building behaviour. Animal Behaviour, 67, 309–318.CrossRefGoogle Scholar
Li, D. Q., Jackson, R. R. and Barrion, A. (1997). Prey preferences of Portia labiata, P. africana, and P. schultzi, araneophagic jumping spiders (Araneae: Salticidae) from the Philippines, Sri Lanka, Kenya, and Uganda. New Zealand Journal of Zoology, 24, 333–349.CrossRefGoogle Scholar
Li, D. Q., Jackson, R. R. and Harland, D. P. (1999). Prey-capture techniques and prey preferences of Aelurillus aeruginosus, A. cognatus, and A. kochi, ant-eating jumping spiders (Araneae: Salticidae) from Israel. Israel Journal of Zoology, 45, 341–359.Google Scholar
Lubin, Y., Ellner, S. and Kotzman, M. (1993). Web relocation and habitat selection in a desert widow spider. Ecology, 74, 1915–1928.CrossRefGoogle Scholar
Moller, P. and Görner, P. (1994). Homing by path integration in the spider Agelena labyrinthica Clerck. Journal of Comparative Physiology, A, 174, 221–229.CrossRefGoogle Scholar
Möller, R. (2002). Insects could exploit UV–green contrast for landmark navigation. Journal of Theoretical Biology, 214, 619–631.CrossRefGoogle ScholarPubMed
Mooney, K. A. and Haloin, J. R. (2006). Nest site fidelity of Paraphidippus aurantia (Salticidae). Journal of Arachnology, 34, 241–243.CrossRefGoogle Scholar
Morse, D. H. (1988). Cues associated with patch-choice decisions by foraging crab spiders Misumena vatia. Behaviour, 107, 297–313.CrossRefGoogle Scholar
Morse, D. H. (1991). Location of successful strikes on prey by juvenile crab spiders Misumena vatia (Araneae, Thomisidae). Journal of Arachnology, 27, 171–175.Google Scholar
Morse, D. H. (1993). Choosing hunting sites with little information: patch-choice responses of crab spiders to distant cues. Behavioral Ecology, 4, 61–65.CrossRefGoogle Scholar
Morse, D. H. (1999). Choice of hunting site as a consequence of experience in late-instar crab spiders. Oecologia, 120, 252–257.CrossRefGoogle ScholarPubMed
Morse, D. H. (2000a). The effect of experience on the hunting success of newly emerged spiderlings. Animal Behaviour, 2000, 60, 827–835.CrossRefGoogle ScholarPubMed
Morse, D. H. (2000b). The role of experience in determining patch-use by adult crab spiders. Behaviour, 137, 265–278.CrossRefGoogle Scholar
Morse, D. H. (2000c). Flower choice by naive young crab spiders and the effect of subsequent experience. Animal Behaviour, 59, 943–951.CrossRefGoogle ScholarPubMed
Morse, D. H. (2007). Predator Upon a Flower: Life History and Fitness in a Crab Spider. Cambridge, MA: Harvard University Press.Google Scholar
Morse, D. H. and Fritz, R. S. (1982). Experimental and observational studies of patch-choice at different scales by the crab spider Misumena vatia. Ecology, 63, 172–182.CrossRefGoogle Scholar
Müller, M. and Wehner, R. (1988). Path integration in desert ants, Cataglyphis fortis. Proceedings of the National Academy of Sciences of the USA, 85, 5287–5390.CrossRefGoogle ScholarPubMed
Nakamura, T. and Yamashita, S. (2000). Learning and discrimination of colored papers in jumping spiders (Araneae, Salticidae). Journal of Comparative Physiology, A, 186, 897–901.CrossRefGoogle Scholar
Nakata, K. (2007). Prey detection without successful capture affects spider's orb-web behaviour. Naturwissenschaften, 94, 853–857.CrossRefGoogle ScholarPubMed
Nakata, K. and Ushimaru, A. (1999). Feeding experience affects web relocation and investment in web threads in an orb-web spider, Cyclosa argenteoalba. Animal Behaviour, 57, 1251–1255.CrossRefGoogle Scholar
Nakata, K., Ushimaru, A. and Watanabe, T. (2003). Using past experience in web relocation decisions enhances the foraging efficiency of the spider Cyclosa argenteoalba. Journal of Insect Behavior, 16, 371–380.CrossRefGoogle Scholar
Nørgaard, T. (2005). Nocturnal navigation in Leucorchestris arenicola (Araneae, Sparassidae). Journal of Arachnology, 33, 533–540.CrossRefGoogle Scholar
Nørgaard, T., Henschel, J. R. and Wehner, R. (2007). Use of local cues in the night-time navigation of the wandering desert spider Leucorchestris arenicola (Araneae, Sparassidae). Journal of Comparative Physiology, A – Neuroethology, Sensory, Neural, and Behavioral Physiology, 193, 217–222.CrossRefGoogle Scholar
Nørgaard, T., Nilsson, D.-E., Henschel, J. R., Garm, A., and Wehner, R. (2008). Vision in the nocturnal wandering spider Leucorchestris arenicola (Araneae: Sparassidae). Journal of Experimental Biology, 211, 816–823.CrossRefGoogle Scholar
Ortega-Escobar, J. (2006). Role of the anterior lateral eyes of the wolf spider Lycosa tarentula (Araneae, Lycosidae) during path integration. Journal of Arachnology, 34, 51–61.CrossRefGoogle Scholar
Patt, J. M. and Pfannenstiel, R. S. (2008). Odor-based recognition of nectar in cursorial spiders. Entomologia Experimentalis et Applicata, 127, 64–71.CrossRefGoogle Scholar
Peakall, D. B. (1971). Conservation of web proteins in the spider Araneus diadematus. Journal of Experimental Zoology, 176, 257–264.CrossRefGoogle ScholarPubMed
Pearce, J. M. and Bouton, M. E. (2001). Theories of associative learning in animals. Annual Review of Psychology, 52, 111–139.CrossRefGoogle ScholarPubMed
Peckham, G. W. and Peckham, E. G. (1887). Some observations on the mental powers of spiders. Journal of Morphology, 1, 383–419.Google Scholar
Persons, M. H. and Rypstra, A. L. (2000). Preference for chemical cues associated with recent prey in the wolf spider Hogna helluo (Araneae: Lycosidae). Ethology, 106, 27–35.CrossRefGoogle Scholar
Persons, M. H. and Rypstra, A. L. (2001). Wolf spiders show graded antipredator behavior in the presence of chemical cues from different sized predators. Journal of Chemical Ecology, 27, 2493–2504.CrossRefGoogle ScholarPubMed
Persons, M. H. and Uetz, G. W. (1996a). The influence of sensory information on patch residence time in wolf spiders (Araneae: Lycosidae). Animal Behaviour, 51, 1285–1293.CrossRefGoogle Scholar
Persons, M. H. and Uetz, G. W. (1996b). Wolf spiders vary patch residence time in the presence of chemical cues from prey (Araneae, Lycosidae). Journal of Arachnology, 24, 76–79.Google Scholar
Persons, M. H. and Uetz, G. W. (1997). Foraging patch residence time decisions in wolf spiders: is perceiving prey as important as eating prey?Ecoscience, 4, 1–5.CrossRefGoogle Scholar
Persons, M. H. and Uetz, G. W. (1998). Presampling sensory information and prey density assessment by wolf spiders (Araneae, Lycosidae). Behavioral Ecology, 9, 360–366.CrossRefGoogle Scholar
Persons, M. H., Walker, S. E., Rypstra, A. L. and Marshall, S. D. (2001). Wolf-spider predator avoidance tactics and survival in the presence of diet-associated predator cues (Araneae: Lycosidae). Animal Behaviour, 61, 43–51.CrossRefGoogle Scholar
Pourié, G. and Trabalon, M. (2001). Plasticity of agonistic behaviour in relation to diet and contact signals in experimentally group-living Tegenaria atrica. Chemoecology, 11, 175–181.CrossRefGoogle Scholar
Pruitt, J. N. and Riechert, S. E. (2009). Frequency-dependent success of cheaters during foraging bouts might limit their spread within colonies of a socially polymorphic spider. Evolution, 63, 2966–2973.CrossRefGoogle ScholarPubMed
Pruitt, J. N., Riechert, S. E. and Jones, T. C. (2008). Behavioural syndromes and their fitness consequences in a socially polymorphic spider, Anelosimus studiosus. Animal Behaviour, 76, 871–879.CrossRefGoogle Scholar
Punzo, F. (1980). Neurochemical changes associated with learning in Schistocerca americana (Orthoptera: Acrididae). Journal of the Kansas Entomological Society, 53, 787–796.Google Scholar
Punzo, F. (1983). Localization of brain-function and neurochemical correlates of learning in the mud crab, Eurypanopeus depressus (Decapoda). Comparative Biochemistry and Physiology, A, 75, 299–305.CrossRefGoogle Scholar
Punzo, F. (1988a). Learning and localization of brain-function in the tarantula spider, Aphonopelma chalcodes (Orthognatha, Theraphosidae). Comparative Biochemistry and Physiology, A – Physiology, 89, 465–470.CrossRefGoogle Scholar
Punzo, F. (1988b). Physiological amino-acids in the central nervous-system of the tarantulas, Aphonopelma chalcodes and Dugesiella echina (Orthognatha, Theraphosidae). Comparative Biochemistry and Physiology, C – Pharmacology, Toxicology, and Endocrinology, 90, 381–383.CrossRefGoogle Scholar
Punzo, F. (1997). Leg autotomy and avoidance behavior in response to a predator in the wolf spider, Schizocosa avida (Araneae, Lycosidae). Journal of Arachnology, 25, 202–205.Google Scholar
Punzo, F. (2002a). Food imprinting and subsequent prey preference in the lynx spider, Oxyopes salticus (Araneae: Oxyopidae). Behavioural Processes, 58, 177–181.CrossRefGoogle Scholar
Punzo, F. (2002b). Early experience and prey preference in the lynx spider, Oxyopes salticus Hentz (Araneae: Oxyopidae). Journal of the New York Entomology Society, 110, 255–259.CrossRefGoogle Scholar
Punzo, F. and Alvarez, J. (2002). Effects of early contact with maternal parent on locomotor activity and exploratory behavior in spiderlings of Hogna carolinensis (Araneae: Lycosidae). Journal of Insect Behavior, 15, 455–465.CrossRefGoogle Scholar
Punzo, F. and Ludwig, L. (2002). Contact with maternal parent and siblings affects hunting behavior, learning, and central nervous system development in spiderlings of Hogna carolinensis (Araneae: Lycosidae). Animal Cognition, 5, 63–70.CrossRefGoogle Scholar
Punzo, F. and Preshkar, C. (2002). Environmental, chemical cues associated with prey and subsequent prey preference in the wolf spider Hogna carolinensis Hentz (Araneae, Lycosidae). Journal of Environmental Biology, 23, 341–345.Google Scholar
Punzo, F. and Punzo, T. (2001). Monoamines in the brain of tarantulas (Aphonopelma hentzi) (Araneae, Theraphosidae): differences associated with male agonistic interactions. Journal of Arachnology, 29, 388–395.CrossRefGoogle Scholar
Reyes-Alcubilla, C., Ruiz, M. A. and Ortega-Escobar, J. (2009). Homing in the wolf spider Lycosa tarantula (Araneae, Lycosidae): the role of active locomotion and visual landmarks. Naturwissenschaften, 96, 485–494.CrossRefGoogle ScholarPubMed
Riechert, S. E. (1985). Decisions in multiple goal contexts: habitat selection of the spider, Agelenonopsis aperta (Gertsch). Zeitschrift Tierpsychologie, 70, 53–69.CrossRefGoogle Scholar
Rodríguez, R. L. and Gamboa, E. (2000). Memory of captured prey in three web spiders (Araneae: Araneidae, Linyphiidae, Tetragnathidae). Animal Cognition, 3, 91–97.Google Scholar
Rypstra, A. L., Schmidt, J. M., Reif, B. D., DeVito, J. and Persons, M. H. (2007). Tradeoffs involved in site selection and foraging in a wolf spider: effects of substrate structure and predation risk. Oikos, 166, 853–863.CrossRefGoogle Scholar
Salomon, M. (2007). Western black widow spiders express state-dependent web-building strategies tailored to the presence of neighbours. Animal Behaviour, 73, 865–875.CrossRefGoogle Scholar
Sandoval, C. P. (1994). Plasticity in web design in the spider Parawixia bistriata: a response to variable prey type. Functional Ecology, 8, 701–707.CrossRefGoogle Scholar
Scholtz, G. and Edgecombe, G. D. (2006). The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Development Genes and Evolution, 216, 395–415.CrossRefGoogle ScholarPubMed
Seah, W. K. and Li, D. (2001). Stabilimenta attract unwelcome predators to orb webs. Proceedings of the Royal Society of London, B, 31, 309–318.Google Scholar
Sebrier, M. A. and Krafft, B. (1993). Influence of prior experience on prey consumption behaviour in the spider Zygiella x-notata. Ethology, Ecology, and Evolution, 5, 541–547.Google Scholar
Seyfarth, E.-A. and Barth, F. G. (1972). Compound slit sense organs on the spider leg: mechanoreceptors involved in kinesthetic orientation. Journal of Comparative Physiology, 78, 176–191.CrossRefGoogle Scholar
Seyfarth, E.-A., Hergenröder, R., Ebbes, H. and Barth, F. G. (1982). Idiothetic orientation of a wandering spider: compensation of detours and estimates of goal distance. Behavioral Ecology and Sociobiology, 11, 139–148.CrossRefGoogle Scholar
Shettleworth, S. J. (1998). Cognition, Evolution, and Behavior. New York: Oxford University Press.Google Scholar
Shettleworth, S. J., (2001). Animal cognition and animal behaviour. Animal Behaviour, 61, 277–286.CrossRefGoogle Scholar
Shettleworth, S. J. (2009). The evolution of comparative cognition: is the snark still a boojum?Behavioural Processes, 80, 210–217.CrossRefGoogle Scholar
Skow, C. D. (2007). Jumping spiders and aposematic prey: the role of contextual cues during avoidance learning. Ph.D. thesis, University of Massachusetts at Amherst.
Skow, C. D. and Jakob, E. M. (2006). Jumping spiders attend to context during learned avoidance of aposematic prey. Behavioral Ecology, 17, 34–40.CrossRefGoogle Scholar
Smith, H. M. (2009). The costs of moving for a diurnally cryptic spider. Journal of Arachnology, 37, 84–91.CrossRefGoogle Scholar
Strausfeld, N. J. (2009). Brain organization and the origin of insects: an assessment. Proceedings of the Royal Society, B – Biological Sciences, 276, 1929–1937.CrossRefGoogle Scholar
Strausfeld, N. J. and Barth, F. G. (1993). Two visual systems in one brain: neuropils serving the secondary eyes of the spider Cupiennius salei. Journal of Comparative Neurology, 328, 43–62.CrossRefGoogle ScholarPubMed
Strausfeld, N. J., Hansen, L., Li, Y. S., Gomez, R. S. and Ito, K. (1998). Evolution, discovery, and interpretations of arthropod mushroom bodies. Learning and Memory, 5, 11–37.Google ScholarPubMed
Strausfeld, N. J., Strausfeld, C. M., Loesel, R., Rowell, D. and Stowe, S. (2006). Arthropod phylogeny: onychophoran brain organization suggests an archaic relationship with a chelicerate stem lineage. Proceedings of the Royal Society of London, B, 273, 1857–1866.CrossRefGoogle ScholarPubMed
Strausfeld, N. J., Weltzien, P. and Barth, F. G. (1993). Two visual systems in one brain: neuropils serving the principal eyes of the spider Cupiennius salei. Journal of Comparative Neurology, 328, 63–75.CrossRefGoogle ScholarPubMed
Su, K. F. Y. and Li, D. (2006). Female-biased predation risk and its differential effect on the male and female courtship behaviour of jumping spiders. Animal Behaviour, 71, 531–537.CrossRefGoogle Scholar
Tarsitano, M. S. (2006). Route selection by a jumping spider (Portia labiata) during the locomotory phase of a detour. Animal Behaviour, 72, 1437–1442.CrossRefGoogle Scholar
Tarsitano, M. S., and Andrew, R. (1999). Scanning and route selection in the jumping spider Portia labiata. Animal Behaviour, 58, 255–265.CrossRefGoogle ScholarPubMed
Tarsitano, M. S., and Jackson, R. R. (1994). Jumping spiders make predatory detours requiring movement away from prey. Behaviour, 131, 65–73.CrossRefGoogle Scholar
Tarsitano, M. S., and Jackson, R. R. (1997). Araneophagic jumping spiders discriminate between detour routes that do and do not lead to prey. Animal Behaviour, 53, 257–266.CrossRefGoogle Scholar
Tarsitano, M. S., Jackson, R. R. and Kircher, W. H. (2000). Signals and signal choices made by the araneophagic jumping spider Portia fimbriata while hunting the orb-weaving web spiders Zygiella x-notata and Zosis geniculatus. Ethology, 106, 595–615.CrossRefGoogle Scholar
Taylor, P. W. and Elwood, R. W. (2003). The mismeasure of animal contests. Animal Behaviour, 65, 1195–1202.CrossRefGoogle Scholar
Taylor, P. W. and Jackson, R. R. (2003). Interacting effects of size and prior injury in jumping spider conflicts. Animal Behaviour, 65, 787–794.CrossRefGoogle Scholar
Theodoratus, D. H. and Bowers, M. D. (1999). Effects of sequestered iridoid glycosides on prey choice of the prairie wolf spider, Lycosa carolinensis. Journal of Chemical Ecology, 25, 283–295.CrossRefGoogle Scholar
Tinbergen, N. and Kruyt, W. (1938). On the orientation of the digger wasp Philanthus triangulum Fabr. III. Selective learning of landmarks. In The Animal in its World (ed. Tinbergen, N.). Cambridge, MA: Harvard University Press, pp. 146–196.Google Scholar
Toft, S. (1997). Acquired food aversion of a wolf spider to three cereal aphids: intra- and interspecific effects. Entomophaga, 42, 63–69.CrossRefGoogle Scholar
Toft, S. (1999). Prey choice and spider fitness. Journal of Arachnology, 27, 301–307.Google Scholar
Uetz, G. W. and Hieber, C. S. (1997). Colonial web-building spiders: balancing the costs and benefits of group-living. In Evolution of Social Behavior in Insects and Arachnids (ed. Choe, J. C. and Crespi, B. J.). Cambridge, UK: Cambridge University Press.Google Scholar
Uetz, G. W. and Norton, S. (2007). Preference for male traits in female wolf spiders varies with the choice of available males, female age and reproductive state. Behavioral Ecology and Sociobiology, 61, 631–641.CrossRefGoogle Scholar
VanderSal, N. D., and Hebets, E. A. (2007). Cross-modal effects on learning: a seismic stimulus improve color discrimination learning in a jumping spider. Journal of Experimental Biology, 210, 3689–3695.CrossRefGoogle Scholar
Venner, S., Bel-Venner, M.-C., Pasquet, A., and Leborgne, R. (2003). Body-mass-dependent cost of web-building behavior in an orb-weaving spider, Zygiella x-notata. Naturwissenschaften, 90, 269–272.CrossRefGoogle Scholar
Venner, S., Pasquet, A. and Leborgne, R. (2000). Web-building behaviour in the orb-weaving spider Zygiella x-notata: influence of experience. Animal Behaviour, 59, 603–611.CrossRefGoogle ScholarPubMed
Vollrath, F. (1987). Foraging, growth and reproductive success. In Ecophysiology of Spiders (ed. Nentwig, W.). Berlin: Springer, pp. 357–370.CrossRefGoogle Scholar
Vollrath, F. and Houston, A. (1986). Previous experience and site-tenacity in the orb spider Nephila (Araneae, Araneidae). Oecologia, 70, 305–308.CrossRefGoogle Scholar
Wehner, R., and Srinivasan, M. V. (2003). Path integration in insects. In The Neurobiology of Spatial Behaviour (ed. Jeffery, K. J.). Oxford, UK: Oxford University Press, pp. 9–30.CrossRefGoogle Scholar
Wells, M. S. (1988). Effects of body size and resource value on fighting behavior in a jumping spider. Animal Behaviour, 36, 321–326.CrossRefGoogle Scholar
Whitehouse, M. E. A. (1997). Experience influences male-male contests in the spider Argyrodes antipodiana (Theridiidae: Araneae). Animal Behaviour, 53, 913–926.CrossRefGoogle Scholar
Wilder, S. M. and Rypstra, A. L. (2008a). Diet quality affects mating behaviour and egg production in a wolf spider. Animal Behaviour, 76, 439–445.CrossRefGoogle Scholar
Wilder, S. M. and Rypstra, A. L. (2008b). Prior encounters with the opposite sex affect male and female mating behavior in a wolf spider (Araneae, Lycosidae). Behavioral Ecology and Sociobiology, 62, 1813–1820.CrossRefGoogle Scholar
Wullschleger, B. and Nentwig, W. (2002). Influence of venom availability on a spider's prey-choice behaviour. Functional Ecology, 16, 802–807.CrossRefGoogle Scholar
Zevenbergen, J. M., Schneider, N. K. and Blackledge, T. A. (2008). Fine dining or fortress? Functional shifts in spider web architecture by the western black widow Latrodectus hesperus. Animal Behaviour, 76, 823–829.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×