Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-04T14:44:54.640Z Has data issue: false hasContentIssue false

3 - Spider webs: evolution, diversity and plasticity

Published online by Cambridge University Press:  05 June 2012

Marie E. Herberstein
Affiliation:
Macquarie University, Sydney
I-Min Tso
Affiliation:
Tunghai University, Taiwan
Marie Elisabeth Herberstein
Affiliation:
Macquarie University, Sydney
Get access

Summary

The webs of spiders are the first things we notice, long before we recognise the occupant. Silk production and web building is a defining feature of all spiders, and certainly the trait they are best known for. The obvious diversity in different web types and structures has always fascinated; even Aristotle made attempts to define different web types. But it has not been until the latter half of the twentieth century that we have started to appreciate the level of diversity and plasticity in web-building behaviour, between individuals of the same species, and even within an individual from one day to the next. The recent work on silk composition and mechanics is starting to document similar levels of plasticity in response to a variety of extrinsic and intrinsic factors. We argue that that this underappreciated aspect of spider biology renders them superior models for studies investigating behavioural plasticity at the individual level.

Webs, silks and decorations

The evolution of spider webs

Spider webs fulfil a number of functions of which prey capture is clearly the best recognised and studied. But webs also provide a moulting and mating platform, a retreat from predators, a place to secure egg sacs, and in some cases a diving bell (e.g. Argyroneta aquatica; Schütz et al., 2007). The reasons silk and webs evolved in the first place are still unresolved (Vollrath and Selden, 2007).

Type
Chapter
Information
Spider Behaviour
Flexibility and Versatility
, pp. 57 - 98
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agnarsson, I. (2004). Morphological phylogeny of cobweb spiders and their relatives (Araneae, Araneoidea, Theridiidae). Zoological Journal of the Linnean Society, 141, 447–626.CrossRefGoogle Scholar
Agnarsson, I. and Coddington, J. (2006). Notes on web and web plasticity and description of the male of Achaearanea hieroglyphica (Mello-Leitao) (Araneae, Theridiidae). Journal of Arachnology, 34, 638–641.CrossRefGoogle Scholar
Arnedo, M., Hormiga, G. and Scharff, N. (2009). Higher-level phylogenetics of linyphiid spiders (Araneae, Linyphiidae) based on morphological and molecular evidence. Cladistics, 25, 231–262.CrossRefGoogle Scholar
Ayoub, N. A. and Hayashi, C. Y. (2008). Multiple recombining loci encoding MaSp1, the primary constituent of dragline silk, in widow spiders (Latrodectus: Theridiidae). Molecular Biology and Evolution, 25, 277–286.CrossRefGoogle Scholar
Ayoub, N. A., Garb, J. E., Tinghitella, R. M., Collin, M. A. and Hayashi, C. Y. (2007). Blueprint for a high-performance biomaterial: full-length spider dragline silk genes. PLoS ONE, 2, e514.CrossRefGoogle ScholarPubMed
Baba, Y. and Miyashita, T. (2006). Does individual internal state affect the presence of a barrier web in Argiope bruennichii (Araneae: Araneidae)?Journal of Ethology, 24, 75–78.CrossRefGoogle Scholar
Barghusen, L. E., Claussen, D. L., Anderson, M. S. and Bailer, A. J. (1997). The effects of temperature on the web-building behaviour of the common house spider, Achaearanea tepidariorum. Functional Ecology, 11, 4–10.CrossRefGoogle Scholar
Beckwitt, R., Arcidiancono, S. and Stote, R. (1998). Evolution of repetitive proteins: spider silks from Nephila clavipes (Tetragnathidae) and Araneus bicentenarius (Araneidae). Insect Biochemistry and Molecular Biology, 28, 121–130.CrossRefGoogle Scholar
Benjamin, S. P. and Zschokke, S. (2002). Untangling the tangle-web: web construction behavior of the comb-footed spider Steatoda triangulosa and comments on phylogenetic implications (Araneae: Theridiidae). Journal of Insect Behavior, 15, 791–809.CrossRefGoogle Scholar
Benjamin, S. P. and Zschokke, S. (2003). Webs of theridiid spiders: construction, structure and evolution. Biological Journal of the Linnean Society, 78, 293–305.CrossRefGoogle Scholar
Benjamin, S. and Zschokke, S. (2004). Homology, behaviour and spider webs: web construction behaviour of Linyphia hortensis and L. triangularis (Araneae: Linyphiidae) and its evolutionary significance. Journal of Evolutionary Biology, 17, 120–130.CrossRefGoogle ScholarPubMed
Benjamin, S. P., Düggelin, M. and Zschokke, S. (2002). Fine structure of sheet-webs of Linyphia triangularis (Clerck) and Microlinyphia pusilla (Sundevall), with remarks on the presence of viscid silk. Acta Zoologica – Stockholm, 83, 49–59.CrossRefGoogle Scholar
Biesmeijer, J. C., Giurfa, M., Koedam, D., et al. (2005). Convergent evolution: floral guides, stingless bee nest entrances, and insectivorous pitchers. Naturwissenschaften, 92, 444–450.CrossRefGoogle ScholarPubMed
Bjorkman-Chiswell, B. T., Kulinski, M. M., Muscat, R. L., et al. (2004). Web-building spiders attract prey by storing decaying matter. Naturwissenschaften, 91, 245–248.CrossRefGoogle ScholarPubMed
Blackledge, T. A. (1998). Stabilimentum variation and foraging success in Argiope aurantia and Argiope trifasciata (Araneae, Araneidae). Journal of Zoology, 246, 21–27.CrossRefGoogle Scholar
Blackledge, T. A. and Wenzel, J. W. (1999). Do stabilimenta in orb webs attract prey or defend spiders?Behavioral Ecology, 10, 372–376.CrossRefGoogle Scholar
Blackledge, T. A. and Wenzel, J. W. (2001). Silk mediated defense by an orb web spider against predatory mud-dauber wasps. Behaviour, 138, 155–171.CrossRefGoogle Scholar
Blackledge, T. A. and Zevenbergen, J. M. (2007). Condition-dependent spider web architecture in the western black widow, Latrodectus hesperus. Animal Behaviour, 73, 855–864.CrossRefGoogle Scholar
Blackledge, T. A., Coddington, J. and Gillespie, R. G. (2003). Are three-dimensional spider webs defensive adaptations?Ecology Letters, 6, 13–18.CrossRefGoogle Scholar
Blackledge, T. A., Scharff, N., Coddington, J. A., et al. (2009). Reconstructing web evolution and spider diversification in the molecular era. Proceedings of the National Academy of Sciences of the USA, 106, 5229–5234.CrossRefGoogle ScholarPubMed
Blamires, S. J., Hochuli, D. F. and Thompson, M. B. (2008). Why cross the web: decoration spectral properties and prey capture in an orb spider (Argiope keyserlingi) web. Biological Journal of the Linnean Society, 94, 221–229.CrossRefGoogle Scholar
Blamires, S. J., Thompson, M. B. and Hochuli, D. F. (2007). Habitat selection and web plasticity by the orb spider Argiope keyserlingi (Argiopidae): do they compromise foraging success for predator avoidance?Austral Ecology, 32, 551–563.CrossRefGoogle Scholar
Bond, J. E. and Opell, B. D. (1998). Testing adaptive radiation and key innovation hypotheses in spiders. Evolution, 52, 403–414.CrossRefGoogle ScholarPubMed
Boutry, C. and Blackledge, T. A. (2008). The common house spider alters the material and mechanical properties of cobweb silk in response to different prey. Journal of Experimental Zoology, 309A, 542–552.CrossRefGoogle ScholarPubMed
Bruce, M. (2006). Silk decorations: controversy and consensus. Journal of Zoology, 269, 89–97.CrossRefGoogle Scholar
Bruce, M. J., Heiling, A. M. and Herberstein, M. E. (2004). Alternative foraging strategies in the orb-web spider ‘Araneus’ eburnus (Araneidae, Araneae). Annales Zoologici Fennici, 41, 563–575.Google Scholar
Bruce, M. J., Heiling, A. M. and Herberstein, M. E. (2005). Spider signals: are web decorations visible to birds and bees?Biology Letters, 1, 299–302.CrossRefGoogle ScholarPubMed
Bruce, M. J., Herberstein, M. E. and Elgar, M. A. (2001). Signalling conflict between prey and predator attraction. Journal of Evolutionary Biology, 14, 786–794.CrossRefGoogle Scholar
Cartan, C. and Miyashita, T. (2000). Extraordinary web and silk properties of Cyrtarachne (Araneae, Araneidae): a possible link between orb-webs and bolas. Biological Journal of the Linnean Society, 71, 219–235.CrossRefGoogle Scholar
Champion de Crespigny, F. E., Herberstein, M. E. and Elgar, M. A. (2001). Food caching in orb-web spiders (Araneae: Araneoidea). Naturwissenschaften, 88, 42–45.CrossRefGoogle Scholar
Chen, X., Shao, Z. Z. and Vollrath, F. (2006). The spinning processes for spider silk. Soft Matter, 2, 448–451.CrossRefGoogle Scholar
Cheng, R. C. and Tso, I. M. (2007). Signaling by decorating webs: luring prey or deterring predators?Behavioral Ecology, 18, 1085–1091.CrossRefGoogle Scholar
Chmiel, K., Herberstein, M. E. and Elgar, M. A. (2000). Web damage and feeding experience influence web site tenacity in the orb-web spider Argiope keyserlingi Karsch. Animal Behaviour, 60, 821–826.CrossRefGoogle ScholarPubMed
Chou, I. C., Wang, P. H., Shen, P. S. and Tso, I. M. (2005). A test of prey-attracting and predator defence functions of prey carcass decorations built by Cyclosa spiders. Animal Behaviour, 69, 1055–1061.CrossRefGoogle Scholar
Coddington, J. A. and Levi, H. W. (1991). Systematics and evolution of spiders (Araneae). Annual Review of Ecology and Systematics, 22, 565–592.CrossRefGoogle Scholar
Colgin, M. A. and Lewis, R. V. (1998). Spider minor ampullate silk proteins contain new repetitive sequences and highly conserved non-silk-like ‘spacer regions’. Protein Science, 7, 667–672.CrossRefGoogle Scholar
Coyle, F. A. (1986). The role of silk in prey capture by nonaraneomorph spiders. In Spiders: Webs, Behavior, and Evolution (ed. Shear, W. A.). Stanford, CA: Stanford University Press.Google Scholar
Craig, C. L. (1987). The ecological and evolutionary interdependence between web architecture and web silk spun by orb web weaving spiders. Biological Journal of the Linnean Society, 30, 135–162.CrossRefGoogle Scholar
Craig, C. L. (1991). Physical constraints on group foraging and social evolution: observations on web-spinning spiders. Functional Ecology, 5, 649–654.CrossRefGoogle Scholar
Craig, C. L. (1994). Limits to learning: effects of predator pattern and colour on perception and avoidance-learning by prey. Animal Behaviour, 47, 1087–1099.CrossRefGoogle Scholar
Craig, C. L. (2003). Spiderwebs and Silk. Oxford, UK: Oxford University Press.Google Scholar
Craig, C. L. and Bernard, G. D. (1990). Insect attraction to ultraviolet-reflecting spider webs and web decorations. Ecology, 71, 616–623.CrossRefGoogle Scholar
Craig, C. L., Reikel, C., Herberstein, M. E., et al. (2000). Evidence for diet effects on the composition of silk proteins produced by spiders. Molecular Biology and Evolution, 17, 1904–1913.CrossRefGoogle ScholarPubMed
Craig, C. L., Weber, R. S. and Bernard, G. D. (1996). Evolution of predator-prey systems: spider foraging plasticity in response to the visual ecology of prey. American Naturalist, 147, 205–229.CrossRefGoogle Scholar
Craig, C. L., Wolf, S. G., Davis, J. L. D., Hauber, M. E. and Maas, J. L. (2001). Signal polymorphism in the web-decorating spider Argiope argentata is correlated with reduced survivorship and the presence of stingless bees, its primary prey. Evolution, 55, 986–993.CrossRefGoogle ScholarPubMed
Damen, W. G. M., Saridaki, T. and Averof, M. (2002). Diverse adaptations of an ancestral gill: a common evolutionary origin for wings, breathing organs, and spinnerets. Current Biology, 12, 1711–1716.CrossRefGoogle ScholarPubMed
Denny, M. (1976). The physical properties of spider's silk and their role in the design of orb-webs. Journal of Experimental Biology, 65, 483–506.Google Scholar
Dippenaar-Schoeman, A. S., and Jocqué, R. (1997). African Spiders: An Identification Manual. Handbook 9. Pretoria: Agricultural Research Council Plant Protection Research Institute.Google Scholar
Eberhard, W. G. (1973). Stabilimenta on the webs of Uloborus diversus (Araneae: Uloboridae) and other spiders. Journal of Zoology, 171, 367–384.CrossRefGoogle Scholar
Eberhard, W. G. (1975). The ‘inverted ladder’ orb web of Scoloderus sp. and the intermediate orb of Eustala (?) sp. Araneae: Araneidae. Journal of Natural History, 9, 93–106.CrossRefGoogle Scholar
Eberhard, W. G. (1988). Behavioral flexibility in orb web construction: effects of supplies in different silk glands and spider size and weight. Journal of Arachnology, 16, 295–302.Google Scholar
Eberhard, W. G. (1990). Function and phylogeny of spider webs. Annual Review of Ecology and Systematics, 21, 341–372.CrossRefGoogle Scholar
Eberhard, W. G. (2003). Substitution of silk stabilimenta for egg sacs by Allocyclosa bifurca (Araneae: Araneidae) suggests that silk stabilimenta function as camouflage devices. Behaviour, 140, 847–868.CrossRefGoogle Scholar
Eberhard, W. G. (2007). Stabilimenta of Philoponella vicina (Araneae: Uloboridae) and Gasteracantha cancriformis (Araneae: Araneidae): evidence against a prey attractant function. Biotropica, 39, 216–220.CrossRefGoogle Scholar
Eberhard, W. G. (2008). Araneus expletus (Araneae, Araneidae): another stabilimentum that does not function to attract prey. Journal of Arachnology, 36, 191–194.CrossRefGoogle Scholar
Eberhard, W. G., Agnarsson, I. and Levi, H. W. (2008). Web forms and the phylogeny and theridiid spiders (Araneae: Theridiidae): chaos from order. Systematics and Biodiversity, 6, 415–475.CrossRefGoogle Scholar
Eisner, T. and Nowicki, S. (1983). Spider web protection through visual advertisment: role of the stabilimentum. Science, 219, 185–187.CrossRefGoogle Scholar
Elgar, M. A., Allan, R. A. and Evans, T. A. (1996). Foraging strategies in orb-spinning spiders: ambient light and silk decorations in Argiope aetherea Walckenaer (Araneae: Araneoidea). Australian Journal of Ecology, 21, 464–467.CrossRefGoogle Scholar
Eskov, K. Y. and Selden, P. (2005). First record of spiders from the Permian period (Araneae: Mesothelae). Bulletin of the British Arachnological Society, 13, 111–116.Google Scholar
Foelix, R. F. (1996). Biology of Spiders, 2nd edn. Oxford, UK: Oxford University Press.Google Scholar
Forster, C. M. and Forster, R. R. (1985). A derivative of the orb web and its evolutionary significance. New Zealand Journal of Zoology, 12, 455–465.CrossRefGoogle Scholar
Garb, J. E.Dimauro, T., Vo, V. and Hayashi, C. Y. (2006). Silk genes support the single origin of orb webs. Science, 312, 1762.CrossRefGoogle ScholarPubMed
Garb, J. E. and Hayashi, C. Y. (2005). Modular evolution of egg case silk genes across orb-weaving spider superfamilies. Proceedings of the National Academy of Sciences of the USA, 102, 11 379–11 384.CrossRefGoogle ScholarPubMed
Garrido, M. A., Viney, C. and Pérez-Rigueiro, J. (2002). Active control of spider silk strength: comparison of drag line spun on vertical and horizontal surfaces. Polymer, 43, 1537–1540.CrossRefGoogle Scholar
Gillespie, R. G. and Caraco, T. (1987). Risk-sensitive foraging strategies of two spider populations. Ecology, 68, 887–899.CrossRefGoogle Scholar
Gosline, J. M., Demont, M. E. and Denny, M. W. (1986). The structure and properties of spider silk. Endeavour, 10, 37–43.CrossRefGoogle Scholar
Gosline, J. M., Guerette, P. A., Ortlepp, C. S. and Savage, K. N. (1999). The mechanical design of spider silks: from fibroin sequence to mechanical function. Journal of Experimental Biology, 202, 3295–3303.Google ScholarPubMed
Griffiths, B. V., Holwell, G. I., Herberstein, M. E. and Elgar, M. A. (2003). Frequency, composition and variation in external food stores constructed by orb-web spiders: Nephila edulis and Nephila plumipes (Araneae: Araneoidea). Australian Journal of Zoology, 51, 119–128.CrossRefGoogle Scholar
Grimaldi, D. A. and Engel, M. S. (2005). Evolution of Insects. Cambridge, UK: Cambridge University Press.Google Scholar
Griswold, C. E., Coddington, J. A., Hormiga, G. and Scharff, N. (1998). Phylogeny of the orb-web building spiders (Araneae, Orbiculariae: Deinopoidea, Araneoidea). Zoological Journal of the Linnean Society, 123, 1–99.CrossRefGoogle Scholar
Guehrs, K. H., Schlott, B., Grosse, F. and Weisshart, K. (2008). Environmental conditions impinge on dragline silk protein composition. Insect Molecular Biology, 17, 553–564.CrossRefGoogle ScholarPubMed
Guinea, G. V., Elices, M., Pérez-Rigueiro, J. and Plaza, G. R. (2005). Stretching of supercontracted fibers: a link between spinning and the variability of spider silk. Journal of Experimental Biology, 208, 25–30.CrossRefGoogle ScholarPubMed
Harmer, A. (2009). Elongated orb-webs of Australian ladder-web spiders (Araneidae: Telaprocera) and the significance of orb-web elongation. Journal of Ethology, 27, 453–460.CrossRefGoogle Scholar
Harmer, A. M. and Herberstein, M. E. (2009). Taking it to extremes: what drives extreme web elongation in Australian ladder web spiders (Araneidae: Telaprocera maudae)?Animal Behaviour, 78, 499–504.CrossRefGoogle Scholar
Harmer, A. M. T. and Framenau, V. W. (2009). Telaprocera (Araneae: Araneidae), a new genus of Australian orb-web spiders with highly elongated webs. Zootaxa, 1956, 59–80.Google Scholar
Harvey, M. S., Austin, A. D. and Adams, M. (2007). The systematics and biology of the spider genus Nephila (Araneae: Nephilidae) in the Australasian region. Invertebrate Systematics, 21, 407–451.CrossRefGoogle Scholar
Hayashi, C. Y. and Lewis, R. V. (1998). Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silk. Journal of Molecular Biology, 275, 773–784.CrossRefGoogle Scholar
Hayashi, C. Y. and Lewis, R. V. (2000). Molecular architecture and evolution of a modular spider silk protein gene. Science, 287, 1477–1479.CrossRefGoogle ScholarPubMed
Hayashi, C. Y., Blackledge, T. A. and Lewis, R. V. (2004). Molecular and mechanical characterization of aciniform silk: uniformity of iterated sequence modules in a novel member of the spider silk fibroin gene family. Molecular Biology and Evolution, 21, 1950–1959.CrossRefGoogle Scholar
Hayashi, C. Y., Shipley, N. H. and Lewis, R. V. (1999). Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. International Journal of Biological Macromolecules, 24, 271–275.CrossRefGoogle ScholarPubMed
Heiling, A. M. and Herberstein, M. E. (1998). The web of Nuctenea sclopetaria (Araneae, Araneidae): relationship between body size and web design. Journal of Arachnology, 26, 91–96.Google Scholar
Heiling, A. M. and Herberstein, M. E. (1999). The role of experience in web-building spiders (Araneidae). Animal Cognition, 2, 171–177.CrossRefGoogle Scholar
Heiling, A. M. and Herberstein, M. E. (2000). Interpretations of orb-web variability: a review of past and current ideas. Ekologia – Bratislava, 19, 97–106.Google Scholar
Herberstein, M. E. (2000). Foraging behaviour in orb-web spiders (Araneidae): do web decorations increase prey capture success in Argiope keyserlingi Karsch, 1878?Australian Journal of Zoology, 48, 217–223.CrossRefGoogle Scholar
Herberstein, M. E. and Fleisch, A. F. (2003). Effect of abiotic factors on the foraging strategy of the orb-web spider Argiope keyserlingi (Araneae: Araneidae). Austral Ecology, 28, 622–628.CrossRefGoogle Scholar
Herberstein, M. E., and Heiling, A. M. (1999). Asymmetry in spider orb webs: a result of physical constraints?Animal Behaviour, 58, 1241–1246.CrossRefGoogle ScholarPubMed
Herberstein, M. E., Craig, C. L., Coddington, J. A. and Elgar, M. A. (2000a). The functional significance of silk decorations of orb-web spiders: a critical review of the empirical evidence. Biological Reviews, 75, 649–669.CrossRefGoogle ScholarPubMed
Herberstein, M. E., Craig, C. L. and Elgar, M. A. (2000b). Foraging strategies and feeding regimes: web and decoration investment in Argiope keyserlingi Karsch (Araneae: Araneidae). Evolutionary Ecology Research, 2, 69–80.Google Scholar
Heuschen, B., Gumbert, A. and Lunau, K. (2005). A generalized mimicry system involving angiosperm flower colour, pollen and bumblebees' innate colour preferences. Plant Systematics and Evolution, 252, 121–137.CrossRefGoogle Scholar
Higgins, L. (1992). Developmental changes in barrier web structure under different levels of predation risk in Nephila clavipes (Araneae, Tetragnathidae). Journal of Insect Behavior, 5, 635–655.CrossRefGoogle Scholar
Higgins, L. E. (1995). Direct evidence for trade-offs between foraging and growth in a juvenile spider. Journal of Arachnology, 23, 37–43.Google Scholar
Higgins, L. E., Townley, M. A., Tillinghast, E. K. and Rankin, M. A. (2001). Variation in the chemical composition of orb webs built by the spider Nephila clavipes (Araneae, Tetragnathidae). Journal of Arachnology, 29, 82–94.CrossRefGoogle Scholar
Hinman, M. B. and Lewis, R. V. (1992). Isolation of a clone encoding a second dragline silk fibroin. Nephila clavipes dragline silk is a two-protein fiber. Journal of Biological Chemistry, 267, 19 320–19 324.Google ScholarPubMed
Horton, C. C. (1980). A defensive function for the stabilimenta of two orb weaving spiders (Araneae: Araneidae). Psyche, 87, 13–20.CrossRefGoogle Scholar
Hu, X., Vasanthavada, K., Kohler, K., et al. (2006). Molecular mechanisms of spider silk. Cellular and Molecular Life Sciences, 63, 1986–1999.CrossRefGoogle ScholarPubMed
Huang, W., Lin, Z., Sin, Y. M., et al. (2006). Characterization and expression of a cDNA encoding a tubuliform silk protein of the golden web spider Nephila antipodiana. Biochimie, 88, 849–858.CrossRefGoogle ScholarPubMed
Humphreys, W. F. (1992). Stabilimenta as parasols: shade construction by Neogea sp. (Araneae: Araneidae, Argiopinae) and its thermal behaviour. Bulletin of the British Arachnological Society, 9, 47–52.Google Scholar
Japyassú, H. and Macagnan, C. (2004). Fishing for prey: the evolution of a new predatory tactic among spiders (Araneae, Pholcidae). Revista de Etologia, 6, 79–94.Google Scholar
Japyassu, H. F. and Ades, C. (1998). From complete orb to semi-orb webs: developmental transitions in the web of Nephilengys cruentata (Araneae: Tetragnathidae). Behaviour, 135, 931–956.CrossRefGoogle Scholar
Jocqué, R. and Dippenaar-Schoeman, A. S. (2007). Spider Families of the World. Tervuren, Belgium: Royal Museum for Central Africa.Google Scholar
Kaston, B. J. (1972). Web making by young Peucetia viridans (Hentz) (Araneae: Oxyopidae). Notes of the Arachnologists of the Southwest, 3, 6–7.Google Scholar
Knight, D. P., Knight, M. M. and Vollrath, F. (2000). Beta transition and stress-induced phase separation in the spinning of spider dragline silk. International Journal of Biological Macromolecules, 27, 205–210.CrossRefGoogle ScholarPubMed
Krink, T. and Vollrath, F. (1997). Analysing spider web-building behaviour with rule-based simulations and genetic algorithms. Journal of Theoretical Biology, 185, 321–331.CrossRefGoogle Scholar
Krink, T. and Vollrath, F. (1998). Emergent properties in the behaviour of a virtual spider robot. Proceedings of the Royal Society of London, B, 265, 2051–2055.CrossRefGoogle Scholar
Kuntner, M. (2005). A revision of Herennia (Araneae: Nephilidae: Nephilinae), the Australasian ‘coin spiders’. Invertebrate Systematics, 19, 391–436.CrossRefGoogle Scholar
Kuntner, M. (2007). A monograph of Nephilengys, the pantropical ‘hermit spiders’ (Araneae, Nephilidae, Nephilinae). Systematic Entomology, 32, 95–135.CrossRefGoogle Scholar
Kuntner, M., Coddington, J. A. and Hormiga, G. (2008a). Phylogeny of extant nephilid orb-weaving spiders (Araneae, Nephilidae): testing morphological and ethological homologies. Cladistics, 24, 147–217.CrossRefGoogle Scholar
Kuntner, M., Haddad, C. R., Aljancic, G. and Blejec, A. (2008b). Ecology and web allometry of Clitaetra irenae, an arboricolous African orb-weaving spider (Araneae, Araneoidea, Nephilidae). Journal of Arachnology, 36, 583–594.CrossRefGoogle Scholar
Leborgne, R. and Pasquet, A. (1987). Influences of aggregative behavior on space occupation in the spider Zygiella x-notata (Clerck). Behavioral Ecology and Sociobiology, 20, 203–208.CrossRefGoogle Scholar
Levi, H. W. (1968). The spider genera Gea and Argiope in America (Araneae: Araneidae). Bulletin of the Museum of Comparative Zoology, 136, 319–352.Google Scholar
Li, D. (2005). Spiders that decorate their webs at higher frequency intercept more prey and grow faster. Proceedings of the Royal Society of London, B, 272, 1753–1757.CrossRefGoogle ScholarPubMed
Li, D. and Lee, W. S. (2004). Predator-induced plasticity in web-building behaviour. Animal Behaviour, 67, 309–318.CrossRefGoogle Scholar
Li, D., Lim, M. L. M., Seah, W. K. and Tay, S. L. (2004). Prey-attraction as a possible function of discoid stabilimenta of juvenile orb-spinning spiders. Animal Behaviour, 68, 629–635.CrossRefGoogle Scholar
Liao, C.-P., Chi, K.-J. and Tso, I. M. (2009). The effects of wind on trap structural and material properties of a sit-and-wait predator. Behavioral Ecology, 20, 1194–1203.CrossRefGoogle Scholar
Liu, Y., Sponner, A., Porter, D. and Vollrath, F. (2008). Proline and processing of spider silks. Biomacromolecules, 9, 116–121.CrossRefGoogle ScholarPubMed
Lubin, Y. D. (1973). Web structure and function: the non-adhesive orb-web of Cyrtophora moluccensis (Doleschall) (Araneae: Araneidae). Forma et Functio, 6, 337–358.Google Scholar
Lubin, Y. D. (1975). Stabilimenta and barrier webs in the orb webs of Argiope argentata (Araneae, Araneidae) on Daphne and Santa Cruz Islands, Galapagos. Journal of Arachnology, 2, 119–126.Google Scholar
Lubin, Y. D. (1986). Web building and prey capture in the Uloboridae. In Spiders: Webs, Behavior, and Evolution (ed. Shear, W. A.). Stanford, CA: Stanford University Press.Google Scholar
Lunau, K. (1995). Notes on the colour of pollen. Plant Systematics and Evolution, 198, 235–252.CrossRefGoogle Scholar
Madsen, B., Shao, Z. Z. and Vollrath, F. (1999). Variability in the mechanical properties of spider silks on three levels: interspecific, intraspecific and intraindividual. International Journal of Biological Macromolecules, 24, 301–306.CrossRefGoogle ScholarPubMed
Marples, B. J. (1969). Observations on decorated webs. Bulletin of the British Arachnological Society, 1, 13–18.Google Scholar
Murphy, N. P., Framenau, V., Donnellan, S. C., et al. (2006). Phylogenetic recronstruction of the wolf spiders (Araneae: Lycosidae) using sequences from the 12S rRNA, 28S rRNA, and NADH1 genes: implications for classification, biogeography, and the evolution of web building behavior. Molecular Phylogenetics and Evolution, 38, 583–602.CrossRefGoogle ScholarPubMed
Nakata, K. (2009). To be or not to be conspicuous: the effects of prey availability and predator risk on spider's web decoration building. Animal Behaviour, 78, 1255–1260.CrossRefGoogle Scholar
Nakata, K. and Ushimaru, A. (1999). Feeding experience affects web relocation and investment in web threads in an orb-web spider, Cyclosa argenteoalba. Animal Behaviour, 57, 1251–1255.CrossRefGoogle Scholar
Nentwig, W. and Heimer, S. (1987). Ecological aspects of spider webs. In Ecophysiology of Spiders (ed. Nentwig, W.). Berlin: Springer Verlag.CrossRefGoogle Scholar
Nentwig, W. and Rogg, H. (1988). The cross stabilimentum of Argiope argentata (Araneae: Araneidae): nonfunctional or a nonspecific stress reaction?Zoologischer Anzeiger, 221, 246–266.Google Scholar
Opell, B. D. (1982). Post-hatching development and web production of Hyptiotes cavatus (Hentz) (Araneae, Uloboridae). Journal of Arachnology, 10, 185–191.Google Scholar
Opell, B. D. (1985). Web-monitoring forces exerted by orb-web and triangle-web spiders of the family Uloboridae. Canadian Journal of Zoology, 63, 580–583.CrossRefGoogle Scholar
Opell, B. D. (1987). Changes in web-monitoring forces associated with web reduction in the spider family Uloboridae. Canadian Journal of Zoology, 65, 1028–1034.CrossRefGoogle Scholar
Opell, B. D., Lipkey, G. K., Hendricks, M. L. and Vito, S. T. (2009). Daily and seasonal changes in the stickiness of viscous capture threads in Argiope aurantia and Argiope trifasciata orb-webs. Journal of Experimental Zoology, 311A, 217–225.CrossRefGoogle ScholarPubMed
Ortlepp, C. S. and Gosline, J. M. (2004). Consequences of forced silking. Biomacromolecules, 5, 727–731.CrossRefGoogle ScholarPubMed
Pan, Z. J., Li, C. P. and Xu, Q. (2004). Active control on molecular conformations and tensile properties of spider silk. Journal of Applied Polymer Science, 92, 901–905.CrossRefGoogle Scholar
Pasquet, A., Leborgne, R. and Lubin, Y. (1999). Previous foraging success influences web building in the spider Stegodyphus lineatus (Eresidae). Behavioral Ecology, 10, 115–121.CrossRefGoogle Scholar
Penalver, E., Grimaldi, D. A. and Delclos, X. (2006). Early Cretaceous spider web with its prey. Science, 312, 1761.CrossRefGoogle ScholarPubMed
Pérez-Rigueiro, J., Elices, M., Plaza, G., Real, J. I. and Guinea, G. V. (2005). The effect of spinning forces on spider silk properties. Journal of Experimental Biology, 208, 2633–2639.CrossRefGoogle ScholarPubMed
Peters, H. M. (1993). Über das Problem der Stabilimente in Spinnennetzen. Zoologische Jahrbücher, Abteilung Physiologie, 97, 245–264.Google Scholar
Porter, D., Vollrath, F. and Shao, Z. (2005). Predicting the mechanical properties of spider silk as a model nanostructured polymer. The European Physical Journal, E, 16, 199–206.CrossRefGoogle Scholar
Prokopy, R. J. and Owens, E. D. (1983). Visual detection of plants by herbivorous insects. Annual Review of Entomology, 28, 337–364.CrossRefGoogle Scholar
Reed, C. F., Witt, P. N., Scarboro, M. B. and Peakal, D. B. (1970). Experience and the orb web. Developmental Psychobiology, 3, 251–265.CrossRefGoogle ScholarPubMed
Riekel, C., Muller, M. and Vollrath, F. (1999). In situ X-ray diffraction during forced silking of spider silk. Macromolecules, 32, 4464–4466.CrossRefGoogle Scholar
Rising, A., Hjalm, G., Engstrom, W. and Johnson, J. (2006). N-terminal nonrepetitive domain common to dragline, flagelliform, and cylindriform spider silk proteins. Biomacromolecules, 7, 3120–3124.CrossRefGoogle ScholarPubMed
Robinson, M. H. and Robinson, B. (1970). The stabilimentum of the orb web spider, Argiope argentata: an improbable defence against predators. Canadian Entomologist, 102, 641–655.CrossRefGoogle Scholar
Robinson, M. H. and Robinson, B. (1971). The predatory behavior of the ogre-faced spider Dinopis longipes F. Cambridge (Araneae: Dinopidae). American Midland Naturalist, 85, 85–96.CrossRefGoogle Scholar
Robinson, M. H. and Robinson, B. (1972). The structure possible function and origin of the remarkable ladder web built by a New Guinea orb-web spider. Journal of Natural History, 6, 687–694.CrossRefGoogle Scholar
Robinson, M. H. and Robinson, B. (1973). Ecology and behavior of the giant wood spider Nephila maculata (Fabricius) in New Guinea. Smithsonian Contributions to Zoology, 149, 1–76.CrossRefGoogle Scholar
Salomon, M. (2007). Western black widow spiders express state-dependent web-building strategies tailored to the presence of neighbours. Animal Behaviour, 73, 865–875.CrossRefGoogle Scholar
Sandoval, C. P. (1994). Plasticity in web design in the spider Parawixia bistriata: a response to variable prey type. Functional Ecology, 8, 701–707.CrossRefGoogle Scholar
Savory, T. H. (1952). The Spider's Web. London: Warne.Google Scholar
Schoener, T. W. and Spiller, D. A. (1992). Stabilimenta characteristics of the spider Argiope argentata on small islands: support of the predator-defense hypothesis. Behavioural Ecology and Sociobiology, 31, 309–318.CrossRefGoogle Scholar
Schütz, D., Taborsky, M. and Drapela, T. (2007). Air bells of water spiders are an extended phenotype modified in response to gas composition. Journal of Experimental Zoology, 307A, 549–555.CrossRefGoogle ScholarPubMed
Seah, W. K. and Li, D. (2001). Stabilimenta attract unwelcome predators to orb-webs. Proceedings of the Royal Society of London, B, 268, 1553–1558.CrossRefGoogle ScholarPubMed
Selden, P. A., Anderson, J. M., Anderson, H. M. and Fraser, N. C. (1999). Fossil araneomorph spiders from the Triassic of South Africa and Virginia. Journal of Arachnology, 27, 401–414.Google Scholar
Shear, W. A. (1986). The evolution of web-building behavior in spiders: a third generation of hypotheses. In Spiders: Webs, Behavior, and Evolution (ed. Shear, W. A.). Stanford, CA: Stanford University Press.Google Scholar
Shear, W. A., Palmer, J. M., Coddington, J. A. and Bonamo, P. M. (1989). A Devonian spinneret: early evidence of spiders and silk use. Science, 246, 479–481.CrossRefGoogle ScholarPubMed
Sherman, P. M. (1994). The orb-web: an energetic and behavioural estimator of spiders' dynamic foraging and reproductive strategies. Animal Behaviour, 48, 19–34.CrossRefGoogle Scholar
Shultz, J. W. (1987). The origin of the spinning apparatus in spiders. Biological Reviews, 62, 89–113.CrossRefGoogle Scholar
Simon, E. (1895). Historie Naturelle des Araignées. Paris: Roset.Google Scholar
Sponner, A. (2007). Spider silk as a resource for future biotechnologies. Entomological Research, 37, 238–250.CrossRefGoogle Scholar
Sponner, A., Schlott, B., Vollrath, F., Unger, E., Grosse, F. and Weisshart, K. (2005a). Characterization of the protein components of Nephila clavipes dragline silk. Biochemistry, 44, 4727–4736.CrossRefGoogle ScholarPubMed
Sponner, A., Unger, E., Grosse, F. and Weisshart, K. (2005b). Differential polymerization of the two main protein components of dragline silk during fibre spinning. Nature Materials, 4, 772–775.CrossRefGoogle ScholarPubMed
Sponner, A., Vater, W., Monajembashi, S., et al. (2007). Composition and hierarchical organisation of a spider silk. PLoS ONE, 2, e998.CrossRefGoogle ScholarPubMed
Sponner, A., Vater, W., Rommerskirch, W., et al. (2005c). The conserved C termini contribute to the properties of spider silk fibroins. Biochemical, Biophysical Research Communication, 338, 897–902.CrossRefGoogle ScholarPubMed
Starks, P. T. (2002). The adaptive significance of stabilimenta in orb-web: a hierarchical approach. Annales Zoologici Fennici, 39, 307–315.Google Scholar
Stowe, M. K. (1978). Observations of two nocturnal orb weavers that build specialised webs: Scoloderus cordatus and Wixia ectypa (Araneae, Araneidae). Journal of Arachnology, 6, 141–146.Google Scholar
Stowe, M. K., Tumlinson, J. H. and Heath, R. R. (1987). Chemical mimicry: bolas spiders emit components of moth prey species sex pheromones. Science, 236, 964–967.CrossRefGoogle ScholarPubMed
Tai, P. L., Hwang, G. Y. and Tso, I. M. (2004). Interspecific sequence conservation and intra-individual sequence variation in a spider silk gene. International Journal of Biological Macromolecules, 34, 295–301.CrossRefGoogle Scholar
Tan, E. J. and Li, D. Q. (2009). Detritus decorations of an orb-weaving spider, Cyclosa mulmeinensis (Thorell): for food or camouflage?Journal of Experimental Biology, 212, 1832–1839.CrossRefGoogle ScholarPubMed
Théry, M. and Casas, J. (2009). The multiple disguises of spiders: web colour and decorations, body colour and movement. Philosophical Transactions of the Royal Society, B, 364, 471–480.CrossRefGoogle ScholarPubMed
Townley, M. A., Tillinghast, E. K. and Neefus, C. D. (2006). Changes in composition of spider orb web sticky droplets with starvation and web removal, and synthesis of sticky droplet compounds. Journal of Experimental Biology, 209, 1463–1486.CrossRefGoogle ScholarPubMed
Tseng, L. and Tso, I. M. (2009). A risky defence by a spider using conspicuous decoys resembling itself in appearance. Animal Behaviour, 78, 425–431.CrossRefGoogle Scholar
Tso, I. M. (1996). Stabilimentum of the garden spider Argiope trifasciata: a possible prey attractant. Animal Behaviour, 52, 183–191.CrossRefGoogle Scholar
Tso, I. M. (1998a). Isolated spider web stabilimentum attracts insects. Behaviour, 135, 311–319.CrossRefGoogle Scholar
Tso, I. M. (1998b). Stabilimentum-decorated webs spun by Cyclosa conica (Araneae, Araneidae) trapped more insects than undecorated webs. Journal of Arachnology, 26, 101–105.Google Scholar
Tso, I. M. (1999). Behavioral response of Argiope trifasciata to recent foraging gain: a manipulative study. American Midland Naturalist, 141, 238–246.CrossRefGoogle Scholar
Tso, I. M. (2004). The effect of food and silk reserve manipulation on decoration-building of Argiope aetheroides. Behaviour, 141, 603–616.CrossRefGoogle Scholar
Tso, I. M., Chiang, S. Y. and Blackledge, T. A. (2007). Does the giant wood spider Nephila pilipes respond to prey variation by altering web or silk properties?Ethology, 113, 324–333.CrossRefGoogle Scholar
Tso, I. M., Wu, H. C. and Hwang, I. R. (2005). Giant wood spider Nephila pilipes alters silk protein in response to prey variation. Journal of Experimental Biology, 208, 1053–1061.CrossRefGoogle ScholarPubMed
Uhl, G. (2008). Size dependent occurrence of different types of web decorations and a barrier web in the tropical spider Argiope argentata (Fabricius 1775) (Araneae Araneidae). Tropical Zoology, 21, 97–108.Google Scholar
Venner, S., Pasquet, A. and Leborgne, R. (2000). Web-building behaviour in the orb-weaving spider Zygiella x-notata: influence of experience. Animal Behaviour, 59, 603–611.CrossRefGoogle ScholarPubMed
Vollrath, F. (1992). Analysis and interpretation of orb spider exploration and web-building behavior. Advances in the Study of Behavior, 21, 147–197.CrossRefGoogle Scholar
Vollrath, F. (2000). Strength and structure of spiders' silks. Reviews in Molecular Biotechnology, 74, 67–83.CrossRefGoogle ScholarPubMed
Vollrath, F. and Knight, D. P. (2001). Liquid crystalline spinning of spider silk. Nature, 410, 541–548.CrossRefGoogle ScholarPubMed
Vollrath, F. and Köhler, T. (1996). Mechanics of silk produced by loaded spiders. Proceedings of the Royal Society of London, B, 263, 387–391.CrossRefGoogle Scholar
Vollrath, F. and Selden, P. (2007). The role of behavior in the evolution of spiders, silks, and webs. Annual Review of Ecology, Evolution, and Systematics, 38, 819–846.CrossRefGoogle Scholar
Vollrath, F., Downes, M. and Krackow, S. (1997). Design variability in web geometry of an orb-weaving spider. Physiology and Behavior, 62, 735–743.CrossRefGoogle ScholarPubMed
Walter, A., Elgar, M. A., Bliss, P. and Moritz, R. F. A. (2008a). Molting interferes with web decorating behavior in Argiope keyserlingi (Araneae, Araneidae). Journal of Arachnology, 36, 538–544.CrossRefGoogle Scholar
Walter, A., Elgar, M. A., Bliss, P. and Moritz, R. F. A. (2008b). Wrap attack activates web-decorating behavior in Argiope spiders. Behavioral Ecology, 19, 799–804.CrossRefGoogle Scholar
Ward, D. and Lubin, Y. (1993). Habitat selection and the life history of a desert spider, Stegodyphus lineatus (Eresidae). Journal of Animal Ecology, 62, 353–363.CrossRefGoogle Scholar
Watanabe, T. (1999). Prey attraction as a possible function of the silk decoration of the uloborid spider Octonoba sybotides. Behavioral Ecology, 10, 607–611.CrossRefGoogle Scholar
Watanabe, T. (2000). Web tuning of an orb-web spider, Octonoba sybotides, regulates prey-catching behaviour. Proceedings of the Royal Society of London, B, 267, 565–569.CrossRefGoogle ScholarPubMed
Wiehle, H. (1928). Beitrage zur Biologie der Araneen, insbesondere zur Kentnis des Radnetzbaues. Zeitschrift fuer Morphologie und Oekologie der Tiere, 11, 115–151.CrossRefGoogle Scholar
Winkler, S. and Kaplan, D. L. (2000). Molecular biology of spider silk. Reviews in Molecular Biotechnology, 74, 85–93.CrossRefGoogle ScholarPubMed
Witt, P. N. (1963). Environment in relation to the behaviour of spiders. Archives of Environmental Health, 7, 4–12.CrossRefGoogle ScholarPubMed
Witt, P. N. and Baum, R. (1960). Changes in orb webs of spiders during growth (Araneus diadematus Clerck and Neoscona vertebrata McCook). Behaviour, 16, 309–318.CrossRefGoogle Scholar
Witt, P. N., Rawlings, J. O. and Reed, C. F. (1972). Ontogeny of web-building behavior in two orb-weaving spiders. American Zoologist, 12, 443–454.CrossRefGoogle Scholar
Xu, M. and Lewis, R. V. (1990). Structure of a protein superfiber: spider dragline silk. Proceedings of the National Academy of Sciences of the USA, 87, 7120–7124.CrossRefGoogle ScholarPubMed
Yaginuma, T. (1986). Spiders of Japan in Colour. Osaka: Hoikusha Publishing Company.Google Scholar
Yeargan, K. V. (1994). Biology of bolas spiders. Annual Review of Entomology, 39, 81–99.CrossRefGoogle Scholar
Yoo, J.-S. and Framenau, V. W. (2006). Systematics and biogeography of the sheet-web building wolf spider genus Venonia (Araneae: Lycosidae). Invertebrate Systematics, 20, 675–712.CrossRefGoogle Scholar
Zax, D. B., Armanios, D. E., Horak, S., Malowniak, C. and Yang, Z. T. (2004). Variation of mechanical properties with amino acid content in the silk of Nephila clavipes. Biomacromolecules, 5, 732–738.CrossRefGoogle ScholarPubMed
Zevenbergen, J. M., Schneider, N. K. and Blackledge, T. A. (2008). Fine dining or fortress? Functional shifts in spider web architecture by the western black widow Latrodectus hesperus. Animal Behaviour, 76, 823–829.CrossRefGoogle Scholar
Zschokke, S. (1996a). Early stages of orb web construction in Araneus diadematus Clerck. Revue Suisse de Zoologie, 2, 709–720.Google Scholar
Zschokke, S. (1996b). Factors influencing the size of orb web in Araneus diadematus. In Sixteenth European Colloquium of Arachnology (ed. Zabka, M.). Siedlce, Poland: Wyzsa Szkola Rolniczo-Pedagogiczna.Google Scholar
Zschokke, S. (1999). Nomenclature of the orb-web. Journal of Arachnology, 27, 542–546.Google Scholar
Zschokke, S. (2003). Palaeontology: spider-web silk from the Early Cretaceous. Nature, 424, 636–637.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×