Skip to main content Accessibility help
×
Hostname: page-component-68945f75b7-tmfhh Total loading time: 0 Render date: 2024-08-06T03:06:45.202Z Has data issue: false hasContentIssue false

1 - Introduction: spider biology

Published online by Cambridge University Press:  05 June 2012

Marie E. Herberstein
Affiliation:
Macquarie University, Sydney
Anne Wignall
Affiliation:
Macquarie University, Australia
Marie Elisabeth Herberstein
Affiliation:
Macquarie University, Sydney
Get access

Summary

The introductory chapter has been written especially for readers unfamiliar with the finer details of spider systematics, terminology and biology. The introduction is by no means intended to be a complete account of spider biology, which can be found in the excellent Biology of Spiders by Rainer Foelix (1996). Instead, here we concentrate on those aspects of spider biology that prepare the reader for the behavioural chapters to follow. The sections on systematics, fossil record and evolutionary milestones will help place the various behaviours discussed into an evolutionary context. The biology section will familiarise the reader with the spider-specific terminology and reveal some of the peculiarities of spiders: did you know that in modern spiders females have two separate copulatory openings and that spiders can produce up to seven different types of silk? For readers already familiar with spiders, the introduction offers a succinct and up-to-date summary of spider biology.

Scope of this book

The aim of this book is to illustrate the incredible diversity and often bewildering complexity of spider behaviour. Researchers that regularly work with spiders are well aware of their behavioural potential, and yet spiders still surprise us constantly with behaviours and phenomena that are intriguing, often bizarre and uncommon in other animals. Here we aim to enthuse readers that may have not considered spiders as models for behavioural studies, perhaps assuming that they are limited in their behavioural repertoires.

Type
Chapter
Information
Spider Behaviour
Flexibility and Versatility
, pp. 1 - 30
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberti, G. (1990). Comparative spermatology of Araneae. Acta Zoologica Fennica, 190, 17–34.Google Scholar
Anton, S. and Tichy, H. (1994). Hygro- and thermoreceptors in tip-pore sensilla of the tarsal organ of the spider Cupiennius salei: innervation and central projection. Cell and Tissue Research, 278, 399–407.Google Scholar
Arnqvist, G. (1992). Courtship behavior and sexual cannibalism in the semi-aquatic fishing spider, Dolomedes fimbriatus (Clerck) (Araneae: Pisauridae). Journal of Arachnology, 20, 222–226.Google Scholar
Austad, S. N. (1984). Evolution of sperm priority patterns in spiders. In Sperm Competition and the Evolution of Animal Mating Systems (ed. Smith, R. L.). New York: Academic Press.Google Scholar
Ayoub, N. A., Garb, J. E., Hedin, M. and Hayashi, C. Y. (2007). Utility of the nuclear protein-coding gene, elongation factor-1 gamma (EF-1 gamma), for spider systematics, emphasizing family level relationships of tarantulas and their kin (Araneae: Mygalomorphae). Molecular Phylogenetics and Evolution, 42, 394–409.CrossRefGoogle Scholar
Babu, K. S. and Barth, F. G. (1984). Neuroanatomy of the central nervous system of the wandering spider, Cupiennius salei (Arachnida, Araneida). Zoomorphology, 104, 344–359.CrossRefGoogle Scholar
Babu, K. S. and Barth, F. G. (1989). Central nervous projections of mechanoreceptors in the spider Cupiennius salei Keys. Cell and Tissue Research, 258, 69–82.CrossRefGoogle Scholar
Barnes, W. J. P. and Barth, F. G. (1991). Sensory control of locomotor mode in semi-aquatic spiders. In Locomotor Neural Mechanisms in Arthropods and Vertebrates (ed. Armstrong, D. M. and Bush, B. M. H.). Manchester, UK: Manchester Press.Google Scholar
Barth, F. G. (1982). Spiders and vibratory signals: sensory reception and behavioral significance. In Spider Communication: Mechanisms and Ecological Significance (ed. Witt, P. N. and Rovner, J. S.). Princeton, NJ: Princeton University Press.Google Scholar
Barth, F. G. (1997). Vibratory communication in spiders: adaptation and compromise at many levels. In Orientation and Communication in Arthropods (ed. Lehrer, M.). Basel, Switzerland: Birkhäuser.Google Scholar
Barth, F. G. (2000). How to catch the wind: spider hairs specialized for sensing the movement of air. Naturwissenschaften, 87, 51–58.CrossRefGoogle ScholarPubMed
Barth, F. G. (2002). A Spider's World: Senses and Behaviour. Berlin: Springer.CrossRefGoogle Scholar
Barth, F. G. and Höller, A. (1999). Dynamics of arthropod filiform hairs. V. The response of spider trichobothria to natural stimuli. Philosophical Transactions of the Royal Society, B, 354, 183–192.CrossRefGoogle Scholar
Barth, F. G., Nakagawa, T. and Eguchi, E. (1993a). Vision in the ctenid spider Cupiennius salei: spectral range and absolute sensitivity. Journal of Experimental Biology, 181, 63–79.Google Scholar
Barth, F. G., Wastl, U., Humphrey, J. A. C. and Devarakonda, R. (1993b). Dynamics of arthropod filiform hairs. II. Mechanical properties of spider trichobothria (Cupiennius salei Keys.). Philosophical Transactions of the Royal Society, B, 340, 445–461.CrossRefGoogle Scholar
Bartos, M. (2002). Distance of approach to prey is adjusted to the prey's ability to escape in Yllenus arenarius Menge (Araneae, Salticidae). In European Arachnology (ed. Toft, S. and Scharff, N.). Aarhus, Denmark: Aarhus University Press.Google Scholar
Blackledge, T. A., Coddington, J. and Gillespie, R. G. (2003). Are three-dimensional spider webs defensive adaptations?Ecology Letters, 6, 13–18.CrossRefGoogle Scholar
Blackledge, T. A., Scharff, N., Coddington, J. A., et al. (2009). Reconstructing web evolution and spider diversification in the molecular era. Proceedings of the National Academy of Sciences of the USA, 106, 5229–5234.CrossRefGoogle ScholarPubMed
Bonaric, J. C. and Reggi, M. (1977). Changes in ecdysone levels in the spider Pisaura mirabilis nymphs (Araneae: Pisauridae). Experientia, 33, 1664–1665.CrossRefGoogle Scholar
Burger, M., Graber, W., Michalik, P. and Kropf, C. (2006a). Silhouettella loricatula (Arachnida, Araneae, Oonopidae): a haplogyne spider with complex female genitalia. Journal of Morphology, 267, 663–677.CrossRefGoogle ScholarPubMed
Burger, M., Michalik, P., Graber, W., et al. (2006b). Complex genital system of a haplogyne spider (Arachnida, Araneae, Tetrablemmidae) indicates internal fertilization and full female control over transferred sperm. Journal of Morphology, 267, 166–186.CrossRefGoogle ScholarPubMed
Butt, A. G. and Taylor, H. H. (1986). Salt and water balance in the spider Porrhothele antipodiana (Mygalomorpha: Dipluridae): effects of feeding upon hydrated animals. Journal of Experimental Biology, 125, 85–106.Google Scholar
Clark, R. J. and Jackson, R. R. (1994). Self recognition in a jumping spider: Portia labiata females discriminate between their own draglines and those of conspecifics. Ethology, Ecology, and Evolution, 6, 371–375.CrossRefGoogle Scholar
Coddington, J. A. (2005). Phylogeny and classification of spiders. In Spiders of North America: An Identification Manual (ed. Ubick, D., Paquin, P., Cushing, P. E. and Roth, V.). Poughkeepsie, NY: American Arachnological Society.Google Scholar
Coddington, J. A. and Levi, H. W. (1991). Systematics and evolution of spiders (Araneae). Annual Review of Ecology and Systematics, 22, 565–592.CrossRefGoogle Scholar
Cohen, A. C. (1995). Extra-oral digestion in predaceous terrestrial Arthropoda. Annual Review of Entomology, 40, 85–103.CrossRefGoogle Scholar
Coyle, F. A., Greenstone, M. H., Hultsch, A.-L. and Morgan, C. E. (1985). Ballooning mygalomorphs: estimates of the masses of Sphodros and Ummidia ballooners (Araneae: Atypidae, Ctenizidae). Journal of Arachnology, 13, 291–296.Google Scholar
Craig, C. L. (1997). Evolution of arthropod silks. Annual Review of Entomology, 42, 231–267.CrossRefGoogle ScholarPubMed
Craig, C. L. (2003). Spiderwebs and Silk. Oxford, UK: Oxford University Press.Google Scholar
Craig, C. L., Reikel, C., Herberstein, M. E., et al. (2000). Evidence for diet effects on the composition of silk proteins produced by spiders. Molecular Biology and Evolution, 17, 1904–1913.CrossRefGoogle ScholarPubMed
Crews, S. C. and Opell, B. D. (2006). The features of capture threads and orb-webs produced by unfed Cyclosa turbinata (Araneae: Araneidae). Journal of Arachnology, 34, 427–434.CrossRefGoogle Scholar
Dacke, M., Doan, T. A. and O'Carroll, D. C. (2001). Polarized light detection in spiders. Journal of Experimental Biology, 204, 2481–2490.Google ScholarPubMed
Dacke, M., Nilsson, D.-E., Warrant, E. J., et al. (1999). Built-in polarizers form part of a compass organ in spiders. Nature, 401, 470–473.CrossRefGoogle Scholar
Dimitrov, D., Alvarez-Padilla, F. and Hormiga, G. (2007). The female genital morphology of the orb weaving spider genus Agriognatha (Araneae, Tetragnathidae). Journal of Morphology, 268, 758–770.CrossRefGoogle Scholar
Dunlop, J. A., Penney, D. and Jekel, D. (2009) A summary list of fossil spiders. In The World Spider Catalog, Version 9.5 (ed. Platnick, N. I.). American Museum of Natural History, online at http://research.amnh.org/entomology/spiders/catalog.Google Scholar
Eberhard, W. G. and Huber, B. A. (2010). Spider genitalia: precise maneuvers with a numb structure in a complex lock. In Evolution of Primary Sexual Characters in Animals (ed. Leonard, J. and Córdoba-Aguilar, A.). Oxford, UK: Oxford University Press.Google Scholar
Ehn, R. and Tichy, H. (1994). Hygro- and thermoreceptive tarsal organ in the spider Cupiennius salei. Journal of Comparative Physiology, A, 174, 345–350.CrossRefGoogle Scholar
Evans, T. A., Wallis, E. J. and Elgar, M. A. (1995). Making a meal of mother. Nature, 376, 299.CrossRefGoogle Scholar
Foelix, R. F. (1970a). Chemosensitive hairs in spiders. Journal of Morphology, 132, 313–334.CrossRefGoogle ScholarPubMed
Foelix, R. F. (1970b). Structure and function of tarsal sensilla in the spider Araneus diadematus. Journal of Experimental Biology, 175, 99–124.Google Scholar
Foelix, R. F. (1996). Biology of Spiders, 2nd edn. Oxford, UK: Oxford University Press.Google Scholar
Foelix, R. F. and Chu-Wang, I.-W. (1973). The morphology of spider sensilla. II. Chemoreceptors. Tissue and Cell, 5, 461–478.CrossRefGoogle ScholarPubMed
Foelix, R. F. and Chu-Wang, I.-W. (1975). The structure of scopula hairs in spiders. In Proceedings 6th International Arachnida Congress. Amsterdam: Nederlandse Entomologische Vereniging, pp. 156–157.Google Scholar
Fowler, H. G. and Diehl, J. (1978). Biology of a Paraguayan colonial orb-weaver, Eriophora bistriata Rengger (Araneae, Araneidae). Bulletin of the British Arachnological Society, 4, 241–250.Google Scholar
Friedel, T. and Barth, F. G. (1997). Wind-sensitive interneurons in the spider CNS (Cupiennius salei): directional information processing of sensory inputs from trichobothria on the walking legs. Journal of Comparative Physiology, A, 180, 223–233.CrossRefGoogle Scholar
Garb, J. E., Dimauro, T., Lewis, R. V. and Hayashi, C. Y. (2007). Expansion and intragenic homogenization of spider silk genes since the triassic: evidence from Mygalomorphae (tarantulas and their kin) spidroins. Molecular Biology and Evolution, 24, 2454–2464.CrossRefGoogle ScholarPubMed
Garb, J. E., Dimauro, T., Vo, V. and Hayashi, C. Y. (2006). Silk genes support the single origin of orb webs. Science, 312, 1762.CrossRefGoogle ScholarPubMed
Garrido, M. A., Viney, C. and Pérez-Rigueiro, J. (2002). Active control of spider silk strength: comparison of drag line spun on vertical and horizontal surfaces. Polymer, 43, 1537–1540.CrossRefGoogle Scholar
Gaskett, A. (2007). Spider sex pheromones: emission, reception, structures, and functions. Biological Reviews, 82, 26–48.CrossRefGoogle ScholarPubMed
Harland, D. P., Jackson, R. R. and Macnab, A. M. (1999). Distances at which jumping spiders (Araneae: Salticidae) distinguish between prey and conspecific rivals. Journal of Zoology, 247, 357–364.CrossRefGoogle Scholar
Harwood, R. H. (1974). Behavior of Argiope aurantia (Lucas). American Midland Naturalist, 91, 130–139.CrossRefGoogle Scholar
Haupt, J. and Kovoor, J. (1993). Silk-gland system and silk production in Mesothelae (Araneae). Annales des Sciences Naturelles – Zoologie et Biologie Animale, 14, 35–48.Google Scholar
Hedin, M. and Bond, J. E. (2006). Molecular phylogenetics of the spider infraorder Mygalomorphae using nuclear rRNA genes (18S and 28S): conflict and agreement with the current system of classification. Molecular Phylogenetics and Evolution, 41, 454–471.CrossRefGoogle ScholarPubMed
Henderson, R. J. and Elgar, M. A. (1999). Foraging behaviour and the risk of predation in the black house spider, Badumna insignis (Desidae). Australian Journal of Zoology, 47, 29–35.CrossRefGoogle Scholar
Hößl, B., Böhm, H. J., Rammerstorfer, F. G., Müllan, R. and Barth, F. G. (2006). Studying the deformation of arachnid slit sensilla by a fracture mechanical approach. Journal of Biomechanics, 39, 1761–1768.CrossRefGoogle ScholarPubMed
Huber, B. A. (2004a). Evolutionary transformation from muscular to hydraulic movements in spider (Arachnida, Araneae) genitalia: a study based on histological serial sections. Journal of Morphology, 261, 364–376.CrossRefGoogle ScholarPubMed
Huber, B. A. (2004b). The significance of copulatory structures in spider systematics. In Biosemiotik: Praktische Anwendung und Konsequenzen für die Einzelwissenschaften (ed. Schult, J.). Berlin: VWB Verlag.Google Scholar
Hwang, H.-J. and Moon, M.-J. (2003). Fine structural analysis of the central nervous system in the spider Achaearanea tepidariorum (Theridiidae: Araneae). Korean Journal of Entomology, 33, 119–126.CrossRefGoogle Scholar
Jackson, R. R. and Pollard, S. D. (1996). Predatory behavior of jumping spiders. Annual Review of Entomology, 41, 287–308.CrossRefGoogle ScholarPubMed
Jocqué, R. and Dippenaar-Schoeman, A. S. (2007). Spider Families of the World. Tervuren, Belgium: Royal Museum for Central Africa.Google Scholar
Johnson, J. C. and Sih, A. (2007). Fear, food, sex and parental care: a syndrome of boldness in the fishing spider, Dolomedes triton. Animal Behaviour, 74, 1131–1138.CrossRefGoogle Scholar
Kaston, B. J. (1964). The evolution of spider webs. American Zoologist, 4, 191–207.CrossRefGoogle Scholar
Kim, K. W. (2001). Social facilitation of synchronized molting behavior in the spider Amaurobius ferox (Araneaea, Amaurobiidae). Journal of Insect Behavior, 14, 401–409.CrossRefGoogle Scholar
Kishore, A. I., Herberstein, M. E., Craig, C. L. and Separovic, F. (2002). Solid-state NMR relaxation studies of Australian spider silks. Biopolymers, 61, 287–297.CrossRefGoogle Scholar
Kovoor, J., Muñoz-Cuevas, A. and Ortega-Escobar, J. (2005). The visual system of Lycosa tarentula (Araneae, Lycosidae): microscopic anatomy of the protocerebral optic centres. Italian Journal of Zoology, 72, 205–216.CrossRefGoogle Scholar
Kullmann, E. J. (1972). Evolution of social behavior in spiders (Araneae: Eresidae and Theridiidae). American Zoologist, 12, 419–426.CrossRefGoogle Scholar
Land, M. F. (1969). Structure of the retinae of the principal eyes of jumping spiders (Salticidae: Dendryphantinae) in relation to visual optics. Journal of Experimental Biology, 51, 443–470.Google ScholarPubMed
Land, M. F. and Nilsson, D.-E. (2006). General-purpose and special-purpose visual systems. In Invertebrate Vision (ed. Warrant, E. J. and Nilsson, D.-E.). Cambridge, UK: Cambridge University Press.Google Scholar
Lang, A. and Klarenberg, A. J. (1997). Experiments on the foraging behaviour of the hunting spider Pisaura mirabilis (Araneae: Pisauridae): utilization of single prey items. European Journal of Entomology, 94, 456–459.Google Scholar
Leonard, A. S. and Morse, D. H. (2006). Line-following preferences of male crab spiders, Misumena vatia. Animal Behaviour, 71, 717–724.CrossRefGoogle Scholar
Madsen, B., Shao, Z. Z. and Vollrath, F. (1999). Variability in the mechanical properties of spider silks on three levels: interspecific, intraspecific and intraindividual. International Journal of Biological Macromolecules, 24, 301–306.CrossRefGoogle ScholarPubMed
Madsen, B. and Vollrath, F. (2000). Mechanics and morphology of silk drawn from anesthetized spiders. Naturwissenschaften, 87, 148–153.CrossRefGoogle ScholarPubMed
McGregor, A. P., Hilbrant, M., Pechmann, M., et al. (2008). Cupiennius salei and Achaearanea tepidariorum: spider models for investigating evolution and development. BioEssays, 30, 487–498.CrossRefGoogle ScholarPubMed
Meehan, C. J., Olson, E. J. and Curry, R. L. (2008) Exploitation of the Pseudomyrmex-Acacia mutualism by a predominantly vegetarian jumping spider (Bagheera kiplingi). In The 93rd ESA Annual Meeting, held in Milwaukee, WI. Washington, DC: Ecological Society of America.Google Scholar
Meyer, W. and Idel, K. (1977). The distribution of acetylcholinesterase in the central nervous system of jumping spiders and wolf spiders (Arachnida, Araneida: Salticidae et Lycosidae). Journal of Comparative Neurobiology, 173, 717–744.CrossRefGoogle Scholar
Michalik, P. and Uhl, G. (2005). The male genital system of the cellar spider Pholcus phalangioides (Fuesslin, 1775) (Pholcidae, Araneae): development of spermatozoa and seminal secretion. Frontiers in Zoology, 2, 12.CrossRefGoogle ScholarPubMed
Michalik, P., Haupt, J. and Alberti, G. (2004). On the occurrence of coenospermia in mesothelid spiders (Araneae: Heptathelidae). Arthropod Structure and Development, 33, 173–181.CrossRefGoogle Scholar
Michalik, P., Reiher, W., Tintelnot-Suhm, M. and Coyle, F. A. (2005). Female genital system of the folding-trapdoor spider Antrodiaetus unicolor (Hentz, 1842) (Antrodiaetidae, Araneae): ultrastructural study of form and function with notes on reproductive biology of spiders. Journal of Morphology, 263, 284–309.CrossRefGoogle ScholarPubMed
Moon, M.-J. and Yu, M.-H. (2007). Fine structure of the chelicera in the spider Nephila clavata. Entomological Research, 37, 167–172.CrossRefGoogle Scholar
Niederegger, S. and Gorb, S. N. (2006). Friction and adhesion in the tarsal and metatarsal scopulae of spiders. Journal of Comparative Physiology, A, 192, 1223–1232.CrossRefGoogle ScholarPubMed
Palmer, J. M. (1985). The silk and silk production system of the funnel-web mygalomorph spider Euagrus (Araneae, Dipluridae)Journal of Morphology, 186, 195–207.CrossRefGoogle Scholar
Parry, D. A. and Brown, R. H. J. (1959). The hydraulic mechanism of the spider leg. Journal of Experimental Biology, 36, 423–433.Google Scholar
Patil, B., Prabhu, S. and Rajashekhar, K. P. (2006). Lyriform slit sense organs on the pedipalps and spinnerets of spiders. Journal of Biosciences, 31, 75–84.CrossRefGoogle ScholarPubMed
Penney, D. (2004). Does the fossil record of spiders track that of their principal prey, the insects?Transactions of the Royal Society of Edinburgh – Earth Sciences, 94, 275–281.CrossRefGoogle Scholar
Penney, D., Wheater, C. P. and Selden, P. A. (2003). Resistance of spiders to Cretaceous-Tertiary extinction events. Evolution, 57, 2599–2607.Google ScholarPubMed
Platnick, N. I. (1994). A review of the Chilean spiders of the family Caponiidae (Araneae, Haplogynae). American Museum Novitates, 3113, 1–10.Google Scholar
Platnick, N. I. (2010) The World Spider Catalog, Version 11. American Museum of Natural History, online at http://research.amnh.org/iz/spiders/catalog.Google Scholar
Pourié, G. and Trabalon, M. (2003). The role of 20-hydroxyecdysone on the control of spider vitellogenesis. General and Comparative Endocrinology, 131, 250–257.CrossRefGoogle ScholarPubMed
Rash, L. D. and Hodgson, W. C. (2002). Pharmacology and biochemistry of spider venoms. Toxicon, 40, 225–254.CrossRefGoogle ScholarPubMed
Reißland, A. and Görner, P. (1978). Mechanics of trichobothria in orb-weaving spiders (Agelenidae, Araneae). Journal of Comparative Physiology, A, 123, 59–69.CrossRefGoogle Scholar
Reynolds, A. M., Bohan, D. A. and Bell, J. R. (2006). Ballooning dispersal in arthropod taxa with convergent behaviours: dynamic properties of ballooning silk in turbulent flows. Biology Letters, 2, 371–373.CrossRefGoogle ScholarPubMed
Roscoe, D. T. and Walker, G. (1991). The adhesion of spiders to smooth surfaces. Bulletin of the British Arachnological Society, 8, 224–226.Google Scholar
Schneider, J. M. (2002). Reproductive state and care giving in Stegodyphus (Araneae: Eresidae) and the implications for the evolution of sociality. Animal Behaviour, 63, 649–658.CrossRefGoogle Scholar
Schütt, K. (1995). Drapetisca socialis (Araneae: Linyphiidae): web reduction – ethological and morphological adaptations. European Journal of Entomology, 92, 553–563.Google Scholar
Schütz, D. and Taborsky, M. (2003). Adaptations to an aquatic life may be responsible for the reversed sexual size dimorphism in the water spider, Argyroneta aquatica. Evolutionary Ecology Research, 5, 105–117.Google Scholar
Selden, P. A. and Penney, D. (2010). Fossil spiders. Biological Reviews, 85, 171–206.CrossRefGoogle ScholarPubMed
Selden, P. A., Anderson, J. M., Anderson, H. M. and Fraser, N. C. (1999). Fossil araneomorph spiders from the Triassic of South Africa and Virginia. Journal of Arachnology, 27, 401–414.Google Scholar
Selden, P. A., Shear, W. A. and Bonamo, P. M. (1991). A spider and other arachnids from the Devonian of New York, and reinterpretations of Devonian Araneae. Palaeontology, 34, 241–281.Google Scholar
Selden, P. A., Shear, W. A. and Sutton, M. D. (2008). Fossil evidence for the origin of spider spinnerets, and a proposed arachnid order. Proceedings of the National Academy of Sciences of the USA, 105, 20 781–20 785.CrossRefGoogle Scholar
Seyfarth, E.-A. and Barth, F. G. (1972). Compound slit sense organs on the spider leg: mechanoreceptors involved in kinesthetic orientation. Journal of Comparative Physiology, 78, 176–191.CrossRefGoogle Scholar
Seyfarth, E.-A., Hammer, K., Spörhase-Eichmann, U., Hörner, M. and Vullings, H. G. B. (1993). Octopamine immunoreactive neurons in the fused central nervous system of spiders. Brain Research, 611, 197–206.CrossRefGoogle ScholarPubMed
Shultz, J. W. (1987a). Walking and surface film locomotion in terrestrial and semi-aquatic spiders. Journal of Experimental Biology, 128, 427–444.Google Scholar
Shultz, J. W. (1987b). The origin of the spinning apparatus in spiders. Biological Reviews, 62, 89–113.CrossRefGoogle Scholar
Speck-Hergenröder, J. and Barth, F. G. (1987). Tuning of vibration sensitive neurons in the central nervous system of a wandering spider, Cupiennius salei Keys. Journal of Comparative Physiology, A, 160, 467–475.CrossRefGoogle Scholar
Speck-Hergenröder, J. and Barth, F. G. (1988). Vibration sensitive hairs on the spider leg. Experientia, 44, 13–14.CrossRefGoogle Scholar
Stratton, G. E., Suter, R. B. and Miller, P. R. (2004). Locomotion on the water surface: propulsive mechanisms of the fisher spider Dolomedes triton. Journal of Experimental Biology, 200, 2523–2538.Google Scholar
Strausfeld, N. J., Strausfeld, C. M., Stowe, S., Rowell, D. and Loesel, R. (2006). The organization and evolutionary implications of neuropils and their neurons in the brain of the onychophoran Euperipatoides rowelli. Arthropod Structure and Development, 35, 169–196.CrossRefGoogle ScholarPubMed
Strausfeld, N. J., Weltzien, P. and Barth, F. G. (1993). Two visual systems in one brain: neuropils serving the principal eyes of the spider Cupiennius salei. Journal of Comparative Neurology, 328, 63–75.CrossRefGoogle ScholarPubMed
Suter, R. B. (1999a). An aerial lottery: the physics of ballooning in a chaotic atmosphere. Journal of Arachnology, 27, 287–293.Google Scholar
Suter, R. B. (1999b). Cheap transport for fishing spiders (Araneae, Pisauridae): the physics of sailing on the water surface. Journal of Arachnology, 27, 489–496.Google Scholar
Suter, R. B. and Gruenwald, J. (2000). Predator avoidance on the water surface? Kinematics and efficacy of vertical jumping by Dolomedes (Araneae, Pisauridae). Journal of Arachnology, 28, 201–210.CrossRefGoogle Scholar
Suter, R. B. and Stratton, G. E. (2005). Scytodes vs. Schizocosa: predatory techniques and their morphological correlates. Journal of Arachnology, 33, 7–15.CrossRefGoogle Scholar
Suter, R. B., Rosenberg, O., Loeb, S., Wildman, H. and Long, Jr., J. H. (1997). Locomotion on the water surface: propulsive mechanisms of the fisher spider Dolomedes triton. Journal of Experimental Biology, 200, 2523–2538.Google Scholar
Suter, R. B., Stratton, G. and Miller, P. R. (2003). Water surface locomotion by spiders: distinct gaits in diverse families. Journal of Arachnology, 31, 428–432.CrossRefGoogle Scholar
Tichy, H., Gingl, E., Ehn, R., Papke, M. and Schulz, S. (2001). Female sex pheromone of a wandering spider (Cupiennius salei): identification and sensory reception. Journal of Comparative Physiology, A, 187, 75–78.CrossRefGoogle ScholarPubMed
Trabalon, M., Bautz, A.-M., Moriniere, M. and Porcheron, P. (1992). Ovarian development and correlated changes in hemolymphatic ecdysteroid levels in two spiders, Coelotes terrestris and Tegenaria domestica (Araneae, Agelenidae). General and Comparative Endocrinology, 88, 128–136.CrossRefGoogle Scholar
Trabalon, M., Niogret, J. and Legrand-Frossi, C. (2005). Effect of 20-hydroxyecdysone on cannibalism, sexual behavior, and contact sex pheromone in the solitary female spider, Tegenaria atrica. General and Comparative Endocrinology, 144, 60–66.CrossRefGoogle ScholarPubMed
Tso, I. M., Chiang, S. Y. and Blackledge, T. A. (2007). Does the giant wood spider Nephila pilipes respond to prey variation by altering web or silk properties?Ethology, 113, 324–333.CrossRefGoogle Scholar
Tso, I. M., Wu, H. C. and Hwang, I. R. (2005). Giant wood spider Nephila pilipes alters silk protein in response to prey variation. Journal of Experimental Biology, 208, 1053–1061.CrossRefGoogle ScholarPubMed
Uehara, A., Toh, Y. and Tateda, H. (1977). Fine structure of the eyes of orb-weavers, Argiope amoena L. Koch (Araneae: Argiopidae). Cell and Tissue Research, 182, 81–91.CrossRefGoogle Scholar
Uetz, G. W. (1992). Foraging strategies in spiders. Trends in Ecology and Evolution, 7, 155–159.CrossRefGoogle ScholarPubMed
Uetz, G. W. and Roberts, J. A. (2002). Multisensory cues and multimodal communication in spiders: insights from video/audio playback studies. Brain, Behavior and Evolution, 59, 222–230.CrossRefGoogle ScholarPubMed
Uhl, G. (2000). Two distinctly different sperm storage organs in female Dysdera erythrina (Araneae: Dysderidae). Arthropod Structure and Development, 29, 163–169.CrossRefGoogle Scholar
Uhl, G. and Gunnarsson, B. C. (2001). Female genitalia in Pityohyphantes phrygianus, a spider with a skewed sex ratio. Journal of Zoology, 255, 367–376.CrossRefGoogle Scholar
Uhl, G. and Vollrath, F. (1998). Genital morphology of Nephila edulis: implications for sperm competition in spiders. Canadian Journal of Zoology, 76, 39–47.CrossRefGoogle Scholar
Uhl, G., Nessler, S. H. and Schneider, J. (2010). Securing paternity in spiders? A review on occurrence and effects of mating plugs and male genital mutilation. Genetica, 138(1), 75–104.CrossRefGoogle ScholarPubMed
Vallet, A. M., Marion-Poll, F. and Trabalon, M. (1998). Preliminary electrophysiological study of the contact chemoreceptors in a spider. Comptes Rendus de l'Académie des Sciences, Series III, Sciences de la Vie, 321, 463–469.Google Scholar
Venner, S., Pasquet, A. and Leborgne, R. (2000). Web-building behaviour in the orb-weaving spider Zygiella x-notata: influence of experience. Animal Behaviour, 59, 603–611.CrossRefGoogle ScholarPubMed
Vollrath, F. (1999). Biology of spider silk. International Journal of Biological Macromolecules, 24, 81–88.CrossRefGoogle ScholarPubMed
Vollrath, F. and Knight, D. P. (2001). Liquid crystalline spinning of spider silk. Nature, 410, 541–548.CrossRefGoogle ScholarPubMed
Vollrath, F. and Selden, P. (2007). The role of behavior in the evolution of spiders, silks, and webs. Annual Review of Ecology, Evolution, and Systematics, 38, 819–846.CrossRefGoogle Scholar
Vollrath, F., Knight, D. P. and Hu, X. W. (1998). Silk production in a spider involves acid bath treatment. Proceedings of the Royal Society of London, B, 265, 817–820.CrossRefGoogle Scholar
Weltzien, P. and Barth, F. G. (1991). Volumetric measurements do not demonstrate that the spider brain ‘central body’ has a special role in web building. Journal of Morphology, 208, 91–98.CrossRefGoogle Scholar
Weng, J.-L., Barrantes, G. and Eberhard, W. G. (2006). Feeding by Philoponella vicina (Araneae, Uloboridae) and how uloborid spiders lost their venom glands. Canadian Journal of Zoology, 84, 1752–1762.CrossRefGoogle Scholar
Weygoldt, P. (1996). Chelicerata, Spinnentiere. In Spezielle Zoologie (ed. Westheide, W. and Rieger, R.). Stuttgart, Germany: Gustav Fisher Verlag.Google Scholar
Wheeler, W. C. and Hayashi, C. Y. (1998). The phylogeny of the extant chelicerate orders. Cladistics – the International Journal of the Willi Hennig Society, 14, 173–192.CrossRefGoogle Scholar
Wise, D. H. (1993). Spiders in Ecological Webs. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Yamashita, S. and Tateda, H. (1978). Spectral sensitivities of the anterior median eyes of the orb web spiders, Argiope bruennichi and A. amoena. Journal of Experimental Biology, 74, 47–57.Google Scholar
Yigit, N., Bayram, A., Danisman, T., Sancak, Z. and Tel, M. G. (2009). Morphological characterization of the venom apparatus in the wolf spider Lycosa singoriensis (Laxmann, 1770). Journal of Venomous Animal Toxins Including Tropical Diseases, 15, 146–156.CrossRefGoogle Scholar
Yoshida, M. (1987). Predatory behavior of Tetragnatha praedonia (Araneae: Tetragnathidae). Acta Arachnologica, 35, 57–75.CrossRefGoogle Scholar
Zax, D. B., Armanios, D. E., Horak, S., Malowniak, C. and Yang, Z. T. (2004). Variation of mechanical properties with amino acid content in the silk of Nephila clavipes. Biomacromolecules, 5, 732–738.CrossRefGoogle ScholarPubMed
Zschokke, S. (1996). Early stages of orb web construction in Araneus diadematus Clerck. Revue Suisse de Zoologie, 2, 709–720.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×