Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-25T00:23:13.909Z Has data issue: false hasContentIssue false

6 - Deceptive signals in spiders

Published online by Cambridge University Press:  05 June 2012

Marie E. Herberstein
Affiliation:
Macquarie University, Sydney
Anne Wignall
Affiliation:
Macquarie University, Australia
Marie Elisabeth Herberstein
Affiliation:
Macquarie University, Sydney
Get access

Summary

Spiders are well known as prolific and efficient predators that overwhelm their prey with potent toxins or strong silks. The deployment of cunning tactics to lure and deceive their prey is less appreciated despite a considerable history of research into deceptive spider signals. In the early twentieth century, observations already suggested the presence of a moth-luring chemical in bolas spiders. More recent technological developments have enabled researchers to uncover and quantify deceptive visual, olfactorial and vibrational signals. The evolution of these signals is intriguing as a close association between spider and prey is often required. While deceptive colour signals seem to be generic, targeting a wide range of potential prey, deception via vibrational and olfactorial signals is often more specific. The specificity of the signal in turn requires a considerable degree of plasticity in order for the spider to target more than one prey type. Our review of deceptive signals makes use of several well-studied systems with fascinating plasticity and behavioural flexibility in the deployment of the signal.

The evolution of deceptive signals

Signals contain information that modulates the behaviour of the individuals that receive them (Bradbury and Vehrencamp, 1998). Some signals exploit pre-existing sensory biases in receivers. The neural responses to these signals may have evolved under different contexts but signal traits that exploit these biases are thought to be most effective (Endler and Basolo, 1998, Johnstone, 1997).

Type
Chapter
Information
Spider Behaviour
Flexibility and Versatility
, pp. 190 - 214
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allan, R. A. and Elgar, M. A (2001). Exploitation of the green tree ant, Oecophylla smaragdina, by the salticid spider Cosmophasis bitaeniata. Australian Journal of Zoology, 49, 129–137.CrossRefGoogle Scholar
Allan, R. A., Capon, R. J., Brown, W. V. and Elgar, M. A (2002). Mimicry of host cuticular hydrocarbons by salticid spider Cosmophasis bitaeniata that preys on larvae of the tree ants Oecophylla smaragdina. Journal of Chemical Ecology, 28, 835–848.CrossRefGoogle ScholarPubMed
Andrews, K., Reed, S. M. and Masta, S. E. (2007). Spiders fluoresce variably across many taxa. Biology Letters, 3, 265–267.CrossRefGoogle ScholarPubMed
Baurecht, D. and Barth, F. G. (1992). Vibratory communication in spiders. I. Representation of male courtship signals by female vibration receptor. Journal of Comparative Physiology, A, 171, 231–243.Google Scholar
Baurecht, D. and Barth, F. G. (1993). Vibratory communication in spiders. II. Representation of parameters contained in synthetic male courtship signals by female vibration receptor. Journal of Comparative Physiology, A, 173, 309–319.CrossRefGoogle Scholar
Bradbury, J. W. and Vehrencamp, S. L. (1998). Principles of Animal Communication. Sunderland, MA: Sinauer.Google Scholar
Briscoe, A. D. and Chittka, L. (2001). The evolution of color vision in insects. Annual Review of Entomology, 46, 471–510.CrossRefGoogle ScholarPubMed
Bruce, M. (2006). Silk decorations: controversy and consensus. Journal of Zoology, 269, 89–97.CrossRefGoogle Scholar
Bruce, M. J., Heiling, A. M. and Herberstein, M. E. (2005). Spider signals: are web decorations visible to birds and bees?Biology Letters, 1, 299–302.CrossRefGoogle ScholarPubMed
Bush, A. A., Yu, D. W. and Herberstein, M. E. (2008). Function of bright coloration in the wasp spider Argiope bruennichi (Araneae: Araneidae). Proceedings of the Royal Society of London, B, 275, 1337–1342.CrossRefGoogle Scholar
Chittka, L. (1996a). Does bee colour vision predate the evolution of flower colour?Naturwissenschaften, 83, 136–138.CrossRefGoogle Scholar
Chittka, L. (1996b). Optimal sets of color receptors and color opponent systems for coding of natural objects in insect vision. Journal of Theoretical Biology, 181, 179–196.CrossRefGoogle Scholar
Chittka, L. (2001). Camouflage of predatory crab spiders on flowers and the colour perception of bees (Aranida: Thomisidae/Hymenoptera: Apidae). Entomologia Generalis, 25, 181–187.CrossRefGoogle Scholar
Chittka, L., Shmida, A., Troje, N. and Menzel, R. (1994). Ultraviolet as a component of flower reflections, and the colour perception of hymenoptera. Vision Research, 34, 1489–1508.CrossRefGoogle ScholarPubMed
Chuang, C.-Y., Yang, E.-C. and Tso, I. M. (2007a). Deceptive color signaling in the night: a nocturnal predator attracts prey with visual lures. Behavioral Ecology, 19, 237–244.CrossRefGoogle Scholar
Chuang, C. -Y., Yang, E. -C. and Tso, I. M. (2007b). Diurnal and nocturnal prey luring of a colorful predator. Journal of Experimental Biology, 210, 3830–3838.CrossRefGoogle ScholarPubMed
Craig, C. L. and Ebert, K. (1994). Colour and pattern in predator-prey interactions: the bright body colours and patterns of a tropical orbspinning spider attract flower-seeking prey. Functional Ecology, 8, 616–620.CrossRefGoogle Scholar
Craig, C. L., Weber, R. S. and Bernard, G. D. (1996). Evolution of predator-prey systems: spider foraging plasticity in response to the visual ecology of prey. American Naturalist, 147, 205–229.CrossRefGoogle Scholar
Dawkins, M. S. and Guildford, T. (1991). The corruption of honest signalling. Animal Behaviour, 41, 865–873.CrossRefGoogle Scholar
DeVoe, R. D. (1975). Ultraviolet and green receptors in principal eyes of jumping spiders. Journal of General Physiology, 66, 193–207.CrossRefGoogle Scholar
Eberhard, W. G. (1977). Aggressive chemical mimicry by a bolas spider. Science, 198, 1173–1175.CrossRefGoogle ScholarPubMed
Eberhard, W. G. (1980). Natural history and behavior of the bolas spider Mastophora dizzydeani sp. n. (Araneidae). Psyche, 87, 143–169.CrossRefGoogle Scholar
Edmunds, J. and Edmunds, M. (1986) The defensive mechanisms of orb weavers (Araneae: Araneidae) in Ghana, West Africa. In Proceedings of the 9th International Congress of Arachnology, Panama, 1983 (ed. Eberhard, W. G., Lubin, Y. D. and Robinson, B. C.. Washington, DC: Smithsonian Institute Press.Google Scholar
Elgar, M. A. and Allan, R. A. (2004). Predatory spider mimics acquire colony-specific cuticular hydrocarbons from their ant model prey. Naturwissenschaften, 91, 143–147.CrossRefGoogle ScholarPubMed
Elgar, M. A. and Allan, R. A. (2006). Chemical mimicry of the ant Oecophylla smaragdina by the myrmecophilous spider Cosmophasis bitaeniata: is it colony-specific?Journal of Ethology, 24, 239–246.CrossRefGoogle Scholar
Elias, D. O., Mason, A. C. and Hoy, R. R. (2004). The effect of substrate on the efficacy of seismic courtship signal transmission in the jumping spider Habronattus dossenus (Araneae: Salticidae). Journal of Experimental Biology, 207, 4105–4110.CrossRefGoogle Scholar
Elias, D. O., Mason, A. C., Maddison, W. P. and Hoy, R. R. (2003). Seismic signals in a courting male jumping spider (Araneae: Salticidae). Journal of Experimental Biology, 206, 4029–4039.CrossRefGoogle Scholar
Endler, J. A. and Basolo, A. L. (1998). Sensory ecology, receiver biases and sexual selection. Trends in Ecology and Evolution, 13, 415–420.CrossRefGoogle ScholarPubMed
Fan, C. -M., Yang, E. -C. and Tso, I. M. (2009). Hunting effciency and predation risk shapes the color-associated foraging traits of a predator. Behavioral Ecology, 20, 808–816.CrossRefGoogle Scholar
Gaskett, A. (2007). Spider sex pheromones: emission, reception, structures, and functions. Biological Reviews, 82, 26–48.CrossRefGoogle ScholarPubMed
Gaskett, A. C., Winnick, C. G. and Herberstein, M. E. (2008). Orchid sexual deceit provokes ejaculation. American Naturalist, 171, E206–212.CrossRefGoogle ScholarPubMed
Grether, G. F., Kolluru, G. R. and Nersissian, K. (2004). Individual colour patches as multicomponent signals. Biological Reviews, 79, 583–610.CrossRefGoogle ScholarPubMed
Hauber, M. E. (2002). Conspicuous colouration attracts prey to a stationary predator. Ecological Entomology, 27, 686–691.CrossRefGoogle Scholar
Haynes, K. F., Gemeno, C., Yeargan, K. V., Millar, J. G. and Johnson, K. M. (2002). Aggressive chemical mimicry of moth pheromones by a bolas spider: how does this specialist predator attract more than one species of prey?Chemoecology, 12, 99–105.CrossRefGoogle Scholar
Haynes, K. F., Yeargan, K. V. and Gemeno, C. (2001). Detection of prey by a spider that aggressively mimics pheromone blends. Journal of Insect Behavior, 14, 535–544.CrossRefGoogle Scholar
Hebets, E. A., Elias, D. O., Mason, A. C., Miller, G. L. and Stratton, G. E. (2008). Substrate-dependent signalling success in the wolf spider, Schizocosa retrorsa. Animal Behaviour, 75, 605–615.CrossRefGoogle Scholar
Heiling, A. M. and Herberstein, M. E. (2004). Predator-prey coevolution: Australian native bees avoid their spider predators. Proceedings of the Royal Society of London, B, 271, S196–S198.CrossRefGoogle ScholarPubMed
Heiling, A. M., Cheng, K., Chittka, L., Goeth, A. and Herberstein, M. E. (2005a). The role of UV in crab spider signals: effects on perception by prey and predators. Journal of Experimental Biology, 208, 3925–3931.CrossRefGoogle ScholarPubMed
Heiling, A. M., Chittka, L., Cheng, K. and Herberstein, M. E. (2005b). Colouration in crab spiders: substrate choice and prey attraction. Journal of Experimental Biology, 208, 1785–1792.CrossRefGoogle ScholarPubMed
Heiling, A. M., Herberstein, M. E. and Chittka, L. (2003). Crab-spiders manipulate flower signals. Nature, 421, 334.CrossRefGoogle ScholarPubMed
Herberstein, M. E., Craig, C. L., Coddington, J. A. and Elgar, M. A. (2000). The functional significance of silk decorations of orb-web spiders: a critical review of the empirical evidence. Biological Reviews, 75, 649–669.CrossRefGoogle ScholarPubMed
Herberstein, M. E., Heiling, A. M. and Cheng, K. (2009). Evidence for UV-based sensory exploitation in Australian but not European crab spiders. Evolutionary Ecology, 23, 621–634.CrossRefGoogle Scholar
Herberstein, M. E., Schneider, J. M. and Elgar, M. A. (2002). Costs of courtship and mating in a sexually cannibalistic orb-web spider: female mating strategies and their consequences for males. Behavioral Ecology and Sociobiology, 51, 440–446.Google Scholar
Hoese, F. J., Law, E. A. J., Rao, D. and Herberstein, M. E. (2006). Distinctive yellow bands on a sit-and-wait predator: prey attractant or camouflage?Behaviour, 143, 763–781.CrossRefGoogle Scholar
Howard, R. W. and Blomquist, G. J. (2005). Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annual Review of Entomology, 50, 371–393.CrossRefGoogle ScholarPubMed
Hutchinson, C. E. (1903). A bolas throwing spider. Scientific American, 89, 172.CrossRefGoogle Scholar
Jackson, R. R. (1990a). Predatory and silk utilisation behaviour of Gelotia sp. indet. (Araneae: Salticidae: Spartaeinae), a web-invading aggressive mimic from Sri Lanka. New Zealand Journal of Zoology, 17, 475–482.CrossRefGoogle Scholar
Jackson, R. R. (1990b). Predatory versatility and intraspecific interactions of Cyrba algerina and Cyrba ocellata, web-invading spartaeine jumping spiders (Araneae: Salticidae). New Zealand Journal of Zoology, 17, 157–168.CrossRefGoogle Scholar
Jackson, R. R. (1992a). Conditional strategies and interpopulation variation in the behaviour of jumping spiders. New Zealand Journal of Zoology, 19, 99–111.CrossRefGoogle Scholar
Jackson, R. R. (1992b). Eight-legged tricksters: spiders that specialize in catching other spiders. BioScience, 42, 590–598.CrossRefGoogle Scholar
Jackson, R. R. (1992c). Predator-prey interactions between web-invading jumping spiders and two species of tropical web-building pholcid spiders, Psilochorus sphaeroides and Smeringopus pallidus. Journal of Zoology, London, 227, 531–536.CrossRefGoogle Scholar
Jackson, R. R. (2002). Trial-and-error derivation of aggressive-mimicry signals by Brettus and Cyrba, spartaeine jumping spiders (Araneae: Salticidae) from Israel, Kenya, and Sri Lanka. New Zealand Journal of Zoology, 29, 95–117.CrossRefGoogle Scholar
Jackson, R. R. and Brassington, R. J. (1987). The biology of Pholcus phalangioides (Araneae, Pholcidae): predatory versatility, araneophagy and aggressive mimicry. Journal of Zoology, London, 211, 227–238.CrossRefGoogle Scholar
Jackson, R. R. and Carter, C. M. (2001). Geographic variation in reliance on trial-and-error signal derivation by Portia labiata, an araneophagic jumping spider from the Philippines. Journal of Insect Behavior, 14, 799–827.CrossRefGoogle Scholar
Jackson, R. R. and Hallas, S. E. A. (1986). Predatory versatility and intraspecific interactions of spartaeine jumping spiders (Araneae: Salticidae): Brettus adonis, B. cingulatus, Cyrba algerina, and Phaeacius sp. indet. New Zealand Journal of Zoology, 13, 491–520.CrossRefGoogle Scholar
Jackson, R. R. and Whitehouse, M. E. A. (1986). The biology of New Zealand and Queensland pirate spiders (Araneae, Mimetidae): aggressive mimicry, araneophagy and prey specialization. Journal of Zoology, London, 210, 279–303.CrossRefGoogle Scholar
Jackson, R. R. and Wilcox, R. S. (1990). Aggressive mimicry, prey-specific predatory behaviour and predator-recognition in the predator-prey interactions of Portia fimbriata and Euryattus sp., jumping spiders from Queensland. Behavioral Ecology and Sociobiology, 26, 111–119.CrossRefGoogle Scholar
Jackson, R. R. and Wilcox, R. S. (1993). Spider flexibly chooses aggressive mimicry signals for different prey by trial and error. Behaviour, 127, 21–36.CrossRefGoogle Scholar
Jackson, R. R., Li, D. and Robertson, M. B. (1997). Cues by which suspended-leaf nests of Euryattus (Araneae: Salticidae) females are recognised by conspecific males and by an aggressive-mimic salticid, Portia fimbriata. Journal of Zoology, London, 243, 29–46.CrossRefGoogle Scholar
Jarman, E. A. R. and Jackson, R. R. (1986). The biology of Taieria erebus (Araneae, Gnaphosidae), an araneophagic spider from New Zealand: silk utilisation and predatory versatility. New Zealand Journal of Zoology, 13, 521–541.CrossRefGoogle Scholar
Johnson, S. D. (2000). Batesian mimicry in the non-rewarding orchid Disa pulchra, and its consequences for pollinator behaviour. Biological Journal of the Linnean Society, 71, 119–132.CrossRefGoogle Scholar
Johnstone, R. A. (1997). The evolution of animal signals. In Behavioural Ecology (ed. Krebs, J. R. and Davies, N. B.). Oxford, UK: Blackwell Science.Google Scholar
Klärner, D. and Barth, F. G. (1982). Vibratory signals and prey capture in orb-weaving spiders (Zygiella x-notata, Nephila clavipes; Araneidae). Journal of Comparative Physiology, 148, 445–455.CrossRefGoogle Scholar
Kloock, C. T. (2001). Diet and insectivory in the ‘araneophagic’ spider, Mimetus notius (Araneae: Mimetidae). American Midland Naturalist, 146, 424–428.CrossRefGoogle Scholar
Kotiaho, J., Alatalo, R. V., Mappes, J. and Parri, S. (1996). Sexual selection in a wolf spider: male drumming activity, body size, and viability. Evolution, 50, 1977–1981.CrossRefGoogle Scholar
Land, M. F., Horwood, J., Lim, M. L. M. and Li, D. (2007). Optics of the ultra-violet reflecting scales of a jumping spider. Proceedings of the Royal Society of London, B, 274, 1583–1589.CrossRefGoogle Scholar
Landolfa, M. A. and Barth, F. G. (1996). Vibrations in the orb web of the spider Nephila clavipes: cues for discrimination and orientation. Journal of Comparative Physiology, A, 179, 493–508.CrossRefGoogle Scholar
Li, D. and Lim, M. L. M. (2005). Ultraviolet cues affect the foraging behaviour of jumping spiders. Animal Behaviour, 70, 771–776.CrossRefGoogle Scholar
Li, J. J., Zhang, Z. T., Liu, F. X, et al. (2008). UVB-based mate choice cues used by females of the jumping spider Phintella vittata. Current Biology, 18, 699–703.CrossRefGoogle ScholarPubMed
Lim, M. L. M. and Li, D. (2006). Extreme ultraviolet sexual dimorphism in jumping spiders (Araneae: Salticidae). Biological Journal of the Linnean Society, 89, 397–406.CrossRefGoogle Scholar
Lim, M. L. M., Land, M. F and Li, D. (2007). Sex-specific UV and fluorescence signals in jumping spiders. Science, 315, 481.CrossRefGoogle ScholarPubMed
Lim, M. L. M., Li, J. and Li, D. (2008). Effect of UV-reflecting markings on female mate-choice decisions in Cosmophasis umbratica, a jumping spider from Singapore. Behavioral Ecology, 19, 61–66.CrossRefGoogle Scholar
Maklakov, A. A., Bilde, T. and Lubin, Y. (2003). Vibratory courtship in a web-building spider: signalling quality or stimulating the female?Animal Behaviour, 66, 623–630.CrossRefGoogle Scholar
Masters, W. M. (1984). Vibrations in the orbwebs of Nuctenea sclopetaria (Araneidae). II. Prey and wind signals and the spider's response threshold. Behavioral Ecology and Sociobiology, 15, 217–223.CrossRefGoogle Scholar
Masters, W. M. and Markl, H. (1981). Vibration signal transmission in spider orb webs. Science, 213, 363–365.CrossRefGoogle ScholarPubMed
Masters, W. M., Markl, H. S. and Moffat, A. J. M. (1986). Transmission of vibration in a spider's web. In Spiders: Webs, Behavior, and Evolution (ed. Shear, W. A.). Stanford, CA: Stanford University Press.Google Scholar
Morse, D. H. (1981). Prey capture by the crab spider Misumena vatia (Clerck) (Thomisidae) on three common native flowers. American Midland Naturalist, 105, 358–367.CrossRefGoogle Scholar
Nakamura, T. and Yamashita, S. (2000). Learning and discrimination of colored papers in jumping spiders (Araneae, Salticidae). Journal of Comparative Physiology, A, 186, 897–901.CrossRefGoogle Scholar
Oxford, G. S. and Gillespie, R. G. (1998). Evolution and ecology of spider coloration. Annual Review of Entomology, 43, 619–643.CrossRefGoogle ScholarPubMed
Oxford, G. S. and Gillespie, R. G. (2001). Portraits of evolution: studies of coloration in Hawaiian spiders. BioScience, 51, 521–528.CrossRefGoogle Scholar
Parker, A. R. and Hegedus, Z. (2003). Diffractive optics in spiders. Journal of Optics, A – Pure and Applied Optics, 5, S111–S116.CrossRefGoogle Scholar
Schimizu, I. and Barth, F. G. (1996). The effect of temperature on the temporal structure of the vibratory courtship signals of a spider (Cupiennius salei Keys.). Journal of Comparative Physiology, A, 179, 363–370.Google Scholar
Schmitt, A., Schuster, M. and Barth, F. G. (1994). Vibratory communication in a wandering spider, Cupiennius getazi: female and male preferences for features of the conspecific male's releaser. Animal Behaviour, 48, 1155–1171.CrossRefGoogle Scholar
Schneider, J. M. and Lesmono, K. (2009). Courtship raises male fertilization success through post-mating sexual selection in a spider. Proceedings of the Royal Society of London, B, 276, 3105–3111.CrossRefGoogle Scholar
Stowe, M. K., Tumlinson, J. H. and Heath, R. R. (1987). Chemical mimicry: bolas spiders emit components of moth prey species sex pheromones. Science, 236, 964–967.CrossRefGoogle ScholarPubMed
Stuart-Fox, D. (2005). Deception and the origin of honest signals. Trends In Ecology and Evolution, 20, 521–523.CrossRefGoogle ScholarPubMed
Suter, R. B. and Renkes, G. (1984). The courtship of Frontinella pyramitela (Araneae, Linyphiidae): patterns, vibrations and functions. Journal of Arachnology, 12, 37–54.Google Scholar
Symonds, M. R. E. and Elgar, M. A. (2008). The evolution of pheromone diversity. Trends in Ecology and Evolution, 23, 220–228.CrossRefGoogle ScholarPubMed
Tarsitano, M., Jackson, R. R. and Kirchner, W. H. (2000). Signals and signal choices made by the araneophagic jumping spider Portia fimbriata while hunting the orb-weaving web spiders Zygiella x-notata and Zosis geniculatus. Ethology, 106, 595–615.CrossRefGoogle Scholar
Théry, M. and Casas, J. (2002). Predator and prey views of spider camouflage. Nature, 415, 133.CrossRefGoogle ScholarPubMed
Théry, M. and Casas, J. (2009). The multiple disguises of spiders: web colour and decorations, body colour and movement. Philosophical Transactions of the Royal Society, B, 364, 471–480.CrossRefGoogle ScholarPubMed
Théry, M., Debut, M., Gomez, D. and Casas, J. (2005). Specific color sensitivities of prey and predator explain camouflage in different visual systems. Behavioral Ecology, 16, 25–29.CrossRefGoogle Scholar
Tso, I. M., Huang, J.-P. and Liao, C.-P. (2007). Nocturnal hunting of a brightly coloured sit-and-wait predator. Animal Behaviour, 74, 787–793.CrossRefGoogle Scholar
Tso, I. M., Lin, C. W. and Yang, E. C. (2004). Colourful orb-weaving spiders, Nephila pilipes, through a bee's eyes. Journal of Experimental Biology, 207, 2631–2637.CrossRefGoogle ScholarPubMed
Tso, I. M., Tai, P. L., Ku, T. H., Kuo, C. H. and Yang, E. C. (2002). Colour-associated foraging success and population genetic structure in a sit-and-wait predator Nephila maculata (Araneae: Tetragnathidae). Animal Behaviour, 63, 175–182.CrossRefGoogle Scholar
Václav, R. and Prokop, P. (2006). Does the appearance of orbweaving spiders attract prey?Annales Zoologici Fennici, 43, 65–71.Google Scholar
Vanderhoff, E., Byers, C. and Hanna, C. (2008). Do the color and pattern of Micrathena gracilis (Araneae: Araneidae) attract prey? Examination of the prey attraction hypothesis and crypsis. Journal of Insect Behavior, 21, 469–475.CrossRefGoogle Scholar
Helversen, O. (1972). Zur spektralen Unterschiedsempfindlichkeit der Honigbienen. Journal of Comparative Physiology, 80, 439–472.CrossRefGoogle Scholar
Walla, P., Barth, F. G. and Eguchi, E. (1996). Spectral sensitivity of single photoreceptor cells in the eyes of the ctenid spider Cupiennius salei Keys. Zoological Science, 13, 199–202.CrossRefGoogle Scholar
Whitehouse, M. E. A. (1988). Factors influencing specificity and choice of host in Argyrodes antipodiana (Theridiidae, Araneae). Journal of Arachnology, 16, 349–355.Google Scholar
Yamashita, S. (2002). Efferent innervation of photoreceptors in spiders. Microscopy Research and Technique, 58, 356–364.CrossRefGoogle ScholarPubMed
Yeargan, K. V. (1994). Biology of bolas spiders. Annual Review of Entomology, 39, 81–99.CrossRefGoogle Scholar
Yeargan, K. V. and Quate, L. W. (1996). Juvenile bolas spiders attract psychodid flies. Oecologia, 106, 266–271.CrossRefGoogle ScholarPubMed
Yeargan, K. V. and Quate, L. W. (1997). Adult male bolas spiders retain juvenile hunting tactics. Oecologia, 112, 572–576.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×