Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T05:11:25.386Z Has data issue: false hasContentIssue false

16 - Relative timing and perceptual asynchrony

from Part III - Temporal phenomena: binding and asynchrony

Published online by Cambridge University Press:  05 October 2010

Romi Nijhawan
Affiliation:
University of Sussex
Beena Khurana
Affiliation:
University of Sussex
Get access

Summary

Summary

How do human observers determine the relative timings of different events? One perspective, which I shall refer to as the brain–time theory of perception, suggests that apparent timing is related to when specific analyses are concluded within distinct and relatively independent regions of the brain. This proposal is controversial, not least because it suggests that temporal perception is error prone and subject to the rates at which analyses are concluded in different parts of the brain. One observation that may favor this perspective is that physically coincident changes in color and direction can appear asynchronous – a perceptual asynchrony. In this chapter I will review the theoretical interpretations and empirical evidence that relate to this phenomenon. I will argue that this timing illusion provides good evidence for a relationship between the time courses of sensory processing in the brain and perceived timing.

Introduction

How do we determine relative timing? Human observers can determine the relative timings of a remarkable variety of events. For instance, we can judge the timings of visual relative to other visual (Moutoussis & Zeki 1997a,b), auditory (Fujisaki et al. 2004), and haptic (Vogels 2004) events. Subjectively it seems that one of the events can be entirely intrinsic to the nervous system, like the sensation of reaching seven while mentally counting from one to ten. The fact that these judgments can be made dictates that the necessary information is encoded in a form that can then be reported – but it is not clear how this feat is achieved.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, W. J., & Mamassian, P. (2004). The effects of task and saliency on latencies for colour and motion processing. Proc R Soc Lond B Biol Sci 271: 139–146.CrossRefGoogle ScholarPubMed
Aglioti, S. M., Fiorio, M., Forster, B., & Tinazzi, M. (2003). Temporal discrimination of cross-modal and unimodal stimuli in generalized dystonia. Neurology 60: 782–785.CrossRefGoogle ScholarPubMed
Alais, D., & Burr, D. (2004). The ventriloquist effect results from near-optimal bimodal integration. Curr Biol 14: 257–262.CrossRefGoogle ScholarPubMed
Arden, G. B., & Weale, R. A. (1954). Variations of the latent period of vision. Proc R Soc Lond B 142: 258–267.CrossRefGoogle Scholar
Arnold, D. H. (2005). Perceptual pairing of colour and motion. Vision Res 45: 3015–3026.CrossRefGoogle Scholar
Arnold, D. H., & Clifford, C. W. G. (2002). Determinants of asynchronous processing in vision. Proc R Soc Lond B Biol Sci 269: 579–583.CrossRefGoogle ScholarPubMed
Arnold, D. H., Clifford, C. W. G., & Wenderoth, P. (2001). Asynchronous processing in vision: colour leads motion. Curr Biol 11: 594–600.CrossRefGoogle ScholarPubMed
Arnold, D. H., Johnston, A., & Nishida, S. (2005). Timing sight and sound. Vision Res 45: 1275–1284.CrossRefGoogle ScholarPubMed
Aymoz, C., & Viviani, P. (2004). Perceptual asynchronies for biological and non-biological visual events. Vision Res 44: 1547–1563.CrossRefGoogle ScholarPubMed
Bair, W., Cavanaugh, J. R., Smith, M. A., & Movshon, J. A. (2002). The timing of response onset and offset in macaque visual neurons. J Neurosci 22: 3189–3205.CrossRefGoogle ScholarPubMed
Barlow, H. B., Blakemore, C., & Pettigrew, J. D. (1967). The neural mechanism of binocular depth discrimination. J Physiol 193: 327–342.CrossRefGoogle ScholarPubMed
Barlow, H. B., & Levick, W. R. (1965). The mechanism of directionally selective units in rabbit's retina. J Physiol 178: 477–504.CrossRefGoogle ScholarPubMed
Bartels, A., & Zeki, S. (1998). The theory of multistage integration in the visual brain. Proc R Soc Lond B Biol Sci 265: 2327–2332.CrossRefGoogle ScholarPubMed
Bedell, H. E., Chung, S. T. L., Ogmen, H., & Patel, S. S. (2003). Color and motion: which is the tortoise and which is the hare? Vision Res 43: 2403–2412.CrossRefGoogle ScholarPubMed
Bedell, H. E., Patel, S. S., Chung, S. T. L., & Ogmen, H. (2006). Perceptual consequences of timing differences within parallel feature-processing systems in human vision. In H., Ogmen & B. G., Breitmeyer (eds.), The First Half Second: The Microgenesis and Temporal Dynamics of Unconscious and Conscious Visual Processes (245–258). Cambridge, MA: MIT Press.Google Scholar
Borst, A., & Egelhaaf, M. (1989). Principles of visual motion detection. Trends Neurosci 12: 297–306.CrossRefGoogle ScholarPubMed
Buonomano, D. V., & Karmarkar, U. R. (2002). How do we tell time? Neuroscientist 8: 42–51.CrossRefGoogle ScholarPubMed
Clifford, C. W. G., Arnold, D. H., & Pearson, J. (2003). A paradox of temporal perception revealed by a stimulus oscillating in colour and orientation. Vision Res 43: 2245–2253.CrossRefGoogle ScholarPubMed
Clifford, C. W. G., Spehar, B., & Pearson, J. (2004). Motion transparency promotes synchronous perceptual binding. Vision Res 44: 3073–3080.CrossRefGoogle ScholarPubMed
Coull, J. T. (2004). fMRI studies of temporal attention: allocating attention within, or towards, time. Cognitive Brain Research 21: 216–226.CrossRefGoogle ScholarPubMed
Cowey, A., & Heywood, C. A. (1997). Cerebral achromatopsia: colour blindness despite wavelength processing. Trends Cogn Sci 1: 133–139.CrossRefGoogle ScholarPubMed
Dennett, D. C., & Kinsbourne, M. (1992). Time and the observer: the where and when of consciousness in the brain. Behav Brain Sci 15: 183–247.CrossRefGoogle Scholar
Dzhafarov, E. N., Sekuler, R., & Allik, J. (1993). Detection of changes in speed and direction of motion: reaction time analysis. Perception Psychophys 54: 733–750.CrossRefGoogle ScholarPubMed
Eagleman, D. M., & Sejnowski, T. J. (2000). Motion integration and postdiction in visual awareness. Science 287: 2036–2038.CrossRefGoogle ScholarPubMed
Enns, J. T., & Oriet, C. (2004). Perceptual asynchrony: modularity of consciousness or object updating? Vision Sciences Society Abstracts.Google Scholar
Ernst, M. O., & Bulthoff, H. H. (2004). Merging the senses into a robust percept. Trends Cogn Neurosci 4: 162–169.CrossRefGoogle Scholar
Fujisaki, W., Koene, A., Arnold, D. H., Johnston, A., & Nishida, S. (2006). Visual search for a target changing in synchrony with an auditory signal. Proc R Soc Lond B Biol Sci 273: 865–874.CrossRefGoogle ScholarPubMed
Fujisaki, W., Shimojo, S., Kashino, M., & Nishida, S. (2004). Recalibration of audiovisual simultaneity. Nat Neurosci 7: 773–778.CrossRefGoogle ScholarPubMed
Gawne, T. J., Kjaer, T. W., & Richmond, B. J. (1996). Latency: another potential code for feature binding in striate cortex. J Neurophysiol 76: 1356–1360.CrossRefGoogle ScholarPubMed
Hillis, J. M., Ernst, M. O., Banks, M. S., & Landy, M. S. (2002). Combining sensory information: mandatory fusion within, but not between, senses. Science 298: 1627–1630.CrossRefGoogle ScholarPubMed
Johnston, A., & Nishida, S. (2001). Time perception: brain time or event time? Curr Biol 11: R427–R430.CrossRefGoogle ScholarPubMed
Kanai, R., Paffen, C. L. E., Gerbino, W., & Verstraten, F. (2004). Blindness to inconsistent local signals in motion transparency from oscillating dots. Vision Res 44: 2207–2212.CrossRefGoogle ScholarPubMed
Libet, B. (1985). Unconscious cerebral initiative and the role of conscious will in voluntary action. Behav Brain Sci 8: 529–566.CrossRefGoogle Scholar
Libet, B., Gleason, C. A., Wright, E. W., & Pearl, D. K. (1983). Time of conscious intention to act in relation to onset of cerebral activity (Readiness-Potential): the unconscious initiation of a freely voluntary act. Brain 106: 623–642.CrossRefGoogle ScholarPubMed
Libet, B., Wright, E. W., Feinstein, B., & Pearl, D. K. (1979). Subjective referral of the timing for a conscious sensory experience: a functional role for the somatosensory specific projection system in man. Brain 102: 193–224.CrossRefGoogle ScholarPubMed
Lennie, P. (1998). Single units and visual cortical organization. Perception 27: 1–47.CrossRefGoogle ScholarPubMed
Livingstone, M. S., & Hubel, D. H. (1988). Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240: 740–749.CrossRefGoogle ScholarPubMed
Llinas, R. R., Leznik, E., & Urbano, F. J. (2002). Temporal binding via cortical coincidence detection of specific and non-specific thalamocortical inputs: a voltage-dependent dye-imaging study in mouse brain slices. Proc Natl Acad Sci U S A 99: 445–449.CrossRefGoogle Scholar
Mateeff, S., Dimitrov, G., & Hohnsbein, J. (1995). Temporal thresholds and reaction time to changes in velocity of visual motion. Vision Res 35: 355–363.CrossRefGoogle ScholarPubMed
Moradi, F., & Shimojo, S. (2004). Perceptual-binding and persistent surface segregation. Vision Res 44: 2885–2899.CrossRefGoogle ScholarPubMed
Moutoussis, K., & Zeki, S. (1997a). A direct demonstration of perceptual asynchrony in vision. Proc R Soc Lond B Biol Sci 264: 393–399.CrossRefGoogle ScholarPubMed
Moutoussis, K., & Zeki, S. (1997b). Functional segregation and temporal hierarchy of the visual perceptive systems. Proc R Soc Lond B Biol Sci 264: 1407–1414.CrossRefGoogle ScholarPubMed
Munk, M. H. J., Nowak, L. G., Girard, P., Chounlamountri, N., & Bullier, J. (1995). Visual latencies in cytochrome oxidase bands of macaque area V2. Proc Nat Acad Sci USA 92: 988–992.CrossRefGoogle ScholarPubMed
Nishida, S., & Johnston, A. (2002). Marker location not processing latency determines temporal binding of visual attributes. Curr Biol 12: 359–368.CrossRefGoogle Scholar
Ogmen, H., Patel, S. S., Bedell, H. E., & Camuz, K. (2004). Differential latencies and the dynamics of the position computation process for moving targets, assessed with the flash-lag effect. Vision Res 44: 2109–2128.CrossRefGoogle ScholarPubMed
Ohzawa, I., DeAngelis, G. C., & Freeman, R. D. (1990). Stereoscoptic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. Science 249: 1037–1041.CrossRefGoogle ScholarPubMed
Paul, L., & Schyns, P. G. (2003). Attention enhances feature integration. Vision Res 43: 1793–1798.CrossRefGoogle ScholarPubMed
Qian, N., & Andersen, R. A. (1994). Transparent motion perception as detection of unbalanced motion signals. II. Physiology. J Neurosci 14: 7367–7380.Google ScholarPubMed
Qian, N., Andersen, R. A., & Adelson, E. H. (1994a). Transparent motion perception as detection of unbalanced motion signals. I. Psychophysics. J Neurosci 14: 7357–7366.Google ScholarPubMed
Qian, N., Andersen, R. A., & Adelson, E. H. (1994b). Transparent motion perception as detection of unbalanced motion signals. III. Modeling. J Neurosci 14: 7381–7392.CrossRefGoogle ScholarPubMed
Rao, R. P. N., Eagleman, D. M., & Sejnowski, T. J. (2001). Optimal smoothing in visual motion perception. Neural Comput 13: 1243–1253.CrossRefGoogle ScholarPubMed
Reeves, A., & Sperling, G. (1986). Attention gating in short-term visual memory. Psychol Rev 93: 180–206.CrossRefGoogle ScholarPubMed
Reichardt, W. (1961). Autocorrelation, a principle for the evaluation of sensory information by the nervous system. In W. A., Rosenblith (ed.), Sensory Communication (303–317). Cambridge, MA: MIT Press.Google Scholar
Rivest, J., & Cavanagh, P. (1996). Localizing contours defined by more than one attribute. Vision Res 36: 53–66.CrossRefGoogle ScholarPubMed
Roufs, J. A. (1963). Perception lag as a function of stimulus luminance. Vision Res 3: 81–91.CrossRefGoogle Scholar
Schiller, P. H., & Malpeli, J. G. (1978). Composition of geniculostriate input to superior colliculus of the rhesus monkey. J Neurophysiol 41: 788–797.CrossRefGoogle Scholar
Snowden, R. J., Treue, S., Erikson, R. G., & Andersen, R. A. (1991). The response of area MT and V1 neurons to transparent motion. J Neurosci 11: 2768–2785.CrossRefGoogle ScholarPubMed
Sternberg, S., & Knoll, R. L. (1973). The perception of temporal order: fundamental issues and a general model. In S., Kornblum (ed.), Attention and Performance IV (629–685). New York: Academic Press.Google Scholar
Treisman, A. M. (1984). Temporal rhythms and cerebral rhythms. Ann N Y Acad Sci 423: 542–565.CrossRefGoogle ScholarPubMed
Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cogn Psychol 12(1): 97–136.CrossRefGoogle Scholar
van de Grind, W. (2002). Physical, neural and mental timing. Conscious Cogn 11: 241–264.CrossRefGoogle ScholarPubMed
Viviani, P., & Aymoz, C. (2001). Colour, form and movement are not perceived simultaneously. Vision Res 41: 2909–2918.CrossRefGoogle Scholar
Vogels, I. M. (2004). Detection of temporal delays in visual-haptic interfaces. Human Factors 46: 118–134.CrossRefGoogle ScholarPubMed
Williams, J. M., & Lit, A. (1983). Luminance-dependent visual latency for the Hess effect, the Pulfrich effect, and simple reaction time. Vision Res 23: 171–179.CrossRefGoogle ScholarPubMed
Zeki, S. (1978). Functional specialization in the visual cortex of the monkey. Nature 274: 423–428.CrossRefGoogle Scholar
Zeki, S. (2002). The disunity of consciousness. Trends Cogn Sci 13: 173–196.Google Scholar
Zeki, S., & Bartels, A. (1998). The asynchrony of consciousness. Proc R Soc London B Biol Sci 265: 1583–1585.CrossRefGoogle Scholar
Zihl, J., von Cramon, D., Mai, N., & Schmid, C. H. (1983). Selective disturbance of movement vision after bilateral brain damage. Brain 106: 313–340.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×