Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-02T09:58:19.688Z Has data issue: false hasContentIssue false

13 - Dynamics of visual feature binding

from Part III - Temporal phenomena: binding and asynchrony

Published online by Cambridge University Press:  05 October 2010

Romi Nijhawan
Affiliation:
University of Sussex
Beena Khurana
Affiliation:
University of Sussex
Get access

Summary

Summary

This chapter is concerned with the temporal aspects of visual binding. In particular, it concentrates on findings from studies of perceptual asynchrony between stimulus features and the temporal resolution of feature binding. I review the circumstances in which perceptual asynchronies are apparent versus those in which they are not. I argue that the existing data cannot be accounted for simply by a characteristic latency difference in the processing of different visual attributes (Moutoussis & Zeki 1997a,b) or by a scheme of temporal markers at salient stimulus transitions (Nishida & Johnston 2002). Instead, I outline a potential mechanism based on feedback from higher visual areas to primary visual cortex to account for the dynamics of binding color with orientation and direction of motion.

Introduction

How is the content of our conscious visual experience related to neural processing? Is our visual awareness an online monitor of visual processing, or do interpretative processes intervene to give conscious visual experience a postdictive quality? In the words of William James, “A succession of feelings, in and of itself, is not a feeling of succession. And because, to our successive feelings, a feeling of their own succession is added, that must be treated as an additional fact requiring its own special elucidation” (James 1890). But what is the nature of this “additional fact”? The simplest account would seem to be that the perceived sequence of events is directly related to the amount and duration of neural processing needed to achieve conscious experience (Jeannerod 1992).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albright, T. D., & Desimone, R. (1987). Local precision of visuotopic organization in the middle temporal area (MT) of the macaque. Exp Brain Res 65: 582–592.CrossRefGoogle ScholarPubMed
Arnold, D. H. (2005). Perceptual pairing of colour and motion. Vision Res 45: 3015–3026.CrossRefGoogle Scholar
Arnold, D. H., & Clifford, C. W. G. (2002). Determinants of asynchronous processing in vision. Proc R Soc Lond B 269: 579–583.CrossRefGoogle ScholarPubMed
Arnold, D. H., Clifford, C. W. G., & Wenderoth, P. (2001). Asynchronous processing in vision: colour leads motion. Curr Biol 11: 596–600.CrossRefGoogle ScholarPubMed
Barbur, J. L., Wolf, J., & Lennie, P. (1998). Visual processing levels revealed by response latencies to changes in different visual attributes. Proc R Soc Lond B 265: 2321–2325.CrossRefGoogle ScholarPubMed
Bartels, A., & Zeki, S. (1998). The theory of multistage integration in the visual brain. Proc R Soc Lond B 265: 2332–2337.CrossRefGoogle ScholarPubMed
Bedell, H. E., Chang, S. T. L., Ogmen, H., & Patel, S. S. (2003). Color and motion: which is the tortoise and which is the hare? Vision Res 43: 2403–2412.CrossRefGoogle ScholarPubMed
Blake, R., & He, S. (2005). Adaptation as a tool for probing the neural correlates of visual awareness: progress and precautions. In: C. W. G., Clifford & G., Rhodes (eds.), Fitting the Mind to the World: Aftereffects in High-Level Vision (281–307). Oxford: Oxford University Press.Google Scholar
Blaser, E., Papathomas, T., & Vidnyanszky, Z. (2005). Binding of motion and colour is early and automatic. Eur J Neurosci 21: 2040–2044.CrossRefGoogle ScholarPubMed
Clifford, C. W. G. (2005). Functional ideas about adaptation applied to spatial and motion vision. In: C. W. G., Clifford & G., Rhodes (eds.), Fitting the Mind to the World: Aftereffects in High-Level Vision (47–82). Oxford: Oxford University Press.Google Scholar
Clifford, C. W. G., Arnold, D. H., & Pearson, J. (2003). A paradox of temporal perception revealed by a stimulus oscillating in colour and orientation. Vision Res 43: 2245–2253.CrossRefGoogle ScholarPubMed
Clifford, C. W. G., Holcombe, A. O., & Pearson, J. (2004). Rapid global form binding with loss of associated colors. J Vis 4: 1090–1101.CrossRefGoogle ScholarPubMed
Clifford, C. W. G., Spehar, B., & Pearson, J. (2004). Motion transparency promotes synchronous perceptual binding. Vision Res 44: 3073–3080.CrossRefGoogle ScholarPubMed
Dennett, D. C., & Kinsbourne, M. (1992). Time and the observer: the where and when of consciousness in the brain. Behav Brain Sci 15: 183–247.CrossRefGoogle Scholar
Eagleman, D., & Sejnowski, T. J. (2000). Motion integration and postdiction in visual awareness. Science 287: 2036–2038.CrossRefGoogle ScholarPubMed
Enns, J. T., & Oriet, C. (2004). Perceptual modularity: modularity of consciousness or object updating? J Vis 4: 27a.CrossRefGoogle Scholar
Favreau, O. E., Emerson, V. F., & Corballis, M. C. (1972). Motion perception: a color-contingent aftereffect. Science 176: 78–79.CrossRefGoogle ScholarPubMed
Forte, J., & Clifford, C. W. G. (2005). Interocular transfer of the tilt illusion shows that monocular orientation mechanisms are colour selective. Vision Res 45: 2715–2721.CrossRefGoogle Scholar
Frisby, J. P. (1980). Seeing: Illusion, Brain and Mind. Oxford: Oxford University Press.Google Scholar
He, S., Cavanagh, P., & Intriligator, J. (1996). Attentional resolution and the locus of visual awareness. Nature 383: 334–337.CrossRefGoogle ScholarPubMed
He, S., & MacLeod, D. I. (2001). Orientation-selective adaptation and tilt after-effect from invisible patterns. Nature 411: 473–476.CrossRefGoogle ScholarPubMed
Hochstein, S., & Ahissar, M. (2002). View from the top: hierarchies and reverse hierarchies in the visual system. Neuron 36: 791–804.CrossRefGoogle ScholarPubMed
Holcombe, A. O. (2001). A purely temporal transparency mechanism in the visual system. Perception 30: 1311–1320.CrossRefGoogle ScholarPubMed
Holcombe, A. O., & Cavanagh, P. (2001). Early binding of feature pairs for visual perception. Nat Neurosci 4: 127–128.CrossRefGoogle ScholarPubMed
Horwitz, G. D., & Albright, T. D. (2005). Paucity of chromatic linear motion detectors in macaque V1. J Vis 5: 525–533.CrossRefGoogle ScholarPubMed
Humphrey, G. K., & Goodale, M. A. (1998). Probing unconscious visual processing with the McCollough effect. Conscious Cogn 7: 494–519.CrossRefGoogle ScholarPubMed
James, W. (1890). The Principles of Psychology, Vol. 1. New York: Henry Holt.CrossRefGoogle Scholar
Jeannerod, M. (1992). The where in the brain determines the when in the mind. Behav Brain Sci 15: 212–213.CrossRefGoogle Scholar
Johnston, A., & Nishida, S. (2001). Time perception: brain time or event time? Curr Biol 11: R427–R430.CrossRefGoogle ScholarPubMed
Johnson, E. N., Hawken, M. J., & Shapley, R. (2001). The spatial transformation of color in the primary visual cortex of the macaque monkey. Nat Neurosci 4: 409–416.CrossRefGoogle ScholarPubMed
Kanai, R., Paffen, C. L. E., Gerbino, W., & Verstraten, F. A. J. (2004). Blindness to inconsistent local signals in motion transparency from oscillating dots. Vision Res 44: 2207–2212.CrossRefGoogle ScholarPubMed
Mather, G., Verstraten, F., & Anstis, S. (eds.). (1998). The Motion Aftereffect: A Modern Perspective. Cambridge, MA: MIT Press.Google Scholar
Mayhew, J. E. W., & Anstis, S. M. (1972). Movement aftereffects contingent on colour, intensity and pattern. Perception & Psychophysics 12: 77–85.CrossRefGoogle Scholar
Moradi, F., & Shimojo, S. (2004). Perceptual-binding and persistent surface segregation. Vision Res 44: 2885–2899.CrossRefGoogle ScholarPubMed
Moutoussis, K., & Zeki, S. (1997a). A direct demonstration of perceptual asynchrony in vision. Proc R Soc Lond B 264: 393–399.CrossRefGoogle ScholarPubMed
Moutoussis, K., & Zeki, S. (1997b). Functional segregation and temporal hierarchy of the visual perceptive systems. Proc R Soc Lond B 264: 1407–1414.CrossRefGoogle ScholarPubMed
Munk, M. H. J., Nowak, L. G., Girard, P., Chounlamountri, N., & Bullier, J. (1995). Visual latencies in cytochrome oxidase bands of macaque area V2. Proc Natl Acad Sci USA 92: 988–992.CrossRefGoogle ScholarPubMed
Nishida, S., & Johnston, A. (2002). Marker correspondence, not processing latency, determines temporal binding of visual attributes. Curr Biol 12: 359–368.CrossRefGoogle Scholar
Pascual-Leone, A., & Walsh, V. (2001). Fast back projections from the motion to the primary visual area necessary for visual awareness. Science 292: 510–512.CrossRefGoogle Scholar
Qian, N., & Andersen, R. A. (1994). Transparent motion perception as detection of unbalanced motion signals. II. Physiology. J Neurosci 14: 7367–7380.CrossRefGoogle ScholarPubMed
Qian, N., Andersen, R. A., & Adelson, E. H. (1994a). Transparent motion perception as detection of unbalanced motion signals. I. Psychophysics. J Neurosci 14: 7357–7366.CrossRefGoogle Scholar
Qian, N., Andersen, R. A., & Adelson, E. H. (1994b). Transparent motion perception as detection of unbalanced motion signals. III. Modeling. J Neurosci 14: 7381–7392.CrossRefGoogle ScholarPubMed
Rajimehr, R. (2004). Unconscious orientation processing. Neuron 41: 663–673.CrossRefGoogle ScholarPubMed
Schiller, P. H., & Malpeli, J. G. (1978). Composition of geniculostriate input to superior colliculus of the rhesus monkey. J Neurophysiol 41: 788–797.CrossRefGoogle Scholar
Seidemann, E., Poirson, A. B., Wandell, B. A., & Newsome, W. T. (1999). Color signals in area MT of the macaque monkey. Neuron 24: 911–917.CrossRefGoogle ScholarPubMed
Shadlen, M. N., & Newsome, W. T. (1998). The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci 18: 3870–3896.CrossRefGoogle ScholarPubMed
Shady, S., MacLeod, D. I., & Fisher, H. S. (2004). Adaptation from invisible flicker. Proc Natl Acad Sci USA 101: 5170–5173.CrossRefGoogle ScholarPubMed
Shipp, S., & Zeki, S. (1989). The organization of connections between areas V5 and V1 in macaque monkey visual cortex. Eur J Neurosci 1: 309–332.CrossRefGoogle Scholar
Snowden, R. J., Treue, S., Erickson, R. G., & Andersen, R. A. (1991). The response of area MT and V1 neurons to transparent motion. J Neurosci 11: 2768–2785.CrossRefGoogle ScholarPubMed
van Doorn, A. J., & Koenderink, J. J. (1982). Temporal properties of the visual detectability of moving spatial white noise. Exp Brain Res 45: 179–188.CrossRefGoogle Scholar
Viviani, P., & Aymoz, C. (2001). Colour, form, and movement are not perceived simultaneously. Vision Res 41: 2909–2918.CrossRefGoogle Scholar
Wu, D. A., Kanai, R., & Shimojo, S. (2004). Vision: steady-state misbinding of colour and motion. Nature 429: 262.CrossRefGoogle Scholar
Zeki, S. (1993). A Vision of the Brain. Oxford: Blackwell.Google Scholar
Zeki, S. (2003). The disunity of consciousness. Trends Cogn Sci 7: 214–218.CrossRefGoogle Scholar
Zeki, S., & Bartels, A. (1998). The asynchrony of consciousness. Proc R Soc Lond B 265: 1583–1585.CrossRefGoogle Scholar
Zeki, S., & Bartels, A. (1999). Toward a theory of visual consciousness. Conscious Cogn 8: 225–229.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×