Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-24T00:05:16.230Z Has data issue: false hasContentIssue false

5 - Keeping vision stable: rapid updating of spatiotopic receptive fields may cause relativistic-like effects

from Part I - Time–space during action: perisaccadic mislocalization and reaching

Published online by Cambridge University Press:  05 October 2010

Romi Nijhawan
Affiliation:
University of Sussex
Beena Khurana
Affiliation:
University of Sussex
Get access

Summary

Summary

People shift their gaze more frequently than they realize, sometimes smoothly to track objects in motion, more often abruptly with a saccade to bring a new part of the visual field under closer visual examination. Saccades are typically made three times a second throughout most of our waking life, but they are rarely noticed. Yet they are accompanied by substantial changes in visual function, most notably suppression of visual sensitivity, mislocalization of spatial position, and misjudgments of temporal duration and order of stimuli presented around the time. Here we review briefly these effects and expound a novel theory of their cause. To preserve visual stability, receptive fields undergo a fast but not instantaneous remapping at the time of saccades. If the speed of remapping approaches the physical limit of neural information transfer, it may lead to relativistic-like effects observed psychophysically, namely a compression of spatial relationships and a dilation of time.

Introduction

Saccades are ballistic movements of the eyes made to reposition our gaze. They can be deliberate but normally are automatic and go unnoticed. Not only do the actual eye movements escape notice, but so do the image motion they cause and the fact that gaze itself has been repositioned. This problem has gained the attention of most visual scientists, including von Helmholtz (1866), Sperry (1950), Alhazen (1083), and Howard (1996). A general conclusion to emerge from a variety of studies was that saccades were accompanied by a “corollary discharge” (Sperry 1950) or an “efference copy” (von Holst & Mittelstädt 1954) of the motor signal that corrected for the eye movement (for general review, see Ross et al. 2001).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alhazen, I. (1083). Book of optics. In A. I., Sabra (ed.), The Optics of Ibn al-Haytham. London: Warburg Institute.Google Scholar
Andersen, R. A., Essick, G. K., & Siegel, R. M. (1985). Encoding of spatial location by posterior parietal neurons. Science 230(4724): 456–458.CrossRefGoogle ScholarPubMed
Bischof, N., & Kramer, E. (1968). Untersuchungen und Überlegungen zur Richtungswahrnehmung bei wilkuerlichen sakkadischen Augenbewegungen. Psychol Forsch 32: 185–218.CrossRefGoogle Scholar
Cai, R. H., Pouget, A., Schlag-Rey, M., & Schlag, J. (1997). Perceived geometrical relationships affected by eye-movement signals. Nature 386: 601–604.CrossRefGoogle ScholarPubMed
Diamond, M. R., Ross, J., & Morrone, M. C. (2000). Extraretinal control of saccadic suppression. J Neurosci 20: 3442–3448.CrossRefGoogle ScholarPubMed
Duhamel, J., Bremmer, F., BenHamed, S., & Graf, W. (1997). Spatial invariance of visual receptive fields in parietal cortex neurons. Nature 389: 845–848.CrossRefGoogle ScholarPubMed
Duhamel, J. R., Colby, C. L., & Goldberg, M. E. (1992). The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255(5040): 90–92.CrossRefGoogle ScholarPubMed
Eagleman, D. M., & Sejnowski, T. J. (2000). Motion integration and postdiction in visual awareness. Science 287(5460): 2036–2038.CrossRefGoogle ScholarPubMed
Einstein, A. (1920). Relativity: The Special and General Theory. New York: Henry Holt.Google Scholar
Fogassi, L., Gallese, V., di Pellegrino, G., Fadiga, L., Gentilucci, M., Luppino, G., et al. (1992). Space coding by premotor cortex. Exp Brain Res 89(3): 686–690.CrossRefGoogle ScholarPubMed
Galletti, C., Battaglini, P. P., & Fattori, P. (1995). Eye position influence on the parieto-occipital area PO (V6) of the macaque monkey. European J Neurosci 7: 2486–2501.CrossRefGoogle ScholarPubMed
Gibbon, J. (1977). Scalar expectancy theory and Weber's Law in animal timing. Psychol Rev 84: 279–325.CrossRefGoogle Scholar
Girard, P., Hupe, J. M., & Bullier, J. (2001). Feedforward and feedback connections between areas V1 and V2 of the monkey have similar rapid conduction velocities. J Neurophysiol 85(3): 1328–1331.CrossRefGoogle ScholarPubMed
Howard, I. P. (1996). Alhazen's neglected discoveries of visual phenomena. Perception 25(10): 1203–1217.CrossRefGoogle ScholarPubMed
Janssen, P., & Shadlen, M. N. (2005). A representation of the hazard rate of elapsed time in macaque area LIP. Nat Neurosci 8(2): 234–241.CrossRefGoogle ScholarPubMed
Kaiser, M., & Lappe, M. (2004). Perisaccadic mislocalization orthogonal to saccade direction. Neuron 41(2): 293–300.CrossRefGoogle ScholarPubMed
Kusunoki, M., & Goldberg, M. E. (2003). The time course of perisaccadic receptive field shifts in the lateral intraparietal area of the monkey. J Neurophysiol 89(3): 1519–1527.CrossRefGoogle ScholarPubMed
Lappe, M., Awater, H., & Krekelberg, B. (2000). Postsaccadic visual references generate presaccadic compression of space. Nature 403: 892–895.CrossRefGoogle ScholarPubMed
Leon, M. I., & Shadlen, M. N. (2003). Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron 38(2): 317–327.CrossRefGoogle ScholarPubMed
Libet, B., Wright, E. W. Jr., Feinstein, B., & Pearl, D. K. (1979). Subjective referral of the timing for a conscious sensory experience: a functional role for the somatosensory specific projection system in man. Brain 102(1): 193–224.CrossRefGoogle ScholarPubMed
Matin, L. (1972). Eye movements and perceived visual direction. In D., Jameson & L. M., Hurvich (eds.), Handbook of Sensory Physiology vol. VII/Visual Psychophysics (331–380). Berlin: Springer-Verlag.Google Scholar
Matin, L., Matin, E., & Pearce, D. G. (1969). Visual perception of direction when voluntary saccades occur: I. Relation of visual direction of a fixation target extinguished before a saccade to a subsequent test flash presented during the saccade. Perception and Psychophysics 5: 65–68.CrossRefGoogle Scholar
Matin, L., & Pearce, D. G. (1965). Visual perception of direction for stimuli flashed during voluntary saccadic eye movements. Science 148: 1485–1487.CrossRefGoogle ScholarPubMed
Morgan, M. J. (2003). The Space between Your Ears: How the Brain Represents Visual Space. London: Weidenfeld & Nicolson.Google Scholar
Morrone, M. C., Ross, J., & Burr, D. C. (1997). Apparent position of visual targets during real and simulated saccadic eye movements. J Neurosci 17: 7941–7953.CrossRefGoogle ScholarPubMed
Morrone, M. C., Ross, J., & Burr, D. (2005). Saccadic eye movements cause compression of time as well as space. Nat Neurosci 8(7): 950–954.CrossRefGoogle ScholarPubMed
Nakamura, K., & Colby, C. L. (2002). Updating of the visual representation in monkey striate and extrastriate cortex during saccades. Proc Natl Acad Sci U S A 99(6): 4026–4031.CrossRefGoogle ScholarPubMed
Pouget, A., Deneve, S., & Duhamel, J. R. (2002). A computational perspective on the neural basis of multisensory spatial representations. Nat Rev Neurosci 3(9): 741–747.CrossRefGoogle ScholarPubMed
Ridder, W. H. III, & Tomlinson, A. (1993). Suppression of contrast sensitivity during eyelid blinks. Vision Res 33(13): 1795–1802.CrossRefGoogle ScholarPubMed
Ross, J., Morrone, M. C., & Burr, D. C. (1997). Compression of visual space before saccades. Nature 384: 598–601.CrossRefGoogle Scholar
Ross, J., Morrone, M. C., Goldberg, M. E., & Burr, D. C. (2001). Changes in visual perception at the time of saccades. Trends Neurosci 24: 113–121.CrossRefGoogle ScholarPubMed
Sperry, R. W. (1950). Neural basis of the spontaneous optokinetic response produced by visual inversion. J Comp Physiological Psych 43: 482–489.CrossRefGoogle ScholarPubMed
Stevenson, S. B., Volkmann, F. C., Kelly, J. P., & Riggs, L. A. (1986). Dependence of visual suppression on the amplitudes of saccades and blinks. Vision Res 26(11): 1815–1824.CrossRefGoogle ScholarPubMed
Tucker, T. R., & Katz, L. C. (2003). Spatiotemporal patterns of excitation and inhibition evoked by the horizontal network in layer 2/3 of ferret visual cortex. J Neurophysiol 89(1): 488–500.CrossRefGoogle ScholarPubMed
Umeno, M., & Goldberg, M. (1997). Spatial processing in the monkey frontal eye field. I. Predictive visual responses. J Neurophysiol 78: 1373–1383.CrossRefGoogle ScholarPubMed
von Helmholtz, H. (1866). Handbuch der physiologischen optik. In J. P. C., Southall (ed.), A Treatise on Physiological Optics. New York: Dover.Google Scholar
von Holst, E., & Mittelstädt, H. (1954). Das reafferenzprinzip. Naturwissenschaften 37: 464–476.CrossRefGoogle Scholar
Walker, M. F., Fitzgibbon, J., & Goldberg, M. E. (1995). Neurons of the monkey superior colliculus predict the visual result of impending saccadic eye movements. J Neurophysiol 73: 1988–2003.CrossRefGoogle ScholarPubMed
Westheimer, G. (1999). Discrimination of short time intervals by the human observer. Exp Brain Res 129(1): 121–126.CrossRefGoogle ScholarPubMed
Xing, J., & Andersen, R. A. (2000). Models of the posterior parietal cortex which perform multimodal integration and represent space in several coordinate frames. J Cogn Neurosci 12: 601–614.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×