Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T14:40:29.668Z Has data issue: false hasContentIssue false

21 - Sediment delivery from headwater slope systems and relief development in steep mountain valleys in western Norway

from Part V - Solute and sedimentary fluxes in alpine/mountain environments

Published online by Cambridge University Press:  05 July 2016

Achim A. Beylich
Affiliation:
Geological Survey of Norway
John C. Dixon
Affiliation:
University of Arkansas
Zbigniew Zwoliński
Affiliation:
Adam Mickiewicz University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

André, M. F. (1985). Lichénométrie et vitesses d’avolution des versants arctiques pendant l’Holocéne (région de la baie du Roi, Spitsbergen, 79° N). Revue de Géomorphologie Dynamique, 34, 4972.Google Scholar
André, M. F. (1986). Dating slope deposits and estimating rates of rock wall retreat in Northwest Spitsbergen by lichenometry. Geografiska Annaler, 68A, 6575.CrossRefGoogle Scholar
André, M. F. (1997). Holocene rockwall retreat in Svalbard: a triple-rate evolution. Earth Surface Processes and Landforms, 22, 423440.3.0.CO;2-6>CrossRefGoogle Scholar
Ballantyne, C. K. (2002). A general model of paraglacial landscape response. The Holocene, 12, 371376.CrossRefGoogle Scholar
Barsch, D. (1981). Studien zur gegenwärtigen Geomorphodynamik im Bereich der Oobloyah Bay, N-Ellesmere Island, N.W.T., Kanada. Heidelberger Geographische Arbeiten, 69, 123161.Google Scholar
Becht, M. (1995). Untersuchungen zur aktuellen Reliefentwicklung in alpinen Einzugsgebieten. Münchner Geographische Abhandlungen, A47, 187 pp.Google Scholar
Bennett, G. L., Molnar, P., Eisenbeiss, H., and McArdell, B. W. (2012). Erosional power in the Swiss Alps: characterization of slope failure in the Illgraben. Earth Surface Processes and Landforms, 17, 16271640.CrossRefGoogle Scholar
Bennett, G. L., Molnar, P., McArdell, B. W., Schlunegger, F., and Burlando, P. (2013). Patterns and controls of sediment production, transfer and yield in the Illgraben. Geomorphology, 188, 6882.CrossRefGoogle Scholar
Beylich, A. A. (1999). Hangdenudation und fluviale Prozesse in einem subarktisch-ozeanisch geprägten, permafrostfreien Periglazialgebiet mit pleistozäner Vergletscherung – Prozessgeomorphologische Untersuchungen im Bergland der Austfirðir (Austdalur, Ost-Island). Berichte aus der Geowissenschaft. Shaker, Aachen. 130 pp.Google Scholar
Beylich, A. A. (2000). Untersuchungen zum gravitativen und fluvialen Stofftransfer in einem subarktisch-ozeanisch geprägten, permofrostfreien Periglazialgebiet mit pleistozäner Vergletscherung (Austdalur, Ost-Island). Zeitschrift für Geomorphologie N.F., Suppl., 121, 122.Google Scholar
Beylich, A. A. (2008). Mass transfers, sediment budget and relief development in the Latnjavagge catchment, Arctic-oceanic Swedish Lapland. Zeitschrift für Geomorphologie, 52, 149197.CrossRefGoogle Scholar
Beylich, A. A. (2011). Mass transfers, sediment budgets and relief development in cold environments: Results of long-term geomorphologic drainage basin studies in Iceland, Swedish Lapland and Finnish Lapland. Zeitschrift für Geomorphologie, 55, 145174.CrossRefGoogle Scholar
Beylich, A. A., and Laute, K. (2012). Spatial variations of surface water chemistry and chemical denudation in the Erdalen drainage basin, Nordfjord, western Norway. Geomorphology, 167–168, 7790.CrossRefGoogle Scholar
Beylich, A. A., and Laute, K., (2015). Sediment sources, spatiotemporal variability and rates of fluvial bedload transport in glacier connected steep mountain valleys in western Norway (Erdalen and Bødalen drainage basins). Geomorphology, 228, 552567.CrossRefGoogle Scholar
Beylich, A. A., Liermann, S., and Laute, K. (2010). Fluvial transport during thermally and pluvially induced peak runoff events in a glacier-fed mountain catchment in western Norway. Geografiska Annaler, 92A, 237246.CrossRefGoogle Scholar
Bickerton, R. W., and Matthews, J. A. (1993). “Little Ice Age” variations of outlet glaciers from the Jostedalsbreen ice-cap, southern Norway: a regional lichenometric-dating study of ice-marginal moraine sequences and their climatic significance. Journal of Quaternary Science, 8, 4566.CrossRefGoogle Scholar
Brardinoni, F., and Hassan, M. A. (2006). Glacial erosion, evolution of river long-profiles, and the organization of process domains in mountain drainage basins of coastal British Columbia. Journal of Geophysical Research, 111, F01013.CrossRefGoogle Scholar
Caine, N. (1995). Temporal trends in the quality of stream water in an alpine environment: Green Lakes Valley, Colorado Front Range, U.S.A. Geografiska Annaler, 77A, 207220.Google Scholar
Campbell, S. W., Dixon, J. C., Darmody, R. G., and Thorn, C. E. (2001). Spatial variation of early season surface water chemistry in Kärkevagge, Swedish Lapland. Geografiska Annaler, 83A, 169178.CrossRefGoogle Scholar
Campbell, S. W., Dixon, J. C., Thorn, C. E., and Darmody, R. G. (2002). Chemical denudation rates in Kärkevagge, Swedish Lapland. Geografiska Annaler, 84A, 179185.CrossRefGoogle Scholar
Church, M., and Ryder, J. M. (1972). Paraglacial sedimentation: a consideration of fluvial processes conditioned by glaciations. Geological Society of America Bulletin, 83, 30593071.CrossRefGoogle Scholar
Church, M., and Slaymaker, O. (1989). Disequilibrium of Holocene sediment yield in glaciated British Columbia. Nature, 337, 452454.CrossRefGoogle Scholar
Clark, M. J. (1987). The alpine sediment system: a context for glaciofluvial processes. In Gurnell, A. M. and Clark, M. J., eds., Glaciofluvial Sediment Transfer: An Alpine Perspective. Chichester: Wiley, pp. 931.Google Scholar
Curry, A. M., and Morris, C. (2004). Lateglacial and Holocene talus slope development and rockwall retreat on Mynydd Du, U.K. Geomorphology, 58, 85106.CrossRefGoogle Scholar
Darmody, R. G., Thorn, C. E., Harder, R. L., Schlyter, J. P. L., and Dixon, J. C. (2000).Weathering implications of water chemistry in an Arctic-Alpine environment, northern Sweden. Geomorphology, 34, 89100.CrossRefGoogle Scholar
Darmody, R. G., Allen, C. E., Thorn, C. E., and Dixon, J. C. (2001). The poisonous rocks of Kärkevagge. Geomorphology, 41, 5362.CrossRefGoogle Scholar
de Vente, J., Poesen, J., Arabkhedri, M., and Verstraeten, G. (2007). The sediment delivery problem revisited. Progress in Physical Geography, 31, 155178.CrossRefGoogle Scholar
Dixon, J. C., Thorn, C. E., and Darmody, R. G. (1984). Chemical weathering processes on the Vantage Peak Nunatak, Juneau Icefield, southern Alaska. Physical Geography, 5, 111131.CrossRefGoogle Scholar
Dixon, J. C., Darmody, R. G., Schlyter, J. P. L., and Thorn, C. E. (1995). Preliminary investigations of geochemical process responses to potential environmental change in Kärkevagge, Northern Scandinavia. Geografiska Annaler, 77A, 259267.Google Scholar
Dixon, J. C., Thorn, C. E., Darmody, R. G., and Schlyter, P. (2001). Weathering rates of fine pebbles at the soil surface in Kärkevagge, Swedish Lapland. Catena, 45, 273286.CrossRefGoogle Scholar
Dixon, J. C., Campbell, S. W., Thorn, C. E., and Darmody, R. G. (2005). Incipient weathering rind development on introduced machine-polished granite discs in an Artic alpine environment, northern Scandinavia. Earth Surface Processes and Landforms, 31, 111121.CrossRefGoogle Scholar
Dixon, J. C., Thorn, C. E., and Darmody, R. G. (2008). Spatial scale and chemical weathering in Kärkevagge: Influences on landscape evolution. Zeitschrift für Geomorphologie N.F., Suppl., 52, 2749.CrossRefGoogle Scholar
Etzelmüller, B., and Hagen, J. O. (2005). Glacier-permafrost interaction in Arctic and alpine mountain environments with examples from southern Norway and Svalbard. In Harris, C. and Murton, J. B., eds., Cryospheric Systems: Glaciers and Permafrost. London: Geological Society, Special Publications, 242, pp. 1127.Google Scholar
Gardner, J. S. (1983). Rockfall frequency and distribution in the Highwood Pass area, Canadian Rocky Mountains. Zeitschrift für Geomorphologie N.F., 27, 311324.CrossRefGoogle Scholar
Gislason, S. R., Arnorsson, S., and Armannsson, H. (1996). Chemical weathering of basalt in Southwest Iceland; effects of runoff, age of rocks and vegetative/glacial cover. American Journal of Science, 296, 837907.CrossRefGoogle Scholar
Grove, J. M. (2004). Little Ice Ages: Ancient and Modern, 2nd ed., 2 vols. London and New York: Routledge, pp. 1402 (and 406–718).Google Scholar
Gurnell, A. M., and Clark, M. J., ed. (1987). Glacio-Fluvial Sediment Transfer: An Alpine Perspective. Chichester: Wiley.Google Scholar
Hammer, K. M., and Smith, N. D. (1983). Sediment production and transport in a proglacial stream: Hilda Glacier, Alberta, Canada. Boreas, 12, 99106.CrossRefGoogle Scholar
Hansen, L., Beylich, A. A., Burki, V., Eilertsen, R., Fredin, O., Larsen, E., Lyså, A., Nesje, A., Stalsberg, K., and Tønnesen, J.-F. (2009). Stratigraphic architecture and infill history of a deglaciated bedrock valley based on georadar, seismic profiling and drilling. Sedimentology, 56, 17511773.CrossRefGoogle Scholar
Heckmann, T., Wichmann, V., and Becht, M. (2002). Quantifying sediment transport by avalanches in the Bavarian Alps – first results. Zeitschrift für Geomorphologie N.F., 127, 137152.Google Scholar
Heckmann, T., Wichmann, V., and Becht, M. (2005). Sediment transport by avalanches in the Bavarian Alps revisited – a perspective on modelling. Zeitschrift für Geomorphologie N.F., 138, 1125.Google Scholar
Hewitt, K., Byrne, M.-L., English, M., and Young, G., eds. (2002). Landscapes of Transition: Landform Assemblages and Transformations in Cold Regions. London: Kluwer Academic Publishers (256 pp.).CrossRefGoogle Scholar
Jäckli, H. (1957). Gegenwartsgeologie des Bündnerischen Rheingebietes. Beitraege zur Geologie der Schweiz, Geotechnische Serie, Luf, 36, 136 pp.Google Scholar
Krautblatter, M., Moser, M., Schrott, L., Wolf, J., and Morche, D. (2012). Significance of rockfall magnitude and solute transport for rock slope erosion and geomorphic work in an Alpine trough valley (Reintal, German Alps). Geomorphology, 167–168, 2134.CrossRefGoogle Scholar
Larsen, E., and Mangerud, J. (1981). Erosion rate of a younger Dryas cirque glacier at Kråkenes, western Norway. Annals of Glaciology, 2, 153158.CrossRefGoogle Scholar
Laute, K., and Beylich, A. A. (2010). Characteristics of floodplain deposits within a braided sandur system in upper Erdalen (Nordfjord, western Norway). Geografiska Annaler, 92A, 211223.CrossRefGoogle Scholar
Laute, K., and Beylich, A. A. (2012). Influences of the Little Ice Age glacier advance on hillslope morphometry and development in paraglacial valley systems around the Jostedalsbreen ice cap in Western Norway. Geomorphology, 167–168, 5169.CrossRefGoogle Scholar
Laute, K., and Beylich, A. A. (2013). Holocene hillslope development in glacially formed valley systems in Nordfjord, western Norway. Geomorphology, 188, 1230.CrossRefGoogle Scholar
Laute, K., and Beylich, A. A. (2014a). Environmental controls, rates and mass transfers of contemporary hillslope processes in the headwaters of two glacier-connected drainage basins in western Norway. Geomorphology, 216, 93113.CrossRefGoogle Scholar
Laute, K., and Beylich, A. A. (2014b). Morphometric and meteorological controls on recent snow avalanche distribution and activity at hillslopes in steep mountain valleys in western Norway. Geomorphology, 218, 1634.CrossRefGoogle Scholar
Luckman, B. H. (1977). The geomorphic activity of snow avalanches. Geografiska Annaler, 59A 12, 31–48.Google Scholar
Luckman, B. H., and Fiske, C. J. (1995). Estimating long-term rockfall accretion rates by lichenometry. In Slaymaker, O., ed., Steepland Geomorphology. Chichester: Wiley, pp. 233255.Google Scholar
Lutro, O., and Tveten, E., (1996). Bedrock map ÅRDAL M 1:250.000. Norges geologiske undersøkelse, Trondheim.Google Scholar
Maizels, J. (1979). Proglacial aggradation and changes in braided channel patterns during a period of glacier advance: an alpine example. Geografiska Annaler, 61A, 6591.Google Scholar
Matthews, J. A., Shakesby, R. A., Schnabel, C., and Freeman, S. (2008). Cosmogenic 10Be and 26Al ages of Holocene moraines in southern Norway I: testing the method and confirmation of the date of the Erdalen event (c. 10 ka) at its type-site. The Holocene, 18, 11551164.CrossRefGoogle Scholar
McClung, D. M. (2003). Magnitude and frequency of avalanches in relation to terrain and forest cover. Arctic, Antarctic and Alpine Research, 35, 8290.CrossRefGoogle Scholar
Milliman, J. D., and Meade, R. H. (1983). World-wide delivery of river sediment to the oceans. J. Geol., 91, 121.CrossRefGoogle Scholar
Milliman, J. D., and Syvitski, J. P. M. (1992). Geomorphic/tectoniccontrol of sediment discharge to the oceans: the importance of small mountainous rivers. J. Geol., 100, 325344.CrossRefGoogle Scholar
Moore, J. R., Sanders, J. W., Dietrich, W. E., and Glaser, S. D. (2009). Influence of rock mass strength on the erosion rate of Alpine Cliffs. Earth Surface Processes and Landforms, 34, 13391352.CrossRefGoogle Scholar
Nesje, A. (1984). Kvartærgeologiske undersøkningar i Erdalen, Stryn, Sogn og Fjordane. M.S. Thesis. University of Bergen, 201 pp.Google Scholar
Nesje, A. (2009). Latest Pleistocene and Holocene alpine glacier fluctuations in Scandinavia. Quaternary Science Reviews, 28, 21192136.CrossRefGoogle Scholar
Nesje, A., Bakke, J., Dahl, S. O., Lie, Ø., and Matthews, J. A. (2008). Norwegian mountain glaciers in the past, present and future. Global and Planetary Change, 60, 1027.CrossRefGoogle Scholar
Owens, P. N., and Slaymaker, O., eds. (2004). Mountain Geomorphology. London: Edward Arnold publishers, 320 pp.Google Scholar
Rapp, A. (1960). Recent development of mountain slopes in Kärkevagge and surroundings, Northern Scandinavia. Geografiska Annaler, 42A, 1200.Google Scholar
Sass, O. (2005a). Spatial patterns of rockfall intensity in the northern Alps. Z. Geomorphol. Suppl., 138, 5165.Google Scholar
Sass, O. (2005b). Temporal variability of rockfall in the Bavarian Alps, Germany. Arct. Antarct. Alp. Res., 37, 564573.CrossRefGoogle Scholar
Thorn, C. E. (1975). Influences of late-lying snow on rock weathering rinds. Arct. Alp. Res., 7, 373378.CrossRefGoogle Scholar
Trenhaile, A. S. (2007). Geomorphology: A Canadian Perspective, 3rd ed. Oxford: Oxford University Press, pp. 114116.Google Scholar
Walling, D. E. (1983). The sediment delivery problem. J. Hydrol, 65, 209237.CrossRefGoogle Scholar
Warburton, J. (1990). An alpine proglacial fluvial sediment budget. Geografiska Annaler, 72A, 261272.CrossRefGoogle Scholar
Warburton, J. (2007). Sediment budgets and rates of sediment transfer across cold environments in Europe: a commentary. Geografiska Annaler, 89A, 95100.CrossRefGoogle Scholar
Winkler, S., and Matthews, J. A. (2010). Observations on terminal moraine-ridge formation during recent advances of southern Norwegian glaciers. Geomorphology, 116, 87106.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×