Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-18T04:35:43.848Z Has data issue: false hasContentIssue false

25 - Comparative analysis of sediment routing in two different alpine catchments

from Part V - Solute and sedimentary fluxes in alpine/mountain environments

Published online by Cambridge University Press:  05 July 2016

Achim A. Beylich
Affiliation:
Geological Survey of Norway
John C. Dixon
Affiliation:
University of Arkansas
Zbigniew Zwoliński
Affiliation:
Adam Mickiewicz University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambroise, B. (2004). Variable “active” versus “contributing” areas or periods: a necessary distinction. Hydrological Processes, 18, 11491155.CrossRefGoogle Scholar
Baartman, J. E. M., Masselink, R., Keesstra, S. D., and Temme, A. J. A. M. (2013). Linking landscape morphological complexity and sediment connectivity. Earth Surface Processes and Landforms, 38, 14571471.CrossRefGoogle Scholar
Beel, C. R., Orwin, F., and Holland, P. G. (2011). Controls on slope-to-channel fine sediment connectivity in a largely ice-free valley, Hoophorn Stream, Southern Alps, New Zealand. Earth Surface Processes and Landforms, 36, 981994.CrossRefGoogle Scholar
Borselli, L., Cassi, P., and Torri, D. (2008). Prolegomena to sediment and flow connectivity in the landscape: a GIS and field numerical assessment. Catena, 75, 268277.CrossRefGoogle Scholar
Bracken, L. J., and Croke, J. (2007). The concept of hydrological connectivity and its contribution to understanding runoff-dominated geomorphic systems. Hydrological Processes, 21, 17491763.CrossRefGoogle Scholar
Bracken, L. J., Wainwright, J., Ali, G. A., Tetzlaff, D., Smith, M. W., Reaney, S. M., and Roy, A. G. (2013). Concepts of hydrological connectivity: Research approaches, pathways and future agendas. Earth-Science Reviews, 119, 1734.CrossRefGoogle Scholar
Brierly, G., Fryirs, K., and Jain, V. (2006). Landscape connectivity: the geographic basis of geomorphic applications. Area, 38(2), 165174.CrossRefGoogle Scholar
Brown, A. G., Carey, C., Erkens, G., Fuchs, M., Hoffmann, T., Macaire, J.-J., Moldenhauer, K.-M., and Walling, D. E. (2009). From sedimentary records to sediment budgets: multiple approaches to catchment sediment flux. Geomorphology, 108, 3547.CrossRefGoogle Scholar
Callow, J. N., and Smettem, K. R. J. (2009).The effect of farm dams and constructed banks on hydrologic connectivity and runoff estimation in agricultural landscapes. Environmental Modelling and Software, 23, 959968.CrossRefGoogle Scholar
Cavalli, M., Trevisani, S., Comiti, F., and Marchi, L. (2013). Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology, 188, 3141.CrossRefGoogle Scholar
Cavalli, M., Tarolli, P., Marchi, L., and Dalla Fontana, G. (2008). The effectiveness of airborne LiDAR data in the recognition of channel-bed morphology. Catena, 73, 249260.CrossRefGoogle Scholar
Choi, Y. (2012). A new algorithm to calculate weighted flow-accumulation from a DEM by considering surface and underground stormwater infrastructure. Environmental Modelling and Software, 30, 8191.CrossRefGoogle Scholar
Choi, Y., Yi, H., and Park, H.-D. (2011). A new algorithm for grid-based hydrologic analysis by incorporating stormwater infrastructure. Computers and Geoscience, 37, 10351044.CrossRefGoogle Scholar
Croke, J., Fryirs, K., and Thompson, C. (2013). Channel-floodplain connectivity during an extreme flood event: implications for sediment erosion, deposition, and delivery. Earth Surface Processes and Landforms, 38, 14441456.CrossRefGoogle Scholar
Croke, J., Mockler, S., Fogarty, P., and Takken, I. (2005). Sediment concentration changes in runoff pathways from a forest road network and the resultant spatial pattern of catchment connectivity. Geomorphology, 68, 257268.CrossRefGoogle Scholar
D’Haen, K., Dusar, B., Verstraeten, G., Degryse, P., and De Brue, H. (2013). A sediment fingerprinting approach to understand the geomorphic coupling in an eastern Mediterranean mountainous river catchment. Geomorphology, 197, 6475.CrossRefGoogle Scholar
Duke, G. D., Kienzle, S. W., Johnson, D. L., and Byrne, J. N. (2003). Improving overland flow routing by incorporating ancillary road data into Digital Elevation Models. Journal of Spatial Hydrology, 3(2), 127.Google Scholar
Duke, G. D., Kienzle, S. W., Johnson, D. L., and Byrne, J. N. (2006). Incorporating ancillary data to refine anthropogenically modified overland flow path. Hydrological Processes, 20, 18271843.CrossRefGoogle Scholar
Faulkner, H. (2008). Connectivity as a crucial determinant of badland morphology and evolution. Geomorphology, 100, 91103.CrossRefGoogle Scholar
Flügel, H. W., and Neubauer, F. (1984). Steiermark, Erläuterungen zur geologischen Karte der Steiermark, 1 : 200 000 – Geologie der österreichischen Bundesländer. Wien: Geologische Bundesanstalt.Google Scholar
Fryirs, K. (2013). (Dis)connectivity in catchment sediment cascades: a fresh look at the sediment delivery problem. Earth Surface Processes and Landforms, 38, 3046.CrossRefGoogle Scholar
Fryirs, K. A., Brierly, G. J., Preston, N. J., and Kasai, M. (2007). Buffers, barriers and blankets: The (dis)connectivity of catchment-scale sediment cascades. Catena, 70, 4967.CrossRefGoogle Scholar
Harvey, A. M. (1996). Holocene hillslope gully systems in the Howgill Fells, Cumbria. In Anderson, M. G. and Brooks, S. M., eds., Advances in Hillslope Processes. Chichester: Wiley, pp. 247270.Google Scholar
Harvey, A. M. (2001). Coupling between hillslopes and channels in upland fluvial systems: implications for landscape sensitivity, illustrated from the Howgill Fells, northwest England. Catena, 42, 225250.CrossRefGoogle Scholar
Heckmann, T., and Schwanghart, W. (2013). Geomorphic coupling and sediment connectivity in an alpine catchment – exploring sediment cascades using graph theory. Geomorphology, 182, 89103.CrossRefGoogle Scholar
Hiessleitner, G. (1935). Zur Geologie der Erz führenden Grauwackenzone des Johnsbachtales. Jahrbuch der Geologischen Bundesanstalt, 85, 81102.Google Scholar
Hiessleitner, G. (1958). Zur Geologie der Erz führenden Grauwackenzone zwischen Admont-Selzthal-Liezen. Jahrbuch der Geologischen Bundesanstalt, 99, 3577.Google Scholar
Hinderer, M. (2012). From gullies to mountain belts: A review of sediment budgets at various scales. Sedimentary Geology, 280, 2159.CrossRefGoogle Scholar
Hooke, J. (2003). Coarse sediment connectivity in river channel systems: a conceptual framework and methodology. Geomorphology, 56, 7994.CrossRefGoogle Scholar
Lopez-Vicente, M., Poesen, J., Navas, A., and Gaspar, L. (2013). Predicting runoff and sediment connectivity and soil erosion by water for different land use scenarios in the Spanish Pre-Pyrenees. Catena, 102, 6273.CrossRefGoogle Scholar
Mao, L., Cavalli, M., Comiti, F., Marchi, L., Lenzi, M. A., and Arattano, M. (2009). Sediment transfer processes in two Alpine catchments of contrasting morphological settings. Journal of Hydrology, 364, 8898.CrossRefGoogle Scholar
Morche, D., Schmidt, K.-H., Heckmann, T., and Haas, F. (2007). Hydrology and geomorphic effects of a high-magnitude flood in an Alpine river. Geografiska Annaler A, 89(1), 519.CrossRefGoogle Scholar
Mueller, B. U. (1999). Paraglacial sedimentation and denudation processes in an Alpine valley of Switzerland. An approach to the quantification of sediment budgets. Geodinamica Acta, 12, 291301.CrossRefGoogle Scholar
O'Callaghan, J. F., and Mark, D. M. (1984). The extraction of drainage networks from digital elevation data. Computer Vision, Graphics and Image Processing, 28, 323344.CrossRefGoogle Scholar
Otto, J.-C., and Dikau, R. (2004). Gemorphologic system analysis of a high mountain valley in the Swiss Alps. Zeitschrift für Geomorphologie, 48, 323341.CrossRefGoogle Scholar
Poeppl, R. E., Keiler, M., von Elverfeldt, K., Zweimueller, I., and Glade, T. (2012). The influence of riparian vegetation cover on diffuse lateral sediment connectivity and biogeomorphic processes in a medium-sized agricultural catchment, Austria. Geografiska Annaler A, 94, 511529.CrossRefGoogle Scholar
Renard, K., Foster, G. R., Weessies, G. A., McCool, D. K., and Yodler, D. C., (1997). Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). USDA Agriculture Handbook, 703. Washington, DC: USDA.Google Scholar
Richards, K., (1993). Sediment delivery and the drainage network. In Beven, K. and Kirkby, M. J., eds., Channel Network Hydrology. Chichester: Wiley, pp. 221254.Google Scholar
Roehl, J. E., (1962). Sediment source areas, delivery ratios and influencing morphological factors. International Association of Hydrological Sciences, 59, 202213.Google Scholar
Schäuble, H., Marinoni, O., and Hinderer, M. (2008). A GIS-based method to calculate flow accumulation by considering dams and their specific operation time. Computers and Geosciences, 34, 635646.CrossRefGoogle Scholar
Schrott, L., Niederheide, A., Hankammer, M., Hufschmidt, G., and Dikau, R. (2002). Sediment storage in a mountain catchment: geomorphic coupling and temporal variability (Reintal, Bavarian Alps, Germany). Zeitschrift für Geomorphologie, Supplement, 127, 175196.Google Scholar
Schrott, L., Hufschmidt, G., Hankammer, M., Hoffmann, T., and Dikau, R. (2003). Spatial distribution of sediment storage types and quantification of valley fill deposits in an alpine basin, Reintal, Bavarian Alps, Germany. Geomorphology, 55, 4563.CrossRefGoogle Scholar
Sandercock, P. J., and Hooke, J. M. (2011). Vegetation effects on sediment connectivity and processes in an ephemeral channel in SE Spain. Journal of Arid Environment, 75, 239254.CrossRefGoogle Scholar
Slaymaker, O. (2003). The sediment budget as conceptual framework and management tool. Hydrobiologia, 494, 7182.CrossRefGoogle Scholar
Slaymaker, O. (2008). Sediment budget and sediment flux studies under accelerating global change in cold environments. Zeitschrift für Geomorphologie, 52, 123148.CrossRefGoogle Scholar
Strasser, U., Marke, T., Sass, O., and Birk, S. (2013). John`s creek valley: a mountainous catchment for long-term interdisciplinary human-environment system research in Upper Styria (Austria). Environmental Earth Science, 69(2), 695705.CrossRefGoogle Scholar
Tarboton, D., (1997). A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research, 33, 309319.CrossRefGoogle Scholar
Walling, D. E. (1983). The sediment delivery problem. Journal of Hydrology, 65, 209237.CrossRefGoogle Scholar
Walling, D. E., and Collins, A. L. (2008). The catchment sediment budget as a management tool. Environmental Science and Policy, 11, 136143.CrossRefGoogle Scholar
Warburton, J. (1993). Energetics of Alpine proglacial geomorphic processes. Transactions of the Institute of British Geographers, 18(2), 197206.CrossRefGoogle Scholar
Wischmeier, W. H., and Smith, D. D. (1978). Predicting Rainfall Erosion Losses – A Guide to Conservation Planning. USDA Agriculture Handbook, 537. Washington: USDA.Google Scholar
Wohl, E. (2014). Time and the rivers flowing: Fluvial geomorphology since 1960. Geomorphology, 216, 263282.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×