Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-29T11:52:34.966Z Has data issue: false hasContentIssue false

20 - Chemical denudation in partly glacierized mountain catchments of the fjord landscape in western Norway: contemporary rates, environmental controls, and possible effects of climate change

from Part V - Solute and sedimentary fluxes in alpine/mountain environments

Published online by Cambridge University Press:  05 July 2016

Achim A. Beylich
Affiliation:
Geological Survey of Norway
John C. Dixon
Affiliation:
University of Arkansas
Zbigniew Zwoliński
Affiliation:
Adam Mickiewicz University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ACIA. (2004). Impacts of a warming Arctic: Arctic climate impact assessment. ACIA Overview Report. Arctic Climate Impact Assessment. Cambridge: Cambridge University Press.Google Scholar
Barsch, D. (1981). Studien zur gegenwärtigen Geomorphodynamik im Bereich der Oobloyah Bay, N-Ellesmere Island, N.W.T., Kanada. Heidelberger Geographische Arbeiten, 69, 123161.Google Scholar
Barsch, D., Gude, M., Mäusbacher, R., Schukraft, G., and Schulte, A. (1994). Recent fluvial sediment budgets in glacial and periglacial environments, NW Spitsbergen. Zeitschrift für Geomorphologie N.F., Supplementband, 97, 111122.Google Scholar
Becht, M. (1995). Untersuchungen zur aktuellen Reliefentwicklung in alpine Einzugsgebieten. München: Münchener Geographische Abhandlungen, A47.Google Scholar
Beylich, A. A. (1999). Hangdenudation und fluviale Prozesse in einem subarktisch-ozeanisch geprägten, permafrostfreien Periglazialgebiet mit pleistozäner Vergletscherung. Prozessgeomorphologische Untersuchungen im Bergland der Austfirđir (Austdalur, Ost-Island). Berichte aus der Geowissenschaft. Aachen: Shaker.Google Scholar
Beylich, A. A. (2000). Geomorphology, sediment budget and relief development in Austdalur, Austfirdir, East Iceland. Arctic, Antarctic, and Alpine Research, 32(4), 466477.CrossRefGoogle Scholar
Beylich, A. A. (2002). Sediment budgets and relief development in present periglacial environments – a morphosystem analytical approach. Hallesches Jahrbuch für Geowissenschaften, A24, 111126.Google Scholar
Beylich, A. A. (2011). Mass transfers, sediment budgets and relief development in cold environments: Results of long-term geomorphologic drainage basin studies in Iceland, Swedish Lapland and Finnish Lapland. Zeitschrift für Geomorphologie N.F., 55(2), 145174.CrossRefGoogle Scholar
Beylich, A. A., and Kneisel, Ch. (2009). Sediment budget and relief development in Hrafndalur, sub-Arctic oceanic eastern Iceland. Arctic, Antarctic, and Alpine Research, 41(1), 317.CrossRefGoogle Scholar
Beylich, A. A., Kolstrup, E., Linde, N., Pedersen, L. B., Thyrsted, T., Gintz, D., and Dynesius, L. (2003). Assessment of chemical denudation rates using hydrological measurements, water chemistry analysis and electromagnetic geophysical data. Permafrost and Periglacial Processes, 14, 387397.CrossRefGoogle Scholar
Beylich, A. A., Kolstrup, E., Thyrsted, T., and Gintz, D. (2004a). Water chemistry and its diversity in relation to local factors in the Latnjavagge drainage basin, arctic-oceanic Swedish Lapland. Geomorphology, 58, 125143.CrossRefGoogle Scholar
Beylich, A. A., Kolstrup, E., Thyrsted, T., Linde, N., Pedersen, L. B., and Dynesius, L. (2004b). Chemical denudation in arctic-alpine Latnjavagge (Swedish Lapland) in relation to regolith as assessed by radio-magnetotelluric-geophysical profiles. Geomorphology, 57, 303319.CrossRefGoogle Scholar
Beylich, A. A., Lamoureux, S. F., Decaulne, A., Dixon, J. C., Orwin, J. F., Otto, J.-C., Overeem, I., Sæmundsson, Þ., Warburton, J., and Zwoliński, Z. (2010a). Sedimentary fluxes and budgets in changing cold environments: The global IAG/AIG Sediment Budgets in Cold Environments (SEDIBUD) Programme. Geografiska Annaler, 92A(2), 151153.CrossRefGoogle Scholar
Beylich, A. A., and Laute, K. (2012a). Spatial variations of surface water chemistry and chemical denudation in the Erdalen drainage basin, Nordfjord, western Norway. Geomorphology, 167–168, 7790.CrossRefGoogle Scholar
Beylich, A. A., and Laute, K. (2012b). Seasonal and annual variations of surface water chemistry, solute fluxes and chemical denudation in a steep and glacier-fed mountain catchment in western Norway (Erdalen, Nordfjord). Catena, 96, 1227.CrossRefGoogle Scholar
Beylich, A. A., and Laute, K. (2014). Combining impact sensor field and laboratory flume measurements with other techniques for studying fluvial bedload transport in steep mountain streams. Geomorphology, 218, 7287.CrossRefGoogle Scholar
Beylich, A. A., and Laute, K. (2015). Sediment sources, spatiotemporal variability and rates of fluvial bedload transport in glacier-connected steep mountain valleys in western Norway (Erdalen and Bødalen drainage basins). Geomorphology, 228, 552567.CrossRefGoogle Scholar
Beylich, A. A., Liermann, S., and Laute, K. (2010b). Fluvial transport during thermally and pluvially induced peak runoff events in a glacier-fed mountain catchment in western Norway. Geografiska Annaler, 92A(2), 237246.CrossRefGoogle Scholar
Beylich, A. A., Molau, U., Luthbom, K., and Gintz, D. (2005). Rates of chemical and mechanical fluvial denudation in an arctic-oceanic periglacial environment, Latnjavagge drainage basin, northernmost Swedish Lapland. Arctic, Antarctic, and Alpine Research, 37(1), 7587.CrossRefGoogle Scholar
Beylich, A. A., Sandberg, O., Molau, U., and Wache, S. (2006a). Intensity and spatio-temporal variability of fluvial sediment transfers in an arctic-oceanic periglacial environment in northernmost Swedish Lapland. Geomorphology, 80(1–2), 114130.CrossRefGoogle Scholar
Beylich, A. A., Schmidt, K.-H., Neuvonen, S., Forbrich, I., and Schildt, A. (2006b). Solute fluxes in the Kidisjoki catchment, subarctic Finnish Lapland. Géomorphologie: Relief, Processus, Environment, 3, 205212.Google Scholar
Beylich, A. A., and Warburton, J., eds. (2007). Analysis of source-to-sink fluxes and sediment budgets in changing high-latitude and high-altitude cold environments. SEDIFLUX Manual. NGU Report 2007.053, Trondheim.Google Scholar
Caine, N. (1995). Temporal trends in the quality of stream water in an alpine environment: Green Lakes Valley, Colorado Front Range, U.S.A. Geografiska Annaler, 77A, 207220.Google Scholar
Campbell, S. W., Dixon, J. C., Darmody, R. G., and Thorn, C. E. (2001). Spatial variation of early season surface water chemistry in Kärkevagge, Swedish Lapland. Geografiska Annaler, 83A(4), 169178.CrossRefGoogle Scholar
Campbell, S. W., Dixon, J. C., Thorn, C. E., and Darmody, R. G. (2002). Chemical denudation rates in Kärkevagge, Swedish Lapland. Geografiska Annaler, 84A(3–4), 179185.CrossRefGoogle Scholar
Clark, M. J. (1988): Periglacial hydrology. In Clark, M. J., ed., Advances in Periglacial Geomorphology. Chichester: John Wiley and Sons, pp. 415462.Google Scholar
Corbel, J. (1959). Vitesse de l`érosion. Zeitschrift für Geomorphologie N.F., 3, 128.Google Scholar
Darmody, R. G., Allen, C. E., Thorn, C. E., and Dixon, J. C. (2001). The poisonous rocks of Kärkevagge. Geomorphology, 41, 5362.CrossRefGoogle Scholar
Darmody, R. G., Thorn, C. E., and Dixon, J. C. (2008). Competence and decay in the "Valley of Boulders" Kärkevagge, Swedish Lapland. Geografiska Annaler, 90A, 201209.CrossRefGoogle Scholar
Darmody, R. G., Thorn, C. E., Harder, R. L., Schlyter, J. P. L., and Dixon, J. C. (2000). Weathering implications of water chemistry in an Arctic-Alpine environment, northern Sweden. Geomorphology, 34, 891000.CrossRefGoogle Scholar
Dessert, C., Gaillardet, J., Dupre, B., Schott, J., and Pokrovski, O. S. (2006). Low- and high-temperature weathering budgets in Kamchatka peninsula. Goldschmidt Conference Abstracts 2006, doi:10.1016/-j.gca.2006.06.295CrossRefGoogle Scholar
Dessert, C., Gaillardet, J., Dupre, B., Schott, J., and Pokrovski, O. S. (2009). Fluxes of high- versus low-temperature water-rock interactions in aerial volcanic areas: Examples from the Kamchatka Peninsula, Russia. Geochimica et Cosmochimica Acta, 73, 148169.CrossRefGoogle Scholar
Dixon, J. C., Darmody, R. G., Schlyter, P., and Thorn, C. E. (1995). Preliminary investigation of geochemical process responses to potential environmental change in Kärkevagge, Northern Scandinavia. Geografiska Annaler, 77A, 259267.Google Scholar
Dixon, J. C., and Thorn, C. E. (2005). Chemical weathering and landscape development in mid-latitude alpine environments. Geomorphology, 67, 127145.CrossRefGoogle Scholar
Dixon, J. C., Thorn, C. E., and Darmody, R. G. (1984). Chemical weathering processes on the Vantage Peak Nunatak, Juneau Icefield, southern Alaska. Physical Geography, 5, 111131.CrossRefGoogle Scholar
Dixon, J. C., Thorn, C. E., and Darmody, R. G. (2008). Spatial scale and chemical weathering in Kärkevagge: Influences on landscape evolution. Zeitschrift für Geomorphologie N.F., 52(1), 2749.CrossRefGoogle Scholar
French, H. M. (1996). The Periglacial Environment, 2nd ed. Essex: Longman.Google Scholar
Gislason, S. R., Arnorsson, S., and Armannsson, H. (1996). Chemical weathering of basalt in Southwest Iceland; effects of runoff, age of rocks and vegetative/glacial cover. American Journal of Science, 296, 837907.CrossRefGoogle Scholar
Gislason, S. R., Oelkers, H. E., and Snorrason, A. (2006). Role of river-suspended material in the global carbon cycle. Geology, 34, 4952.CrossRefGoogle Scholar
Hinderer, M. (2012). From gullies to mountain belts: a review of sediment budgets at various scales. Sedimentary Geology, 280, 2169.CrossRefGoogle Scholar
Jäckli, H. (1957). Gegenwartsgeologie des Bündnerischen Rheingebietes. Beitrag zur Geologischen Karte der Schweiz. Geotechnische Serie 36.Google Scholar
Kostrzewski, A., Kaniecki, A., Kapuscinski, J., Klimczak, R., Stach, A., and Zwolinski, Z. (1989). The dynamics and rate of denudation of a glaciated and an unglaciated catchment, Central Spitsbergen. Polish Polar Research, 10(3), 317367.Google Scholar
Laute, K., and Beylich, A. A. (2012). Influences of the Little Ice Age glacier advance on hillslope morphometry and development in paraglacial valley systems around the Jostedalsbreen ice cap in western Norway. Geomorphology, 167–168, 5169.CrossRefGoogle Scholar
Laute, K., and Beylich, A. A. (2013). Holocene hillslope development in glacially formed valley systems in Nordfjord, western Norway. Geomorphology, 188, 1230.CrossRefGoogle Scholar
Laute, K., and Beylich, A. A. (2014a). Environmental controls, rates and mass transfers of contemporary hillslope processes in the headwaters of two glacier-connected drainage basins in western Norway. Geomorphology, 216, 93113.CrossRefGoogle Scholar
Laute, K., and Beylich, A. A. (2014b). Morphometric and meteorological controls on recent snow avalanche distribution and activity at hillslopes in steep mountain valleys in western Norway. Geomorphology, 218, 1634.CrossRefGoogle Scholar
Lopez, T., Beylich, A. A., and Schenk, W. (2007). Assessment and impact of cultural landscape in a U-shaped valley system in western Norway (Erdalen / Nordfjord). NGU Report, 2007.052, 42.Google Scholar
Lutro, O., and Tveten, E. (1996). Bedrock map ÅRDAL M 1:250.000. Norges geologiske undersøkelse, Trondheim.Google Scholar
Peltier, L. C. (1950). The geographic cycle in periglacial regions as it is related to climatic geomorphology. Annals of the Association of American Geographers, 40, 214236.CrossRefGoogle Scholar
Rapp, A. (1960). Recent development of mountain slopes in Kärkevagge and surroundings, northern Scandinavia. Geografiska Annaler, 42, 71200.Google Scholar
Reid, L. M., and Dunne, T. (1996). Rapid Evaluation of Sediment Budgets. Reiskirchen: Catena Verlag.Google Scholar
Slaymaker, O. (2003). The sediment budget as conceptual framework and management tool. Hydrobiologia, 494(1), 7182.CrossRefGoogle Scholar
Summerfield, M. A. (1991). Global Geomorphology. An Introduction to the Study of Landforms. Essex: Longman.Google Scholar
Swanson, F. J., Janda, R. J., Dunne, T., and Swanston, D. N., eds. (1982). Sediment budgets and routing in forested drainage basins. U.S. Forest Service General Technical Report, PNQ-141. Portland, OR: U.S. Department of Agriculture Forest Service, Pacific Northwest Forest and Range Experiment Station.Google Scholar
Thorn, C. E. (1975). Influences of late-lying snow on rock weathering rinds. Arctic and Alpine Research, 7, 373378.CrossRefGoogle Scholar
Thorn, C. E., Darmody, R. G., Dixon, J. C., and Schlyter, P. (2001). The chemical weathering regime of Kärkevagge, artic-alpine Sweden. Geomorphology, 41, 3752.CrossRefGoogle Scholar
Thorn, C. E., Dixon, J. C., Darmody, R. G., and Allen, C. E. (2006). A ten-year record of the weathering rates of surficial pebbles, Kärkevagge, Swedish Lapland. Catena, 65, 272278.CrossRefGoogle Scholar
Von Lozinski, W. (1909). Über die mechanische Verwitterung der Sandsteine im gemässigten Klima. Bulletin International de L`Academie des Sciences de Cracovie class des Sciences Mathematique et Naturalles, 1, 125.Google Scholar
Von Lozinski, W. (1912). Die periglaziale Facies der mechanischen Verwitterung. Comptes rendus, XI Congres Internationale Geologie, Stockholm 1910, 10391053.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×