Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T17:09:47.963Z Has data issue: false hasContentIssue false

5 - Recent advances in comparative methods

Published online by Cambridge University Press:  05 June 2012

Robert P. Freckleton
Affiliation:
University of Sheffield, UK
Mark Pagel
Affiliation:
University of Reading, UK
Tamás Székely
Affiliation:
University of Bath
Allen J. Moore
Affiliation:
University of Exeter
Jan Komdeur
Affiliation:
Rijksuniversiteit Groningen, The Netherlands
Get access

Summary

Overview

The comparative method is one of the oldest and most widely used approaches to studying evolution. The rationale is that a group of species contains more variation than can be created in an experiment or using observations on a single species, and comparisons across species can be used to test broad questions in evolutionary theory. One of the key issues in comparative analysis is the problem of phylogeny. Phylogeny can create problems through generating non-independence of data, which compromises statistical tests, but it also generates opportunity by allowing the evolution of traits to be mapped. The modern comparative method is based on modelling the evolutionary process, using models of trait evolution to generate statistical models that can fitted to trait data.

We review a range of the current models and techniques used in comparative analysis. We begin by looking at techniques for modelling continuous traits, concentrating on methods for measuring variation in the rate of evolution through time, speciational modes of evolution, constraints on traits and variable levels of phylogenetic dependence. We then look at issues of uncertainty in data and how this may be incorporated, including uncertainty resulting from phylogenetic error, measurement error and other forms of non-independence. Developments on the analysis of discrete traits are described, including the use of modern Bayesian model averaging and selection methods. Finally we describe how the links between macroevolution (speciation and extinction) and trait evolution can be uncovered.

Type
Chapter
Information
Social Behaviour
Genes, Ecology and Evolution
, pp. 110 - 126
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Freckleton, R. P. (2009) The seven deadly sins of comparative analysis. Journal of Evolutionary Biology, 22, 1367–1375.CrossRefGoogle ScholarPubMed
Freckleton, R. P., Harvey, P. H. & Pagel, M. (2002) Phylogenetic dependence and ecological data: a test and review of evidence. American Naturalist, 160, 716–726.CrossRefGoogle Scholar
Garland, T., Midford, P. E. & Ives, A. R. (1999) An introduction to phylogenetically-based statistical methods with a new method for confidence intervals on ancestral values. American Zoologist, 39, 374–388.CrossRefGoogle Scholar
Pagel, M. (1999) Inferring the historical patterns of biological evolution. Nature, 401, 877–884.CrossRefGoogle ScholarPubMed
Paradis, E. (2006) Analysis of Phylogenetics and Evolution with R. New York, NY: Springer.Google Scholar
Barraclough, T. G., Harvey, P. H. & Nee, S. (1995) Sexual selection and taxonomic diversity in passerine birds. Proceedings of the Royal Society B, 259, 211–215.CrossRefGoogle Scholar
Blomberg, S. P., Garland, T. & Ives, A. R. (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution, 57, 717–745.CrossRefGoogle ScholarPubMed
Brooks, D. R. & McLennan, D. A. (2002) The Nature of Diversity: an Evolutionary Voyage of Discovery. Chicago, IL:University of Chicago Press.CrossRefGoogle Scholar
Butler, M. A. & King, A. A. (2004) Phylogenetic comparative analysis: a modeling approach for adaptive evolution. American Naturalist, 164, 683–695.CrossRefGoogle ScholarPubMed
Collar, D. C., Near, T. J. & Wainwright, P. C. (2005) Comparative analysis of morphological diversity: does disparity accumulate at the same rate in two lineages of centrarchid fishes?Evolution, 59, 1783–1794.CrossRefGoogle ScholarPubMed
Davies, R. G., Orme, C. D. L., Olson, V.et al. (2007) Topography, energy and the global distribution of bird species richness. Proceedings of the Royal Society B, 274, 1189–1197.CrossRefGoogle ScholarPubMed
Queiroz, A. (2002) Contingent predictability in evolution: key traits and diversification. Systematic Biology, 51, 917–929.CrossRefGoogle ScholarPubMed
Edwards, A. W. F. (1972) Likelihood. Cambridge:Cambridge University Press.Google Scholar
Farrell, B., Dussord, D. E. & Mitter, C. (1991) Escalation of plant defence: do latex and resin canals spur plant diversification?American Naturalist, 138, 881–900.CrossRefGoogle Scholar
Felsenstein, J. (1973) Maximum-likelihood estimation of evolutionary trees from continuous characters. American Journal of Human Genetics, 25, 471–492.Google ScholarPubMed
Felsenstein, J. (1985) Phylogenies and the comparative method. American Naturalist, 126, 1–25.CrossRefGoogle Scholar
Felsenstein, J. (2004) Inferring Phylogenies. New York, NY: Sinauer.Google Scholar
Freckleton, R. P. (in press) Dealing with colinearity in behavioral and ecological data: model averaging and the problems of measurement error. Behavioral Ecology and Sociobiology, in press.
Freckleton, R. P. & Harvey, P. H. (2006) Detecting non-Brownian trait evolution in adaptive radiations. PLoS Biology, 4 (11), e373.CrossRefGoogle ScholarPubMed
Freckleton, R. P. & Jetz, W. (2009) Space versus phylogeny: disentangling phylogenetic and spatial signals in comparative data. Proceedings of the Royal Society B, 276, 21–30.CrossRefGoogle ScholarPubMed
Freckleton, R. P., Harvey, P. H. & Pagel, M. (2002) Phylogenetic dependence and ecological data: a test and review of evidence. American Naturalist, 160, 716–726.CrossRefGoogle Scholar
Freckleton, R. P., Harvey, P. H. & Pagel, M. (2003) Comparative methods for adaptive radiations. In: Macroecology: Concepts and Consequences, ed. Blackburn, T. M. & Gaston, K. J.Oxford: Blackwell, pp. 391–407.Google Scholar
Freckleton, R. P., Phillimore, A. B. & Pagel, M. (2008) Relating traits to diversification: a simple test. American Naturalist, 172, 102–115.CrossRefGoogle ScholarPubMed
Garamszegi, L. Z. & Møller, A. P. (2007) Prevalence of avian influenza and host ecology. Proceedings of the Royal Society B, 274, 2003–2012.CrossRefGoogle ScholarPubMed
Garland, T. J., Harvey, P. H. & Ives, A. R. (1992) Procedures for the analysis of comparative data using phylogenetically independent contrasts. Systematic Biology, 41, 18–32.CrossRefGoogle Scholar
Garland, T., Midford, P. E. & Ives, A. R. (1999) An introduction to phylogenetically-based statistical methods with a new method for confidence intervals on ancestral values. American Zoologist, 39, 374–388.CrossRefGoogle Scholar
Gould, S. J. & Lewontin, R. (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society B, 205, 581–598.CrossRefGoogle Scholar
Grafen, A. (1989) The phylogenetic regression. Philosophical Transactions of the Royal Society B, 326, 119–157.CrossRefGoogle ScholarPubMed
Grafen, A. & Hails, R. S. (2004) Modern Statistics for the Life Sciences. Oxford: Oxford University Press.Google Scholar
Grenfell, B. T., Pybus, O. G., Gog, J. R.et al. (2004) Unifying the epidemiological and evolutionary dynamics of pathogens. Science, 303, 327–332.CrossRefGoogle ScholarPubMed
Haining, R. (1990) Spatial Data Analysis in the Social and Environmental Sciences. Cambridge:Cambridge University Press.CrossRefGoogle Scholar
Hansen, T. F. (1997) Stabilizing selection and the comparative analysis of adaptation. Evolution, 51, 1341–1351.CrossRefGoogle ScholarPubMed
Hansen, T. F. & Martins, E. P. (1996) Translating between microevolutionary process and macroevolutionary patterns: the correlation structure of interspecific data. Evolution, 50, 1404–1417.CrossRefGoogle ScholarPubMed
Hansen, T. F, Pienaar, J. & Orzack, S. H. (2008) A comparative method for studying adaptation to a randomly evolving environment. Evolution, 62, 1965–1977.Google ScholarPubMed
Harmon, L. J., Schulte, J. A., Losos, J. B. & Larson, A. (2003) Tempo and mode of evolutionary radiation in iguanian lizards. Science, 301, 961–964.CrossRefGoogle ScholarPubMed
Harvey, P. H. (1996) Phylogenies for ecologists. Journal of Animal Ecology, 65, 255–263.CrossRefGoogle Scholar
Harvey, P. H. & Pagel, M. D. (1991) The Comparative Method in Evolutionary Biology. Oxford: Oxford University Press.Google Scholar
Harvey, P. H. & Rambaut, A. (2000) Comparative analyses for adaptive radiations. Philosophical Transactions of the Royal Society B, 355, 1599–1606.CrossRefGoogle ScholarPubMed
Harvey, P. H., Read, A. F. & Nee, S. (1995) Why ecologists need to be phylogenetically challenged. Journal of Ecology, 83, 535–536.CrossRefGoogle Scholar
Housworth, E. A., Martins, E. & Lynch, M. (2004) The phylogenetic mixed model. American Naturalist, 163, 84–96.CrossRefGoogle ScholarPubMed
Huelsenbeck, J. P., Rannala, B. & Masly, J.P. (2000) Accommodating phylogenetic uncertainty in evolutionary studies. Science, 288, 2349–2350.CrossRefGoogle ScholarPubMed
Ives, A. R., Midford, P. E. & Garland, T. (2007) Within-species variation and measurment error in phylogenetic comparative methods. Systematic Biology, 56, 252–270.CrossRefGoogle Scholar
Jetz, W., Wilcove, D. S. & Dobson, A. P. (2007) Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biology, 5 (6), e157.CrossRefGoogle Scholar
Kimura, M. (1991a) Recent development of the neutral theory viewed from the Wrightian tradition of theoretical population genetics. Proceedings of the National Academy of Sciences of the USA, 88, 5969–5973.CrossRefGoogle ScholarPubMed
Link, W. A. & Barker, R. J. (2006) Model weights and the foundations of multimodel inference. Ecology, 87, 2626–2635.CrossRefGoogle ScholarPubMed
Lutzoni, F., Pagel, M. & Reeb, V. (2001) Major fungal lineages are derived from lichen symbiotic ancestors. Nature, 411, 937–940.CrossRefGoogle ScholarPubMed
Martins, E. P. & Garland, T. (1991) Phylogenetic analyses of the correlated evolution of continuous characters: a simulation study. Evolution, 45, 534–557.CrossRefGoogle ScholarPubMed
Martins, E. P. & Hansen, T. F. (1996) The statistical analysis of interspecific data: a review and evaluation. In: Phylogenies and the Comparative Method in Animal Behaviour, ed. Martins, E. P.. Oxford:Oxford University Press, pp. 22–75.Google Scholar
Martins, E. P. & Hansen, T. F. (1997) Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. American Naturalist, 149, 646–667.CrossRefGoogle Scholar
Marzaluff, J. M. & Dial, K. P. (1991) Life history correlates of taxonomic diversity. Ecology, 72, 428–439.CrossRefGoogle Scholar
Mitter, C., Farrell, B. & Wiegmann, B. (1988) The phylogenetic study of adaptive zones: has phytophagy promoted insect diversification?American Naturalist, 132, 107–128.CrossRefGoogle Scholar
Organ, C., Shedlock, A., Meade, A., Pagel, M. & Edwards, E. (2007) Origin of avian genome size and structure in non-avian dinosaurs. Nature, 446, 180–184CrossRefGoogle ScholarPubMed
Orme, C. D. L., Davies, R. G., Olson, V. A. et al. (2006) Global patterns of geographic range size in birds. PLoS Biology, 4 (7), e208.CrossRefGoogle ScholarPubMed
Owens, I. P. F., Bennett, P. M. & Harvey, P. H. (1999) Species richness among birds: body size, life history, sexual selection or ecology?Proceedings of the Royal Society B, 266, 933–939.CrossRefGoogle Scholar
Page, R. D. M. & Holmes, E. C. (2000) Molecular Evolution: a Phylogenetic Approach. Oxford:Blackwell.Google Scholar
Pagel, M. (1993) Seeking the evolutionary regression coefficient: an analysis of what comparative methods measure. Journal of Theoretical Biology, 164, 191–205.CrossRefGoogle ScholarPubMed
Pagel, M. (1994) Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proceedings of the Royal Society B, 255, 37–45.CrossRefGoogle Scholar
Pagel, M. (1997) Inferring evolutionary processes from phylogenies. Zoologica Scripta, 26, 331–348.CrossRefGoogle Scholar
Pagel, M. (1999) Inferring the historical patterns of biological evolution. Nature, 401, 877–884.CrossRefGoogle ScholarPubMed
Pagel, M. & Lutzoni, F. (2002) Accounting for phylogenetic uncertainty in comparative studies of evolution and adaptation. In: Biological Evolution and Statistical Physics, ed. Laessig, M. and Valleriani, A.Berlin: Springer Verlag, pp. 151–164.Google Scholar
Pagel, M. & Meade, A. (2006) Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. American Naturalist, 167, 808–825.Google ScholarPubMed
Pagel, M., Meade, A. & Barker, D. (2004) Bayesian estimation of ancestral character states on phylogenies. Systematic Biology, 53, 673–684.CrossRefGoogle ScholarPubMed
Paradis, E. (2005) Statistical analysis of diversification with species traits. Evolution, 59, 1–12.CrossRefGoogle ScholarPubMed
Paradis, E. (2006) Analysis of Phylogenetics and Evolution with R. New York, NY: Springer.Google Scholar
Paradis, E. (2008) Asymmetries in phylogenetic diversification and character change can be untangled. Evolution, 62, 241–247.Google ScholarPubMed
Paradis, E. & Claude, J. (2002) Analysis of comparative data using generalized estimating equations. Journal of Theoretical Biology, 218, 175–185.CrossRefGoogle ScholarPubMed
Parker, G. & Partridge, L. (1998) Sexual conflict and speciation. Proceedings of the Royal Society B, 353, 261–274.Google ScholarPubMed
Pawitan, Y. (2001) In All Likelihood: Statistical Modelling and Inference Using Likelihood. Oxford:Oxford University Press.Google Scholar
Phillimore, A. B., Freckleton, R. P., Orme, C. D. L. & Owens, I. P. F. (2006) Ecology predicts large-scale patterns of phylogenetic diversification in birds. American Naturalist, 168, 220–229.Google ScholarPubMed
Phillimore, A. B., Orme, C. D. L., Davies, R. G.et al. (2007) Biogeographical basis of recent phenotypic divergence among birds: a global study of subspecies richness. Evolution, 61, 942–957.CrossRefGoogle ScholarPubMed
Price, T. (1997) Correlated evolution and independent contrasts. Philosophical Transactions of the Royal Society B, 352, 519–529.CrossRefGoogle ScholarPubMed
Ree, R. H. (2005) Detecting the historial signature of key innovations using stochastic models of character evolution and cladogenesis. Evolution, 59, 257–265.CrossRefGoogle Scholar
Reynolds, J. D., Goodwin, N. B. & Freckleton, R. P. (2002) Evolutionary transitions in parental care and live bearing in vertebrates. Philosophical Transactions of the Royal Society B, 357, 269–281.CrossRefGoogle ScholarPubMed
Ricklefs, R. E. (2007) History and diversity: explorations at the intersection of ecology and evolution. American Naturalist, 170, S56–70.CrossRefGoogle ScholarPubMed
Ricklefs, R. E. & Starck, J. M. (1996) Application of phylogenetically independent contrasts: a mixed progress report. Oikos, 77, 167–172.CrossRefGoogle Scholar
Schluter, D., Price, T., Mooers, A. Ø. & Ludwig, D. (1997) Likelihood of ancestor states in adaptive radiation. Evolution, 39, 396–404.Google Scholar
Thomas, G. H. (2004) Sexual conflict, ecology and breeding systems of shorebirds: phylogenetic analyses. Unpublished PhD Thesis, University of Bath, UK.
Thomas, G. H. & Székely, T. (2005) Evolutionary pathways in shorebird breeding systems: Sexual conflict, parental care, and chick development. Evolution, 59, 2222–2230.CrossRefGoogle ScholarPubMed
Thomas, G. H., Freckleton, R. P. & Székely, T. (2006) Comparative analyses of the influence of developmental mode on phenotypic diversification rates in shorebirds. Proceedings of the Royal Society B, 273, 1619–1624.CrossRefGoogle ScholarPubMed
Tyson, E. (1699) Orang-outang, sive, Homo sylvestris: or, the anatomy of a pygmie compared with that of a monkey and ape and a man. London: printed for Thomas Bennet.Google Scholar
Webster, A. J. & Purvis, A. (2002) Testing the accuracy of methods for reconstructing ancestral states of continuous characters. Procedings of the Royal Society B, 269, 143–149.CrossRefGoogle ScholarPubMed
Westoby, M., Leishman, M. R. & Lord, J.M. (1995) On misinterpreting the ‘phylogenetic correction’. Journal of Ecology, 83, 531–534.CrossRefGoogle Scholar
Yang, Z. (2006) Computational Molecular Evolution. Oxford: Oxford University Press.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×