Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T16:43:06.502Z Has data issue: false hasContentIssue false

1 - Milestones in Common Shrew Chromosomal Research

Published online by Cambridge University Press:  01 March 2019

Jeremy B. Searle
Affiliation:
Cornell University, New York
P. David Polly
Affiliation:
Indiana University
Jan Zima
Affiliation:
Academy of Sciences of the Czech Republic, Prague
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, A.-C., Alstrom-Rapaport, C., and Fredga, K. (2005). Lack of mitochondrial DNA divergence between chromosome races of the common shrew, Sorex araneus, in Sweden. Implications for interpreting chromosomal evolution and colonization history. Molecular Ecology, 14, 2703–16.Google Scholar
Andersson, A.-C., Narain, Y., Tegelström, H., and Fredga, K. (2004). No apparent reduction of gene flow in a hybrid zone between the West and North European karyotypic groups of the common shrew, Sorex araneus. Molecular Ecology, 13, 1205–15.CrossRefGoogle Scholar
Aniskin, V. M. and Lukianova, I. V. (1989). A new chromosome race and the analysis of hybridization zone of two karyomorphs of Sorex araneus (Insectivora, Soricidae). Doklady Akademii Nauk SSSR, 309, 1260–2. (In Russian, with English summary).Google Scholar
Aniskin, V. M. and Volobouev, V. T. (1980a). Chromosomal polymorphism in Siberian populations of the shrews of araneus-arcticus complex (Insectivora, Soricidae). I. Chaldeevo and Bericul’s populations of the common shrew Sorex araneus L. Genetika (Moscow), 16, 1044–51. (In Russian, with English summary).Google Scholar
Aniskin, V. M. and Volobouev, V. T. (1980b). Chromosomal polymorphism in Siberian populations of the shrews of araneus-arcticus complex (Insectivora, Soricidae). II. Sayan population of Arctic shrew Sorex arcticus Kerr (1792). Genetika (Moscow), 16, 2171–5. (In Russian, with English summary).Google Scholar
Aniskin, V. M. and Volobouev, V. T. (1981). Chromosomal polymorphism in Siberian populations of the shrews of araneus-arcticus complex (Insectivora, Soricidae). III. Three chromosome forms of common shrew Sorex araneus L. Genetika (Moscow), 17, 1784–91. (In Russian, with English summary).Google Scholar
Barton, N. H., Briggs, D. E. G., Eisen, J. A., Goldstein, D. B., and Patel, N. H. (2007). Evolution. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
Barton, N. H. and Hewitt, G. M. (1985). Analysis of hybrid zones. Annual Review of Ecology and Systematics, 16, 113–48.Google Scholar
Basset, P., Yannic, G., Brünner, H., and Hausser, J. (2006a). Restricted gene flow at specific parts of the shrew genome in chromosomal hybrid zones. Evolution, 60, 1718–30.Google Scholar
Basset, P., Yannic, G., and Hausser, J. (2006b). Genetic and karyotypic structure in the shrews of the Sorex araneus group: are they independent? Molecular Ecology, 15, 1577–87.Google Scholar
Basset, P., Yannic, G., and Hausser, J. (2008). Chromosomal rearrangements and genetic structure at different evolutionary levels of the Sorex araneus group. Journal of Evolutionary Biology, 21, 842–52.Google Scholar
Belcheva, R. G. and Kolevska, N. G. (1986). Cytogenetic studies of the common shrew Sorex araneus L. (Soricidae, Insectivora) from the Vitosha Mountain. Comptes rendus de l’Académie bulgare des Sciences, 39, 115–18.Google Scholar
Belonogova, N. M., Karamysheva, T. V., Biltueva, L. S., et al. (2006). Identification of all pachytene bivalents in the common shrew using DAPI-staining of synaptonemal complex spreads. Chromosome Research, 14, 673–9.Google Scholar
Bengtsson, B. O. and Frykman, I. (1990). Karyotype evolution: evidence from the common shrew (Sorex araneus L). Journal of Evolutionary Biology, 3, 85101.Google Scholar
Bilton, D. T., Mirol, P. M., Mascheretti, S., et al. (1998). Mediterranean Europe as an area of endemism for small mammals rather than a source for northwards postglacial colonization. Proceedings of the Royal Society of London B, 265, 1219–26.Google Scholar
Biltueva, L., Vorobieva, N., Perelman, P., et al. (2011). Karyotype evolution of Eulipotyphla (Insectivora): the genome homology of seven Sorex species revealed by comparative chromosome painting and banding data. Cytogenetic and Genome Research, 135, 5164.Google Scholar
Borisov, Y. M., Kryshchuk, I. A., Cherepanova, E. V., Gajduchenko, H. S., and Orlov, V. N. (2014). Chromosomal polymorphism of populations of the common shrew, Sorex araneus L. in Belarus. Acta Theriologica, 59, 243–9.Google Scholar
Borodin, P. M., Karamysheva, T. V., Belonogova, N. M., et al. (2008). Recombination map of the common shrew, Sorex araneus (Eulipotyphla, Mammalia). Genetics, 178, 621–32.Google Scholar
Bovey, R. (1948). Un type nouveau d’héterochromosomes chez un mammifère: le trivalent sexual de Sorex araneus. Archiv der Julius Klaus-Stiftung für Vererbungs-forschung, 23, 507.Google Scholar
Bovey, R. (1949). Les chromosomes des Chiroptères et des Insectivores. Revue suisse de Zoologie, 56, 371460.Google Scholar
Brünner, H., Lugon-Moulin, N., Balloux, F., Fumagalli, L., and Hausser, J. (2002a). A taxonomical re-evaluation of the chromosome race Valais of the common shrew, Sorex araneus (Insectivora: Soricidae), from multiple, independent characters. Acta Theriologica, 47, 245–75.Google Scholar
Brünner, H., Lugon-Moulin, N., and Hausser, J. (2002b). Alps, genes, and chromosomes: their role in the formation of species in the Sorex araneus groups (Mammalia, Insectivora), as inferred from two hybrid zones. Cytogenetic and Genome Research, 96, 8596.Google Scholar
Bulatova, N., Jones, R. M., White, T. A., et al. (2011). Natural hybridization between extremely divergent chromosomal races of the common shrew (Sorex araneus, Soricidae, Soricomorpha): hybrid zone in European Russia. Journal of Evolutionary Biology, 24, 573–86.Google Scholar
Capanna, E. (1991). Concluding remarks. Mus domesticus and Sorex araneus faced: two speciation models compared. Mémoires de la Société Vaudoise des Sciences Naturelles, 19, 141–51.Google Scholar
Churchfield, S. (1990). The Natural History of Shrews. London: Christopher Helm.Google Scholar
Churchfield, S. and Searle, J. B. (2008). Common shrew. In Mammals of the British Isles: Handbook, 4th edn, ed. Harris, S. and Yalden, D. W.. London: The Mammal Society, pp. 257–65.Google Scholar
Crowcroft, P. (1957). The Life of the Shrew. London: Max Reinhardt.Google Scholar
Dannelid, E. (1994). The karyotype of Sorex samniticus and its relation to that of S. araneus and 3 other species of Sorex (Mammalia, Soricidae). Folia Zoologica, 43 (Suppl. 1), 7188.Google Scholar
Dixkens, C., Klett, C., Bruch, J., et al. (1998). Zoo-FISH analysis in insectivores: ‘Evolution extols the virtue of the status quo’. Cytogenetics and Cell Genetics, 80, 61–7.Google Scholar
Dulić, B. (1977). Chromosomenmorphologie bei Waldspitzmäusen, Sorex araneus Linné, 1758, aus einigen Gegenden Jugoslawiens. Säugetierkundliche Mitteilungen, 26, 184–90.Google Scholar
Fedyk, S. (1980). Chromosome polymorphism in a population of Sorex araneus L. at Białowieża. Folia Biologica (Kraków), 28, 83120.Google Scholar
Fedyk, S. (1986). Genetic differentiation of Polish populations of Sorex araneus L. II. Possibilities of gene flow between chromosome races. Bulletin of Polish Academy of Sciences, Biological Sciences, 34, 161–71.Google Scholar
Fedyk, S. (1995). Geographic Chromosomal Differentiation and Hybrid Zones between Chromosome Races of Sorex araneus in North-Eastern Poland. Dissertationes 439, Universitatis Varsoviensis, Białystok.Google Scholar
Fedyk, S., Chętnicki, W., and Banaszek, A. (1991). Genetic differentiation of Polish populations of Sorex araneus L. III. Interchromosomal recombination in a hybrid zone. Evolution, 45, 1384–92.Google Scholar
Fedyk, S. and Ivanitskaya, E. Y. (1972). Chromosomes of Siberian shrews. Acta Theriologica, 17, 475‒92.Google Scholar
Ford, C. E. (1971). Robertsonian variation in the common shrew. Mammal Review, 1, 35–6.Google Scholar
Ford, C. E. and Hamerton, J. L. (1958). A system of chromosomal polymorphism in the common shrew (Sorex araneus L.). XV International Congress of Zoology, Section II, Paper 32, 177–9.Google Scholar
Ford, C. E. and Hamerton, J. L. (1970). Chromosome polymorphism in the common shrew, Sorex araneus. Symposia of the Zoological Society of London, 26, 223–36.Google Scholar
Ford, C. E., Hamerton, J. L., and Sharman, G. B. (1957). Chromosome polymorphism in the common shrew. Nature, 180, 392–3.Google Scholar
Ford, P. J. and Graham, C. F. (1964). The chromosome number in the common shrew, Sorex araneus L. Bulletin of the Mammal Society of the British Isles, 22, 1011.Google Scholar
Fredga, K. (1973). A new chromosome race of the common shrew (Sorex araneus) in Sweden. Hereditas, 73, 153–7.Google Scholar
Fredga, K. and Nawrin, J. (1977). Karyotype variability in Sorex araneus L. (Insectivora, Mammalia). Chromosomes Today, 6, 153–61.Google Scholar
Fredga, K. and Searle, J. B. (eds) (1996). Evolution in the Sorex araneus group: cytogenetic and evolutionary aspects. Proceedings of the ISACC’s Fourth International Meeting, Norr Malma and Uppsala, 22–27 August, 1996. Hereditas, 125, 97248.Google Scholar
Frykman, I. and Bengtsson, B. O. (1984). Genetic differentiation in Sorex. III. Electrophoretic analysis of the hybrid zone between two karyotypic races in Sorex araneus. Hereditas, 100, 259–70Google Scholar
Garagna, S., Zuccotti, M., Searle, J. B., Redi, C. A., and Wilkinson, P. J. (1989). Spermatogenesis in heterozygotes for Robertsonian chromosomal rearrangements from natural populations of the common shrew, Sorex araneus. Journal of Reproduction and Fertility, 87, 431–8.Google Scholar
Graf, J.-D., Hausser, J., Farina, A., and Vogel, P. (1979). Confirmation du statut spécifique de Sorex samniticus Altobello 1926 (Mammalia, Insectivora). Bonner zoologische Beiträge, 30, 1421.Google Scholar
Halkka, L., Halkka, O., Skarén, U., and Söderlund, V. (1974). Chromosome banding pattern in a polymorphic population of Sorex araneus from northeastern Finland. Hereditas, 76, 305–14.Google Scholar
Hatfield, T., Barton, N., and Searle, J. B. (1992). A model of a hybrid zone between two chromosomal races of the common shrew (Sorex araneus). Evolution, 46, 1129–45.Google Scholar
Hausser, J. (1976). Contribution à l’Étude des Musaraignes du Genre Sorex (Cytotaxonomie, Morphologie, Répartition). Thèse No. 1732, University of Geneva.Google Scholar
Hausser, J. (1978). Répartition en Suisse et en France de Sorex araneus L., 1758 et de Sorex coronatus Millet, 1828 (Mammalia, Insectivora). Mammalia, 42, 329–41.Google Scholar
Hausser, J. (1984). Genetic drift and selection: their respective weights in the morphological and genetic differentiation of four species of shrew in southern Europe (Insectivora, Soricidae). Zeitschrift für zoologische Systematik und Evolutions-forschung, 22, 223–33.Google Scholar
Hausser, J. (ed.) (1991). The cytogenetics of the Sorex araneus group and related topics. Proceedings of the ISACC’s Second International Meeting, Lausanne and Arzier, 12–16 September, 1990. Mémoires de la Société Vaudoise des Sciences Naturelles, 19, 1151.Google Scholar
Hausser, J., Catzeflis, F., Meylan, A., and Vogel, P. (1985). Speciation in the Sorex araneus complex (Mammalia: Insectivora). Acta Zoologica Fennica, 170, 125–30.Google Scholar
Hausser, J., Fedyk, S., Fredga, K., et al. (1994). Definition and nomenclature of chromosome races of Sorex araneus. Folia Zoologica, 43 (Suppl. 1), 19.Google Scholar
Hausser, J., Graf, J. D., and Meylan, A. (1975). Données nouvelles sur les Sorex d’Espagne et des Pyrénées (Mammalia, Insectivora). Bulletin de la Sociéte Vaudoise des Sciences Naturelles, 72, 241–52.Google Scholar
Hausser, J., Hutterer, R., and Vogel, P. (1990). Sorex araneus Linnaeus, 1758 – Waldspitzmaus. In Handbuch der Säugetiere Europas, Band 3/I, ed. Niethammer, J. and Krapp, F.. Wiesbaden: Aula-Verlag, pp. 237–78.Google Scholar
Hausser, J. and Jammot, D. (1974). Etude biométrique des mâchoires chez les Sorex du groupe araneus en Europe continentale (Mammalia, Insectivora). Mammalia, 38, 324–43.Google Scholar
Homolka, M. (1981). Zur Frage des Vorkommens von Sorex coronatus in der ČSSR. Folia Zoologica, 30, 301–10.Google Scholar
Horn, A., Basset, P., Yannic, G., et al. (2012). Chromosomal rearrangements do not seem to affect the gene flow in hybrid zones between karyotypic races of the common shrew (Sorex araneus). Evolution, 66, 882–9.Google Scholar
Hsu, T. C. (1979). Human and Mammalian Cytogenetics: an Historical Perspective. New York: Springer-Verlag.Google Scholar
Ivanitskaya, E. Y. and Kozlovsky, A. I. (1983). The karyological evidence of absence of the Arctic shrew (Sorex arcticus) in the Palaearctic. Zoologicheskii Zhurnal, 62, 399408. (In Russian, with English summary).Google Scholar
Ivanitskaya, E. Y., Kozlovsky, A. I., Orlov, V. N., Kovalskaya, Y. M., and Baskevich, M. I. (1986). New data on karyotypes of shrews (Sorex, Soricidae, Insectivora) in the fauna of the USSR. Zoologicheskii Zhurnal, 65, 1228–36. (In Russian, with English summary).Google Scholar
Jadwiszczak, K.A., Ratkiewicz, M., and Banaszek, A. (2006). Analysis of molecular differentiation in a hybrid zone between chromosomally distinct races of the common shrew Sorex araneus (Insectivora: Soricidae) suggests their common ancestry. Biological Journal of the Linnean Society, 89, 7990.Google Scholar
Kozlovsky, A. I. (1969). Chromosome polymorphism in the common shrew, Sorex araneus L. from the Irkutsk area. In The Mammals (Evolution, Karyology, Taxonomy, Fauna), ed. Vorontsov, N. N.. Novosibirsk: Academy of Sciences of the USSR, pp. 1011. (In Russian).Google Scholar
Kozlovsky, A. I. (1970). Chromosome polymorphism in Eastern-Siberian populations of the common shrew, Sorex araneus L. Tsitologia, 12, 1459–64. (In Russian, with English summary).Google Scholar
Kozlovsky, A. I. (1971). Karyotypes and systematics of some populations of shrews related to Sorex arcticus Kerr 1792 (Mammalia, Insectivora, Soricidae). Zoologicheskii Zhurnal, 50, 756–61. (In Russian, with English summary).Google Scholar
Kozlovsky, A. I. (1972). Chromosome analysis of polymorphic population of the common shrew, Sorex araneus L. Tsitologia, 14, 761–8. (In Russian, with English summary).Google Scholar
Kozlovsky, A. I. (1973). Somatic chromosomes in two species of shrews from Caucasus. Zoologicheskii Zhurnal, 52, 571–76. (In Russian, with English summary).Google Scholar
Kozlovsky, A. I. and Orlov, V. N. (1971). Karyological evidence for species independence of Sorex isodon Turov (Soricidae, Insectivora). Zoologicheskii Zhurnal, 50, 756–63. (In Russian, with English summary).Google Scholar
Král, B. and Radjabli, S.I. (1974). Banding patterns and Robertsonian fusion in the western Siberian population of Sorex araneus (Insectivora, Soricidae). Zoologické Listy, 23, 217–27.Google Scholar
Král, B. and Radjabli, S. I. (1976). Karyotypes and G-bands of Western Siberian shrews Sorex arcticus and S. araneus (Soricidae: Insectivora). Zoologické Listy, 25, 327–34.Google Scholar
Král, B., Zima, J., Herzig-Straschil, B., and Štěrba, O. (1979). Karyotypes of certain small mammals from Austria. Folia Zoologica, 28, 511.Google Scholar
Lapini, L., Filippucci, M. G., and Filacorda, S. (2001). Genetic and morphometric comparison between Sorex arunchi Lapini and Testone, 1998, and other shrews from Italy. Acta Theriologica, 46, 337–52.Google Scholar
Lapini, L. and Testone, R. (1998). Un nuovo Sorex dall’Italia nord-orientale (Mammalia: Insectivora: Soricidae). Gortania, 20, 233–52.Google Scholar
Lavrenchenko, L. A. and Bulatova, N. (2016). The role of hybrid zones in speciation: a case study on chromosome races of the house mouse Mus domesticus and common shrew Sorex araneus. Biology Bulletin Reviews, 6, 232–44.Google Scholar
Lindblad-Toh, K., Garber, M., Zuk, O., et al. (2011). A high-resolution map of human evolutionary constraint using 29 mammals. Nature, 478, 476–82.Google Scholar
Loch, R. (1977). A biometrical study of karyotypes A and B of Sorex araneus Linnaeus, 1758 in the Netherlands (Mammalia, Insectivora). Lutra 19, 2136.Google Scholar
Macholán, M., Baird, S. J. E., Munclinger, P., and Piálek, J. (2012). Evolution of the House Mouse. Cambridge Studies in Morphology and Molecules: New Paradigms in Evolutionary Biology. Cambridge, UK: Cambridge University Press.Google Scholar
Mackiewicz, P., Moska, M., Wierzbicki, H., Gagat, P., and Mackiewicz, D. (2017). Evolutionary history and phylogeographic relationships of shrews from Sorex araneus group. PLoS One, 12, e0179760.Google Scholar
Matthey, R. and Meylan, A. (1961). Le polymorphisme chromosomique de Sorex araneus L. (Mamm.-Insectivora). Etude de deux portées de cinq et neuf petits. Revue suisse de Zoologie, 68, 223–7.Google Scholar
Matveevsky, S., Pavlova, S. V., Acaeva, М., and Kolomiets, О. L. (2012). Synaptonemal complex analysis of interracial hybrids between the Moscow and Neroosa chromosomal races of the common shrew Sorex araneus showing regular formation of a complex meiotic configuration (ring-of-four). Comparative Cytogenetics, 6, 301–14.Google Scholar
Mercer, S. J., Wallace, B. M. N., and Searle, J. B. (1992). Male common shrews (Sorex araneus) with long meiotic chain configurations can be fertile: implications for chromosomal models of speciation. Cytogenetics and Cell Genetics, 60, 6873.Google Scholar
Meylan, A. (1960). Contribution a l’étude du polymorphisme chromosomique chez Sorex araneus L. (Mamm. Insectivora). (Note préliminaire). Revue suisse de Zoologie, 67, 258–61.Google Scholar
Meylan, A. (1964). Le polymorphisme chromosomique de Sorex araneus L. (Mamm. – Insectivora). Revue suisse de Zoologie, 71, 903–83.Google Scholar
Meylan, A. (1965). Répartition géographique des races chromosomiques de Sorex araneus L. en Europe (Mamm. Insectivora). Revue suisse de Zoologie, 72, 636–46.Google Scholar
Meylan, A. (1968). Formules chromosomiques de quelques petits mammifères Nord-Americains. Revue suisse de Zoologie, 75, 691–6.Google Scholar
Meylan, A. and Hausser, J. (1973). Les chromosomes des Sorex du groupe araneus-arcticus (Mammalia, Insectivora). Zeitschrift für Säugetierkunde, 38, 143–58.Google Scholar
Meylan, A. and Hausser, J. (1978). Le type chromosomique A des Sorex du groupe araneus: Sorex coronatus Millet, 1828. Mammalia, 42, 115–22.Google Scholar
Meylan, A. and Hausser, J. (1991). The karyotype of the North American Sorex tundrensis (Mammalia, Insectivora). Mémoires de la Société Vaudoise des Sciences Naturelles, 19, 125–9.Google Scholar
Minina, J. M., Borodin, P. M., Searle, J. B., Volobouev, V. T., and Zhdanova, N. S. (2007). Standard DAPI karyotype of the common shrew Sorex araneus L. (Soricidae, Eulipotyphla). Russian Journal of Theriology, 6, 36.Google Scholar
Mys, B., van der Straeten, E., and Verheyen, W. (1985). The biometrical and morphological identification and the distribution of Sorex araneus L., 1758 and S. coronatus Millet, 1828 in Belgium (Insectivora, Soricidae). Lutra, 28, 5570.Google Scholar
Neet, C. (1989). Ecologie Comparée et Biogéographie Évolutive de Deux Espèces Parapatriques: Sorex araneus et Sorex coronatus (Mammalia, Insectivora), Soricidae). PhD dissertation, University of Lausanne.Google Scholar
Neet, C. and Hausser, J. (1990). Habitat selection in zones of parapatric contact between the common shrew Sorex araneus and Millet’s shrew S. coronatus. Journal of Animal Ecology, 59, 235–50.Google Scholar
Okhotina, M. V. (1983). The taxonomic revision of Sorex arcticus Kerr, 1792 (Soricidae, Insectivora). Zoologicheskii Zhurnal, 62, 409–17. (In Russian, with English summary).Google Scholar
Olert, J. (1973a). Cytologisch-morphologische Untersuchungen an der Waldspitzmaus (Sorex araneus Linné, 1758) und der Schabrackenspitzmaus (Sorex gemellus Ott, 1968) (Mammalia – Insectivora). Veröffentlichungen der Universität Innsbruck, 76, 173.Google Scholar
Olert, J. (1973b). Schädelmessungen an rheinischen Wald- und Schabrackenspitzmäusen. Bonner zoologische Beiträge, 24, 366–73.Google Scholar
Olert, J. and Schmid, M. (1978). Comparative analysis of karyotypes in European shrew species. I. The sibling species Sorex araneus and S. gemellus: Q-bands, G-bands, and position of NORs. Cytogenetics and Cell Genetics, 20, 308–22.Google Scholar
Orlov, V. N. (1974). Karyosystematics of the Mammals. Moscow: Nauka. (In Russian).Google Scholar
Orlov, V. N. and Alenin, V. P. (1968). Karyotypes of some species of shrews of the genus Sorex (Insectivora, Soricidae). Zoologicheskii Zhurnal, 47, 1071–4. (In Russian, with English summary).Google Scholar
Orlov, V. N., Bulatova, N. S., Kozlovsky, A. I., and Balakirev, A. E. (2004). Hierarchy of intraspecific taxa of the common shrew, Sorex araneus (Insectivora), and taxonomic structure of species in mammals. Zoologicheskii Zhurnal, 83, 199212. (In Russian, with English summary).Google Scholar
Orlov, V. N. and Kozlovsky, A. I. (1969). The chromosome complements of two geographically distant populations and their position in general system of chromosomal polymorphism in the common shrew, Sorex araneus L. (Soricidae, Insectivora, Mammalia). Tsitologia, 11, 1129–36. (In Russian).Google Scholar
Ott, J. (1968). Nachweiss natürlicher reproduktiver isolation zwischen Sorex gemellus sp. n. und Sorex araneus Linnaeus 1758 in der Schweiz. Revue suisse de Zoologie, 75, 5375.Google Scholar
Polly, P. D. (2007). Phylogeographic differentiation in Sorex araneus: morphology in relation to geography and karyotype. Russian Journal of Theriology, 6, 7384.Google Scholar
Polly, P. D., Polyakov, A. V., Ilyashenko, V. B., et al. (2013). Phenotypic variation across chromosomal hybrid zones of the common shrew (Sorex araneus) indicates reduced gene flow. PLoS One, 8, e67455.Google Scholar
Polyakov, A. V., White, T. A., Jones, R. M., Borodin, P. M., and Searle, J. B. (2011). Natural hybridization between extremely divergent chromosomal races of the common shrew (Sorex araneus, Soricidae, Soricomorpha): hybrid zone in Siberia. Journal of Evolutionary Biology, 24, 1393–402.Google Scholar
Ratkiewicz, M., Fedyk, S., Banaszek, A., et al. (2002). The evolutionary history of the two karyotypic groups of the common shrew, Sorex araneus, in Poland. Heredity, 88, 235–42.Google Scholar
Schmid, M., Schempp, W., and Olert, J. (1982). Comparative analysis of karyotypes in European shrew species. II. Constitutive heterochromatin, replication patterns, and sister chromatid exchanges in Sorex araneus and S. gemellus. Cytogenetics and Cell Genetics, 34, 124–35.Google Scholar
Searle, J. B. (1983). Robertsonian Chromosomal Variation in the Common Shrew Sorex araneus L. PhD dissertation, University of Aberdeen.Google Scholar
Searle, J. B. (1984a). Three new karyotypic races of the common shrew Sorex araneus (Mammalia: Insectivora) and a phylogeny. Systematic Zoology, 33, 184–94.Google Scholar
Searle, J. B. (1984b). Hybridization between Robertsonian karyotypic races of the common shrew Sorex araneus. Experientia, 40, 876‒8.Google Scholar
Searle, J. B. (1984c). Nondisjunction frequencies in Robertsonian heterozygotes from natural populations of the common shrew, Sorex araneus L. Cytogenetics and Cell Genetics, 35, 265–71.Google Scholar
Searle, J. B. (1986a). Factors responsible for a karyotypic polymorphism in the common shrew, Sorex araneus L. Proceedings of the Royal Society of London B, 229, 277–98.Google Scholar
Searle, J. B. (1986b). Meiotic studies of Robertsonian heterozygotes from natural populations of the common shrew, Sorex araneus L. Cytogenetics and Cell Genetics, 41, 154–62.Google Scholar
Searle, J. B. (1988a). Selection and Robertsonian variation in nature: the case of the common shrew. In The Cytogenetics of Mammalian Autosomal Rearrangements, ed. Daniel, A.. New York: Alan R. Liss, pp. 507–31.Google Scholar
Searle, J. B. (1988b). Karyotypic variation and evolution in the common shrew, Sorex araneus. In Kew Chromosome Conference III, ed. Brandham, P.E.. London: Her Majesty’s Stationery Office (HMSO), pp. 97107.Google Scholar
Searle, J. B. (1993). Chromosomal hybrid zones in eutherian mammals. In Hybrid Zones and the Evolutionary Process, ed. Harrison, R. G.. New York: Oxford University Press, pp. 309–53.Google Scholar
Searle, J. B. and Bulatova, N. S. (eds) (2007). Evolution in the Sorex araneus group: cytogenetic and evolutionary aspects. Proceedings of the ISACC’s Seventh International Meeting, St. Petersburg, 28 August–1 September, 2005. Russian Journal of Theriology, 6, 1122.Google Scholar
Searle, J. B., Fedyk, S., Fredga, K., Hausser, J., and Volobouev, V. T. (1991). Nomenclature for the chromosomes of the common shrew (Sorex araneus). Mémoires de la Société Vaudoise des Sciences Naturelles, 19, 1322.Google Scholar
Searle, J. B., Fedyk, S., Fredga, K., Hausser, J., and Volobouev, V. T. (2010). Nomenclature for the chromosomes of the common shrew (Sorex araneus). Comparative Cytogenetics, 4, 8796.Google Scholar
Searle, J. B., Hausser, J., Zima, J., et al. (2007). The ISACC heritage. Russian Journal of Theriology, 6, 123–67.Google Scholar
Searle, J. B. and Wilkinson, P. J. (1987). Karyotypic variation in the common shrew (Sorex araneus) in Britain – a ‘Celtic Fringe’. Heredity, 59, 345–51.Google Scholar
Searle, J. B. and Wójcik, J. M. (1998). Chromosomal evolution: the case of Sorex araneus. In Evolution of Shrews, ed. Wójcik, J. M. and Wolsan, M.. Białowieża: Mammal Research Institute, pp. 219–68.Google Scholar
Searle, J. B. and Wójcik, J. M. (eds) (2000). Evolution in the Sorex araneus group: cytogenetic and evolutionary aspects. Proceedings of the ISACC’s Fifth International Meeting, Białowieża, 17–21 August, 1999. Acta Theriologica, 45 (Suppl. 1), 1190.Google Scholar
Serov, O. L., Matyakhina, L. D., Borodin, P. M., and Searle, J. B. (1998). The common shrew gene map. Institute for Laboratory Animal Research (ILAR) Journal, 39, 195202.Google Scholar
Sharman, G. B. (1956). Chromosomes of the common shrew. Nature, 177, 941–2.Google Scholar
Sharman, G. B. (1991). History of discovery and recognition of XY1Y2 systems and chromosome polymorphism in mammals. Mémoires de la Société Vaudoise des Sciences Naturelles, 19, 712.Google Scholar
Sharman, G. B., McIntosh, A. J., and Barber, H. N. (1950). Multiple sex chromosomes in the marsupials. Nature, 166, 996.Google Scholar
Shchipanov, N. A. and Pavlova, S. V. (2013). Contact zones and ranges of chromosomal races of the common shrew, Sorex araneus, in north-eastern European Russia. Folia Zoologica, 62, 2435.Google Scholar
Shchipanov, N. A. and Pavlova, S. V. (2016a). Multi-level subdivision in the species group ‘araneus’ of the genus Sorex. 1. Chromosomal differentiation. Zoologicheskii Zhurnal, 95, 216–33. (In Russian, with English summary).Google Scholar
Shchipanov, N. A. and Pavlova, S. V. (2016b). Multi-level subdivision in the species group ‘araneus’ of the genus Sorex. 2. Subdivision within the common shrew. Zoologicheskii Zhurnal, 95, 353–65. (In Russian, with English summary).Google Scholar
Shchipanov, N. A. and Pavlova, S. V. (2017). Density-dependent processes determine the distribution of chromosomal races of the common shrew Sorex araneus (Lipotyphla, Mammalia). Mammal Research, 62, 267–82.Google Scholar
Taberlet, P., Fumagalli, L., and Hausser, J. (1994). Chromosomal versus mitochondrial DNA evolution: tracking the evolutionary history of the southwestern European populations of the Sorex araneus group (Mammalia, Insectivora). Evolution, 48, 623–36.Google Scholar
Turni, H. and Müller, E. F. (1996). Unterscheidung der Spitzmausarten Sorex araneus L. 1758 und Sorex coronatus Millet 1828 mit Hilfe einer neuen Diskriminanzfunktion. Zeitschrift für Säugetierkunde, 61, 7392.Google Scholar
van Zyll de Jong, C. G. (1983). A morphometric analysis of North American shrews of the arcticus group, with special consideration of the taxonomic status of S. a. maritimensis. Naturaliste Canadien, 110, 373–8.Google Scholar
Volobouev, V. T. (1983). Les Types de Polymorphisme Chromosomique et Leur Rôle Évolutif chez les Mammifères (Insectivora, Rodentia et Carnivora). Thèse de doctorat d‘Etat, University of Paris 6.Google Scholar
Volobouev, V. T. (1989). Phylogenetic relationships of the Sorex araneus-arcticus species complex (Insectivora, Soricidae) based on high-resolution chromosome analysis. Journal of Heredity, 80, 284–90.Google Scholar
Volobouev, V. (ed.) (2003). Evolution in the Sorex araneus group: cytogenetic and evolutionary aspects. Proceedings of the ISACC’s Sixth International Meeting, Paris, 3–7 September, 2002. Mammalia, 67, 163306.Google Scholar
Volobouev, V. and Dutrillaux, B. (1991). Chromosomal evolution and phylogenetic relationships of the Sorex araneus-arcticus species group. Mémoires de la Société Vaudoise des Sciences Naturelles, 19, 131–9.Google Scholar
Volobouev, V. T. and van Zyll de Jong, C. G. (1988). The karyotype of Sorex arcticus maritimensis (Insectivora, Soricidae) and its systematic implications. Canadian Journal of Zoology, 66, 1968–72.Google Scholar
Wallace, B. M. N. and Searle, J. B. (1994). Oogenesis in homozygotes and heterozygotes for Robertsonian rearrangements from natural populations of the common shrew, Sorex araneus. Journal of Reproduction and Fertility, 100, 231–7.Google Scholar
White, T. A., Bordewich, M., and Searle, J. B. (2010). A network approach to study karyotypic evolution: the chromosomal races of the common shrew (Sorex araneus) and house mouse (Mus musculus) as model systems. Systematic Biology, 59, 262–76.Google Scholar
White, T. A. and Searle, J. B. (2008). The colonization of Scottish islands by the common shrew, Sorex araneus (Eulipotyphla: Soricidae). Biological Journal of the Linnean Society, 94, 797808.CrossRefGoogle Scholar
Wójcik, J. M. (1986). Karyotypic races of the common shrew (Sorex araneus L.) from northern Poland. Experientia, 42, 960–2.Google Scholar
Wójcik, J. M. (1993). Chromosome races of the common shrew Sorex araneus in Poland: a model of karyotype evolution. Acta Theriologica, 38, 315–38.Google Scholar
Wójcik, J. M., Borodin, P. M., Fedyk, S., et al. (2003). The list of the chromosome races of the common shrew Sorex araneus (updated 2002). Mammalia, 68, 169–78.Google Scholar
Wójcik, J. M. and Fedyk, S. (1985). A new chromosome race of Sorex araneus L. from northern Poland. Experientia, 41, 750–2.CrossRefGoogle Scholar
Wójcik, J. M., Ratkiewicz, M., and Searle, J. B. (2002). Evolution of the common shrew, Sorex araneus: chromosomal and molecular aspects. Acta Theriologica, 47 (Suppl. 1), 139–67.Google Scholar
Wójcik, J. M. and Wolsan, M. (eds) (1998). Evolution of Shrews. Białowieża: Mammal Research Institute.Google Scholar
Wójcik, J. M. and Zima, J. (1987). Cytogenetics of the common shrew (Sorex araneus Linnaeus, 1758). Przeglad Zoologiczny, 31, 439–56. (In Polish, with English summary).Google Scholar
Wyttenbach, A., Narain, Y., and Fredga, K. (1999). Genetic structuring and gene flow in a hybrid zone between two chromosomes races of the common shrew (Sorex araneus, Insectivora) revealed by microsatellites. Heredity, 82, 7988.Google Scholar
Yannic, G., Basset, P., and Hausser, J. (2009). Chromosomal rearrangements and gene flow over time in an inter-specific hybrid zone of the Sorex araneus group. Heredity, 102, 616–25.Google Scholar
Yannic, G., Pellissier, L., Dubey, S., et al. (2012). Multiple refugia and barriers explain the phylogeography of the Valais shrew, Sorex antinorii (Mammalia: Soricomorpha). Biological Journal of the Linnean Society, 105, 864–80.Google Scholar
Zhdanova, N. S., Fokina, V. M., Balloux, F., et al. (2003). Current cytogenetic map of the common shrew, Sorex araneus L.: localization of 7 genes and 4 microsatellites. Mammalia, 67, 285–93.Google Scholar
Zhdanova, N. S., Karamisheva, T. V., Minina, J., et al. (2005). Unusual distribution pattern of telomeric repeats in the shrews Sorex araneus and Sorex granarius. Chromosome Research, 13, 617–25.Google Scholar
Zima, J., Fedyk, S., Fredga, K., et al. (1996). The list of the chromosome races of the common shrew (Sorex araneus). Hereditas, 125, 97107.Google Scholar
Zima, J. and Král, B. (1985). Karyotype variability in Sorex araneus in central Europe (Soricidae, Insectivora). Folia Zoologica, 34, 235–43.Google Scholar
Zima, J., Lukáčová, L., and Macholán, M. (1998). Chromosomal evolution in shrews. In Evolution of Shrews, ed. Wójcik, J. M. and Wolsan, M.. Białowieża, Poland: Mammal Research Institute, pp. 175218.Google Scholar
Zima, J., Searle, J. B., and Macholán, M. (eds) (1994). The cytogenetics of the Sorex araneus group and related topics. Proceedings of the ISACC’s Third International Meeting, Brno and Dolní Věstonice, 13–17 September, 1993. Folia Zoologica, 43 (Suppl. 1), 1116.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×