Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T14:29:07.718Z Has data issue: false hasContentIssue false

4 - Phylogeography

Published online by Cambridge University Press:  01 March 2019

Jeremy B. Searle
Affiliation:
Cornell University, New York
P. David Polly
Affiliation:
Indiana University
Jan Zima
Affiliation:
Academy of Sciences of the Czech Republic, Prague
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alves, P. C., Melo-Ferreira, J., Freitas, H., and Boursot, P. (2008). The ubiquitous mountain hare mitochondria: multiple introgressive hybridization in hares, genus Lepus. Philosophical Transactions of the Royal Society B, 363, 2831–9.Google Scholar
Andersson, A.-C., Alstrom-Rapaport, C., and Fredga, K. (2005). Lack of mitochondrial DNA divergence between chromosome races of the common shrew, Sorex araneus, in Sweden. Implications for interpreting chromosomal evolution and colonization history. Molecular Ecology, 14, 2703–16.CrossRefGoogle ScholarPubMed
Avise, J. C. (2000). Phylogeography: the History and Formation of Species. Cambridge, MA: Harvard University Press.Google Scholar
Avise, J. C. (2009). Phylogeography: retrospect and prospect. Journal of Biogeography, 36, 315.Google Scholar
Bannikova, A. A., Dokuchaev, E. N., Yudina, E. V., et al. (2010). Holarctic phylogeography of the tundra shrew (Sorex tundrensis) based on mitochondrial genes. Biological Journal of the Linnean Society, 101, 721–46.Google Scholar
Barnes, I., Matheus, P., Shapiro, B., Jensen, D., and Cooper, A. (2002). Dynamics of Pleistocene population extinctions in Beringian brown bears. Science, 295, 2267–70.Google Scholar
Beheregaray, L. B. (2008). Twenty years of phylogeography: the state of the field and the challenges for the Southern Hemisphere. Molecular Ecology, 17, 3754–74.Google Scholar
Bilton, D. T., Mirol, P. M., Mascheretti, S., et al. (1998). Mediterranean Europe as an area of endemism for small mammals rather than a source for northwards postglacial colonization. Proceedings of the Royal Society of London B, 265, 1219–26.Google Scholar
Brito, P. H. and Edwards, S. V. (2009). Multilocus phylogeography and phylogenetics using sequence-based markers. Genetica, 135, 439–55.Google Scholar
Brown, W. M., George, M., and Wilson, A. C. (1979). Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences USA, 76, 1967–71.Google Scholar
Brunhoff, C., Galbreath, K. E., Fedorov, V. B., Cook, J. A., and Jaarola, M. (2003). Holarctic phylogeography of the root vole (Microtus oeconomus): implications for late Quaternary biogeography of high latitudes. Molecular Ecology, 12, 957–68.Google Scholar
Chen, S. D., Sun, Z. Y., He, K., et al. (2015). Molecular phylogenetics and phylogeographic structure of Sorex bedfordiae based on mitochondrial and nuclear DNA sequences. Molecular Phylogenetics and Evolution, 84, 245–53.Google Scholar
Dubey, S., Michaux, J., Brünner, H., Hutterer, R., and Vogel, P. (2009). False phylogenies on wood mice due to cryptic cytochrome-b pseudogene. Molecular Phylogenetics and Evolution, 50, 633–41.Google Scholar
Grigoryeva, O. O., Borisov, Y. M., Stakheev, V. V. et al. (2015). Genetic structure of the common shrew Sorex araneus L. 1758 (Mammalia, Lipotyphla) in continuous and fragmented areas. Russian Journal of Genetics, 51, 607–18.CrossRefGoogle ScholarPubMed
Handwerk, J. ( 1987 ). Neue Daten zur Morphologie, Verbreitung und Ökologie der Spitzmäuse Sorex araneus und S. coronatus im Rheinland. Bonner zoologische Beiträge, 38, 273–97.Google Scholar
Harris, S. and Yalden, D. W. (eds) (2008). Mammals of the British Isles: Handbook, 4th edn. Southampton: Mammal Society.Google Scholar
Haynes, S. (2000). The History of Wild and Domesticated Vertebrates Deduced from Modern and Ancient DNA Sequences. DPhil dissertation, University of York.Google Scholar
Henn, B. M., Gignoux, C. R., Feldman, M. W., and Mountain, J. L. (2009). Characterizing the time dependency of human mitochondrial DNA mutation rate estimates. Molecular Biology and Evolution, 26, 217–30.Google Scholar
Herman, J. S. and Searle, J. B. (2011). Post-glacial partitioning of mitochondrial genetic variation in the field vole. Proceedings of the Royal Society B, 278, 3601–7.Google ScholarPubMed
Hewitt, G. (2000). The genetic legacy of the Quaternary ice ages. Nature, 405, 907–13.Google Scholar
Hickerson, M. J., Carstens, B. C., Cavender-Bares, J., et al. (2010). Phylogeography’s past, present, and future: 10 years after Avise, 2000. Molecular Phylogenetics and Evolution, 54, 291301.Google Scholar
Ho, S. Y. W. (2007). Calibrating molecular estimates of substitution rates and divergence times in birds. Journal of Avian Biology, 38, 409–14.CrossRefGoogle Scholar
Ho, S. Y. W., Lanfear, R., Bromham, L., et al. (2011). Time-dependent rates of molecular evolution. Molecular Ecology, 20, 3087–101.Google Scholar
Ho, S. Y. W., Phillips, M. J., Cooper, A., and Drummond, A. J. (2005). Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Molecular Biology and Evolution, 22, 1561–8.Google Scholar
Ho, S. Y. W., Saarma, U., Barnett, R., Haile, J., and Shapiro, B. (2008). The effect of inappropriate calibration: three case studies in molecular ecology. PLoS One, 3, e1615.Google Scholar
Hope, A. G., Waltari, E., Dokuchaev, N. E., et al. (2010). High-latitude diversification within Eurasian least shrews and Alaska tiny shrews (Soricidae). Journal of Mammalogy, 91, 1041–57.Google Scholar
Hope, A. G., Waltari, E., Fedorov, V. B., et al. (2011). Persistence and diversification of the Holartic shrew Sorex tundrensis (Family Soricidae), in response to climate change. Molecular Ecology, 20, 4346–70.Google Scholar
Jaarola, M. and Searle, J. B. (2002). Phylogeography of field voles (Microtus agrestis) in Eurasia inferred from mitochondrial DNA sequences. Molecular Ecology, 11, 2613–21.Google Scholar
Jaarola, M. and Tegelström, H. (1995). Colonization history of north European field voles (Microtus agrestis) revealed by mitochondrial DNA. Molecular Ecology, 4, 299310.Google Scholar
Jaarola, M., Tegelström, H., and Fredga, K. (1999). Colonization history in Fennoscandian rodents. Biological Journal of the Linnean Society, 68, 113–27.Google Scholar
Kotlík, P., Deffontaine, V., Mascheretti, S., et al. (2006). A northern glacial refugium for bank voles (Clethrionomys glareolus). Proceedings of the National Academy of Sciences USA, 103, 14860–4.Google Scholar
Lambeck, K. (1995). Late Devensian and Holocene shorelines of the British Isles and North Sea from models of glacio-hydro-isostatic rebound. Journal of the Geological Society of London, 152, 437–48.CrossRefGoogle Scholar
Lagerholm, V. K., Sandoval-Castellanos, E., Ehrich, D., et al. (2014). On the origin of the Norwegian lemming. Molecular Ecology, 23, 2060–71.Google Scholar
Lundqvist, A.-C., Alström-Rapaport, C., and Tegelström, H. (2011). Fennoscandian phylogeography of the common shrew Sorex araneus. Post-glacial recolonisation combining information from chromosomal variation with mitochondrial DNA data. Acta Theriologica, 56, 103–16.Google Scholar
McDevitt, A. D., Montgomery, W. I., Tosh, D. G., et al. (2014). Invading and expanding: range dynamics and ecological consequences of the greater white-toothed shrew (Crocidura russula) invasion in Ireland. PLoS One, 9, e100403.Google Scholar
McDevitt, A. D., Vega, R., Rambau, R. V., et al. (2011). Colonization of Ireland: revisiting ‘the pygmy shrew syndrome’ using mitochondrial, Y chromosomal and microsatellite markers. Heredity, 107, 548–57.Google Scholar
Mackiewicz, P., Moska, M., Wierzbicki, H., Gagat, P., and Mackiewicz, D. (2017). Evolutionary history and phylogeographic relationships of shrews from Sorex araneus group. PLoS One, 12, e0179760.Google Scholar
Martínková, N., Barnett, R., Cucchi, T., et al. (2013). Divergent evolutionary processes associated with colonization of offshore islands. Molecular Ecology, 22, 5205–20.Google Scholar
Mitchell-Jones, A.J., Amori, G., Bogdanowicz, W., et al. (1999). The Atlas of European Mammals. London: Poyser.Google Scholar
Moska, M., Wierzbicki, H., Strzala, T., Mucha, A., and Dobosz, T. (2012). Genetic structure of the common shrew, Sorex araneus (Soricomorpha: Soricidae) in the Polish Sudetes may suggest ways of northward colonization. Hereditas, 149, 197206.Google Scholar
Neet, C. and Hausser, J. (1990). Habitat selection in zones of parapatric contact between the common shrew Sorex araneus and Millet’s shrew S. coronatus. Journal of Animal Ecology, 59, 235–50.Google Scholar
Ochocińska, D. and Taylor, J. R. E. (2003). Bergmann’s rule in shrews: geographical variation of body size in Palearctic Sorex species. Biological Journal of the Linnean Society, 78, 365–81.Google Scholar
Ohdachi, S., Dokuchaev, N.E., Hasegawa, M., and Masuda, R. (2001). Intraspecific phylogeny and geographical variation of six species of northeastern Asiatic Sorex shrews based on the mitochondrial cytochrome b sequences. Molecular Ecology, 10, 2199–213.CrossRefGoogle ScholarPubMed
Ohdachi, S. D., Yoshizawa, K., Hanski, I., et al. (2012). Intraspecific phylogeny and nucleotide diversity of the least shrews, the Sorex minutissimus-S. yukonicus complex, based on nucleotide sequences of the mitochondrial cytochrome b gene and the control region. Mammal Study, 37, 281–97.Google Scholar
Parducci, L., Jørgensen, T., Tollefsrud, M. M., et al. (2012). Glacial survival of boreal trees in northern Scandinavia. Science, 335, 1083–6.Google Scholar
Paupério, J., Herman, J. S., Melo-Ferreira, J., et al. (2012). Cryptic speciation in the field vole: a multilocus approach confirms three highly divergent lineages in Eurasia. Molecular Ecology, 21, 6015–32.Google Scholar
Prost, S., Klietmann, J., van Kolfschoten, T., et al. (2013). Effects of late Quaternary climate change on Palearctic shrews. Global Change Biology, 19, 1865–74.Google Scholar
Randi, E. (2007). Phylogeography of south European mammals. In Phylogeography of Southern European Refugia, ed. Weiss, S. and Ferrand, N.. Dordrecht: Springer, pp. 101–26.Google Scholar
Raspopova, A. A. and Shchipanov, N. A. (2011). Variability of a cytochrome b region in different chromosome races and populations of the common shrew Sorex araneus L., 1758. Russian Journal of Genetics, 47, 462–70.Google Scholar
Ratkiewicz, M., Fedyk, S., Banaszek, A., et al. (2002). The evolutionary history of the two karyotypic groups of the common shrew, Sorex araneus, in Poland. Heredity, 88, 235–42.Google Scholar
Rogers, A. R. and Harpending, H. (1992). Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution, 9, 552–69.Google Scholar
Ruiz-Gonzalez, A., Madeira, M. J., Randi, E., et al. (2013). Phylogeography of the forest-dwelling European pine marten (Martes martes): new insights into cryptic northern glacial refugia. Biological Journal of the Linnean Society, 109, 118.Google Scholar
Schmitt, T. and Varga, Z. (2012). Extra-Mediterranean refugia: the rule and not the exception? Frontiers in Zoology, 9, 22.Google Scholar
Searle, J. B. (1984). Three new karyotypic races of the common shrew Sorex araneus (Mammalia: Insectivora) and a phylogeny. Systematic Zoology, 33, 184–94.Google Scholar
Searle, J. B., Kotlík, P., Rambau, R. V., et al. (2009). The Celtic fringe of Britain: insights from small mammal phylogeography. Proceedings of the Royal Society B, 276, 4287–94.Google Scholar
Starcová, M., Vohralík, V., Kryštufek, B., Černá Bolfíková, B., and Hulva, P. (2016). Phylogeography of the Alpine shrew, Sorex alpinus (Soricidae, Mammalia). Folia Zoologica, 65, 107–16.Google Scholar
Steffensen, J. P., Andersen, K. K., Bigler, M., et al. (2008). High-resolution Greenland ice core data show abrupt climate change happens in few years. Science, 321, 680–4.Google Scholar
Stewart, J. R. and Lister, A. M. (2001). Cryptic northern refugia and the origins of modern biota. Trends in Ecology and Evolution, 16, 608–13.Google Scholar
Stewart, J. R., Lister, A. M., Barnes, I., and Dalén, L. (2010). Refugia revisited: individualistic responses of species in space and time. Proceedings of the Royal Society B, 277, 661–71.Google Scholar
Tegelström, H. (1987). Transfer of mitochondrial DNA from the northern red-backed vole (Clethrionomys rutilus) to the bank vole (C. glareolus). Journal of Molecular Evolution, 24, 218–27.CrossRefGoogle Scholar
Vega, R., Fløjgaard, C., Lira-Noriega, A., et al. (2010). Northern glacial refugia for the pygmy shrew Sorex minutus in Europe revealed by phylogeographic analyses and species distribution modelling. Ecography, 33, 260–71.Google Scholar
White, T. A. and Searle, J. B. (2008). The colonization of Scottish islands by the common shrew, Sorex araneus (Eulipotyphla: Soricidae). Biological Journal of the Linnean Society, 94, 797808.CrossRefGoogle Scholar
Yannic, G., Pellissier, L., Dubey, S., et al. (2012). Multiple refugia and barriers explain the phylogeography of the Valais shrew, Sorex antinorii (Mammalia: Soricomorpha). Biological Journal of the Linnean Society, 105, 864–80.Google Scholar
Zink, R. M. and Barrowclough, G. F. (2008). Mitochondrial DNA under siege in avian phylogeography. Molecular Ecology, 17, 2107–21.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×