Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-27T02:07:55.891Z Has data issue: false hasContentIssue false

13 - The neurohaptic control of the hand

Published online by Cambridge University Press:  23 December 2009

Dennis A. Nowak
Affiliation:
Klinik Kipfenberg, Kipfenberg, Germany
Joachim Hermsdörfer
Affiliation:
Technical University of Munich
Get access

Summary

Summary

Our knowledge about an object small enough to be grasped with the hand usually begins first with a visual appreciation of its size and shape. However, in the dark or when searching a deep pocket or purse, vision is impossible. Consequently a haptic exploration procedure is the only course of action and scanning an object's surface with the fingertips provides information about friction, shape, compliance, temperature and friction that is unattainable by visual inspection. This initial information is of particular importance to subsequent object manipulation and dexterous handling. Both exploratory hand movements and object manipulation make efficient use of specialized low-threshold mechanoreceptors in the skin which are selectively sensitive to both normal and tangential (shearing) forces as well as slip on the skin. This cutaneous feedback guides the exploratory movements and provides a signal of when a tactile target is encountered. These primary afferent signals are subsequently transformed by cell assemblies in the somatosensory cortex to generate central representations or internal models of the object's salient physical features. Neuronal signals encoding the internal model of shape, friction and center of mass are then relayed directly by cortico-cortical projections from the somatosensory cortex to motor cortex. The subsequent dexterous object manipulation is driven by anticipatory motor control strategies based on the internal model of the object's features which are used to direct grip forces and finger positions.

Type
Chapter
Information
Sensorimotor Control of Grasping
Physiology and Pathophysiology
, pp. 178 - 192
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Augurelle, A.-S., Smith, A. M., Lejeune, T. & Thonnard, J.-L. (2003). Importance of cutaneous feedback in maintaining the safety margin during the manipulation of hand-held objects. J Neurophysiol, 89, 665–671.CrossRefGoogle ScholarPubMed
Bastian, A. J. & Thach, W. T. (1995). Cerebellar outflow lesions: a comparison of movement deficits resulting from lesions at the levels of the cerebellum and thalamus. Ann Neurol, 38, 881–892.CrossRefGoogle ScholarPubMed
Biggs, J. & Srinivasan, M. A. (2002). Tangential versus normal displacements of skin: Relative effectiveness for producing tactile sensations. 10th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (IEEE Computer Society), 121–128.Google Scholar
Birznieks, I., Jenmalm, P., Goodwin, A. W. & Johansson, R. S. (2001). Encoding of direction of fingertip forces by human tactile afferents. J Neurosci, 21, 8222–8237.CrossRefGoogle ScholarPubMed
Boudreau, M.-J., Brochier, T., Paré, M. & Smith, A. M. (2001). Activity in ventral and dorsal premotor cortex in response to predictable force-pulse perturbations in a precision grip task. J Neurophysiol, 86, 1067–1078.CrossRefGoogle Scholar
Bowden, F. P. & Tabor, D. (1982). Friction. An Introduction to Tribology. Malabar, FL: Robert E. Krieger Publishing Company.Google Scholar
Brochier, T., Boudreau, M.-J., Paré, M. & Smith, A. M. (1999). The effects of muscimol inactivation of small regions of motor and somatosensory cortex on independent finger movements and force control in the precision grip. Exp Brain Res, 128, 31–40.CrossRefGoogle ScholarPubMed
Cadoret, G. & Smith, A. M. (1996). Friction, not texture dictates grip forces during object manipulation. J Neurophysiol, 75, 1963–1969.CrossRefGoogle Scholar
Cadoret, G. & Smith, A. M. (1997). Comparison of the neuronal activity in the SMA and the ventral cingulate cortex during prehension in the monkey. J Neurophysiol, 77, 153–166.CrossRefGoogle ScholarPubMed
DiCarlo, J. J., Johnson, K. O. & Hsiao, S. S. (1998). Structure of receptive fields in area 3b of primary somatosensory cortex in the alert monkey. J Neurosci, 18, 2626–2645.CrossRefGoogle ScholarPubMed
Dum, R. P. & Strick, P. L. (1991). Premotor areas: nodal points for parallel efferent systems involved in the central control of movement. In Humphrey, D. R. & Freund, H.-J. (Eds.), Motor Control: Concepts and Issues (pp. 383–397). Chichester, UK: John Wiley & Sons.Google Scholar
Frysinger, R. C., Bourbonnais, D., Kalaska, J. F. & Smith, A. M. (1984). Cerebellar cortical activity during antagonist co-contraction and reciprocal inhibition of forearm muscles. J Neurophysiol, 51, 32–49.CrossRefGoogle Scholar
Goodwin, A. W. & Wheat, H. E. (2004). Sensory signals in neural populations underlying tactile perception and manipulation. Annu Rev Neurosci, 27, 53–77.CrossRefGoogle ScholarPubMed
Hikosaka, O., Tanaka, M., Sakamoto, M. & Iwamura, Y. (1985). Deficits in manipulative behaviors induced by local injections of muscimol in the first somatosensory cortex of the conscious monkey. Brain Res, 325, 375–380.CrossRefGoogle ScholarPubMed
Iwamura, Y. & Tanaka, M. (1991). Organization of the first somatosensory cortex for manipulation of objects: an analysis of behavioral changes induced by muscimol injection into identified cortical loci of awake monkeys. In Franzen, O. & Westman, J. (Eds.), Information Processing in the Somatosensory System. Wenner-Gren International Symposium Series (pp. 371–380). New York, NY: Stockton Press.CrossRefGoogle Scholar
Johansson, R. S. & Vallbo, A. B. (1979). Detection of tactile stimuli. Thresholds of afferent units related to psychophysical thresholds in the human hand. J Physiol (Lond), 297, 405–422.CrossRefGoogle ScholarPubMed
Johansson, R. S. & Westling, G. (1984). Influences of cutaneous sensory input on the motor coordination during precision manipulation. In Euler, C., Franzen, O., Lindblom, U. & Otteson, D. (Eds.), Somatosensory Mechanisms (pp. 249–260). London: Macmillan Press.Google Scholar
Klatzky, R. L. & Lederman, S. J. (1993). Toward a computational model of constraint-driven exploration and haptic object identification. Perception, 22, 597–621.CrossRefGoogle Scholar
Lawrence, D. G. & Kuypers, H. G. J. M. (1968). The functional organization of the motor system in the monkey. I. The effects of bilateral pyramidal lesions. Brain, 91, 1–14.CrossRefGoogle Scholar
Lederman, S. J. & Klatzky, R. L. (1987). Hand movements: a window into haptic object recognition. Cogn Psychol, 19, 342–368.CrossRefGoogle Scholar
Lederman, S. J. & Klatzky, R. L. (1990). Haptic classification of common objects; knowledge-driven exploration. Cogn Psychol, 22, 421–459.CrossRefGoogle ScholarPubMed
Lederman, S. J. & Klatzky, R. L. (1997). Relative availability of surface and object properties during early haptic processing. J Exp Psychol, 23, 1680–1707.Google ScholarPubMed
Levesque, V. & Hayward, V. (2003). Experimental evidence of lateral skin strain during tactile exploration. Proc Eurohaptics, 2003, 14–24.Google Scholar
Mai, N., Bolsinger, P., Avarello, M., Diener, H. C. & Dichgans, J. (1988). Control of isometric finger force in patients with cerebellar disease. Brain, 111, 973–998.CrossRefGoogle ScholarPubMed
Maier, M. A. & Hepp-Reymond, M.-C. (1995a). EMG activation patterns during force production in precision grip. I. Contribution of 15 finger muscles to isometric force. Exp Brain Res, 103, 108–122.CrossRefGoogle Scholar
Maier, M. A. & Hepp-Reymond, M.-C. (1995b). EMG activation patterns during force production in precision grip. II. Muscular synergies in the spatial and temporal domain. Exp Brain Res, 103, 123–136.CrossRefGoogle ScholarPubMed
Monzée, J., Lamarre, Y. & Smith, A. M. (2003). The effects of digital anesthesia on force control in a precision grip. J Neurophysiol, 89, 672–683.CrossRefGoogle Scholar
Monzée, J., Drew, T. & Smith, A. M. (2004). The effects of muscimol inactivation of the deep cerebellar nuclei on precision grip. J Neurophysiol, 91, 1240–1249.CrossRefGoogle ScholarPubMed
Müller, F. & Dichgans, J. (1994). Dyscoordination of pinch and lift forces during grasp in patients with cerebellar lesions. Exp Brain Res, 101, 485–492.CrossRefGoogle ScholarPubMed
Napier, J. R. (1962). The evolution of the hand. Sci Amer, 207, 56–62.CrossRefGoogle ScholarPubMed
Napier, J. R. (1976). The Human Hand. Burlington, NC: Carolina Biology Readers.Google Scholar
Paré, M., Elde, R., Mazurkiewicz, J. E., Smith, A. M. & Rice, F. L. (2001). The Meissner corpuscle revised: a multi-afferented mechanoreceptor with nociceptor immunochemical properties. J Neurosci, 21, 7236–7246.CrossRefGoogle Scholar
Paré, M., Smith, A. M. & Rice, F. L. (2002a). Distribution and terminal arborizations of cutaneous mechanoreceptors in the glabrous finger pads of the monkey. J Comp Neurol, 445, 347–359.CrossRefGoogle ScholarPubMed
Paré, M., Carnahan, H. & Smith, A. M. (2002b). Magnitude estimation of tangential force applied to the fingerpad. Exp Brain Res, 142, 342–348.Google ScholarPubMed
Phillips, C. G. (1969). The motor apparatus of the baboon's hand. Proc Roy Soc B, 173, 141–174.CrossRefGoogle Scholar
Picard, N. & Smith, A. M. (1992). Primary motor cortical activity related to the weight and texture of grasped objects in the monkey. J Neurophysiol, 68, 1867–1881.CrossRefGoogle ScholarPubMed
Randolph, M. & Semmes, J. (1974). Behavioral consequences of selective subtotal ablation in the postcentral gyrus of Macaca mulatta. Brain Res, 70, 55–70.CrossRefGoogle Scholar
Rathelot, J. A. & Strick, P. L. (2006). Muscle representation in the macaque motor cortex: an anatomical perspective. Proc Natl Acad Sci USA, 103, 8257–8262.CrossRefGoogle Scholar
Salimi, I., Brochier, T. & Smith, A. M. (1999a). Neuronal activity in somatosensory cortex of monkeys using a precision grip. I. Receptive fields, and discharge patterns. J Neurophysiol, 81, 825–834.CrossRefGoogle Scholar
Salimi, I., Brochier, T. & Smith, A. M. (1999b). Neuronal activity in somatosensory cortex of monkeys using a precision grip. III. Responses to altered friction and perturbations. J Neurophysiol, 81, 845–857.CrossRefGoogle ScholarPubMed
Salimi, I., Brochier, T. & Smith, A. M. (1999c). Neuronal activity in somatosensory cortex of monkeys using a precision grip. II.Responses to object textures and weights. J Neurophysiol, 81, 835–844.CrossRefGoogle ScholarPubMed
Smith, A. M. (1981). The coactivation of antagonist muscles. Can J Physiol Pharmacol, 59, 733–747.CrossRefGoogle ScholarPubMed
Smith, A. M. & Scott, S. H. (1996). The subjective scaling of smooth surface friction. J Neurophysiol, 75, 1957–1962.CrossRefGoogle ScholarPubMed
Smith, A. M., Hepp-Reymond, M.-C. & Wyss, U. R. (1975). Relation of activity in precentral cortical neurons to force and rate of force change during isometric contractions of finger muscles. Exp Brain Res, 23, 315–332.CrossRefGoogle ScholarPubMed
Smith, A. M., Cadoret, G. & St-Amour, D. (1997). Scopolamine increases prehensile force during object manipulation by reducing palmar sweating and decreasing skin friction. Exp Brain Res, 114, 578–583.CrossRefGoogle ScholarPubMed
Smith, A. M., Chapman, C. E., Deslandes, M., Langlais, J.-S. & Thibodeau, M.-P. (2002a). Role of friction and tangential forces in the subjective scaling of tactile roughness. Exp Brain Res, 144, 211–223.CrossRefGoogle ScholarPubMed
Smith, A. M., Gosselin, G. & Houde, B. (2002b). Deployment of fingertip forces in tactile exploration. Exp Brain Res, 147, 209–218.CrossRefGoogle ScholarPubMed
Strick, P. L. & Preston, J. B. (1982). Two representations of the hand in area 4 of a primate. II. Somatosensory input organization. J Neurophysiol, 48, 150–159.CrossRefGoogle ScholarPubMed
Wang, Q. & Hayward, V. (2007). In vivo biomechanics of the fingerpad skin under local tangential traction. J Biomech, 40, 851–860.CrossRefGoogle ScholarPubMed
Westling, G. & Johansson, R. S. (1984). Factors influencing the force control during precision grip. Exp Brain Res, 53, 277–284.CrossRefGoogle ScholarPubMed
Wetts, R., Kalaska, J. F. & Smith, A. M. (1985). Cerebellar nuclear cell activity during antagonist cocontraction and reciprocal inhibition of forearm muscles. J Neurophysiol, 54, 231–244.CrossRefGoogle ScholarPubMed
Yoshioka, T., Gibb, B., Dorsch, A. K., Hsiao, S. S. & Johnson, K. O. (2001). Neural coding mechanisms underlying perceived roughness of finely textured surfaces. J Neurosci, 21, 6905–6916.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×