Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-11T20:21:55.084Z Has data issue: false hasContentIssue false

15 - Two hands in object-oriented action

Published online by Cambridge University Press:  23 December 2009

Dennis A. Nowak
Affiliation:
Klinik Kipfenberg, Kipfenberg, Germany
Joachim Hermsdörfer
Affiliation:
Technical University of Munich
Get access

Summary

Summary

This chapter examines object-oriented bimanual coordination and reviews studies which have furthered our understanding of how the central nervous system coordinates the movement of the two hands. Each section deals with different aspects of bimanual coordination and the relevant underpinning neurobiology. First, we describe how bimanual behavior is inherently constrained by the sensorimotor system which preferentially processes and executes symmetrical movements. Second, we discuss how the dynamics of the two hands are integrated to maintain the equilibrium of bimanual performance using anticipatory mechanisms. The third section deals with handedness and how the inherent laterality of our motor system influences bimanual behavior. In the final section, we show how some of the lateral preferences may be over-ridden according to the demands of certain tasks.

Introduction

One hand affords reaching, grasping and manipulation of objects of various shapes and sizes. However, two hands dramatically increase the capacity and range of human dexterity to include larger, heavier objects and to permit greater relative motions of manipulated parts. To achieve coordinated bimanual actions, the kinematics and dynamics of each hand need to be temporally and spatially orchestrated. We consider a number of bimanual manipulative tasks, both in terms of behavioral control issues and also in terms of the underlying neuroanatomy and physiology. A key issue in object manipulation is the use of an appropriate grip force (GF) to maintain stability of the grasped object. Prior to considering bimanual coordination of grasping, we briefly review relevant work on unimanual manipulation of objects.

Type
Chapter
Information
Sensorimotor Control of Grasping
Physiology and Pathophysiology
, pp. 204 - 218
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, G. E., Crutcher, M. D. & Delong, M. R. (1990). Basal ganglia-thalamocortical circuits – parallel substrates for motor, oculomotor, prefrontal and limbic functions. Progr Brain Res, 85, 119–146.CrossRefGoogle ScholarPubMed
Amunts, K., Jancke, L., Mohlberg, H., Steinmetz, H. & Zilles, K. (2000). Interhemispheric asymmetry of the human motor cortex related to handedness and gender. Neuropsychologia, 38, 304–312.CrossRefGoogle ScholarPubMed
Bracewell, R. M., Wing, A. M., Soper, H. M. & Clark, K. G. (2003). Predictive and reactive co-ordination of grip and load forces in bimanual lifting in man. Eur J Neurosci, 18, 2396–2402.CrossRefGoogle ScholarPubMed
Brinkman, C. (1981). Lesions in supplementary motor area interfere with a monkey's performance of a bimanual coordination task. Neurosci Lett, 27, 267–270.CrossRefGoogle ScholarPubMed
Brown, R. G., Jahanshahi, M. & Marsden, C. D. (1993). The execution of bimanual movements in patients with Parkinson, Huntington and cerebellar disease. J Neurol Neurosurg Psychiatry, 56, 295–297.CrossRefGoogle ScholarPubMed
Castiello, U., Bennett, K. M. B. & Stelmach, G. E. (1993). The bilateral reach to grasp movement. Behav Brain Res, 56, 43–57.CrossRefGoogle ScholarPubMed
Cincotta, M., Borgheresi, A., Balestrieri, F.et al. (2006). Mechanisms underlying mirror movements in Parkinson's disease: a transcranial magnetic stimulation study. Mov Disord, 21, 1019–1025.CrossRefGoogle ScholarPubMed
Daffertshofer, A., Peper, C. E. & Beek, P. J. (2005). Stabilization of bimanual coordination due to active interhemispheric inhibition: a dynamical account. Biol Cybern, 92, 101–109.CrossRefGoogle ScholarPubMed
Davare, M., Duque, J., Vandermeeren, Y., Thonnard, J. L. & Olivier, E. (2007). Role of the ipsilateral primary motor cortex in controlling the timing of hand muscle recruitment. Cerebr Cortex, 17, 353–362.CrossRefGoogle ScholarPubMed
Freitas, P. B., Krishnan, V. & Jaric, S. (2007a). Force coordination in static manipulation tasks: effects of the change in direction and handedness. Exp Brain Res, 183, 487–497.CrossRefGoogle ScholarPubMed
Freitas, P. B., Krishnan, V. & Jaric, S. (2007b). Elaborate force coordination of precision grip could be generalized to bimanual grasping techniques. Neurosci Lett, 412, 179–184.CrossRefGoogle ScholarPubMed
Diedrichsen, J., Verstynen, T., Hon, A., Lehman, S. L. & Ivry, R. B. (2003). Anticipatory adjustments in the unloading task: is an efference copy necessary for learning?Exp Brain Res, 148, 272–276.CrossRefGoogle ScholarPubMed
Diedrichsen, J., Verstynen, T., Lehman, S. L. & Ivry, R. B. (2005). Cerebellar involvement in anticipating the consequences of self-produced actions during bimanual movements. J Neurophysiol, 93, 801–812.CrossRefGoogle ScholarPubMed
Dohle, C., Ostermann, G., Hefter, H. & Freund, H. J. (2000). Different coupling for the reach and grasp components in bimanual prehension movements. Neuroreport, 11, 3787–3791.CrossRefGoogle ScholarPubMed
Dufosse, M., Hugon, M. & Massion, J. (1985). Postural forearm changes induced by predictable in time or voluntary triggered unloading in man. Exp Brain Res, 60, 330–334.CrossRefGoogle ScholarPubMed
Duque, J., Mazzocchio, R., Dambrosia, J.et al. (2005). Kinematically specific interhemispheric inhibition operating in the process of generation of a voluntary movement. Cerebr Cortex, 15, 588–593.CrossRefGoogle ScholarPubMed
Eliassen, J. C., Baynes, K. & Gazzaniga, M. S. (1999). Direction information coordinated via the posterior third of the corpus callosum during bimanual movements. Exp Brain Res, 128, 573–577.CrossRefGoogle ScholarPubMed
Ferrand, L. & Jaric, S. (2006). Force coordination in static bimanual manipulation: effect of handedness. Motor Control, 10, 359–370.CrossRefGoogle ScholarPubMed
Flanagan, J. R. & Wing, A. M. (1997). The role of internal models in motion planning and control: evidence from grip force adjustments during movements of hand-held loads. J Neurosci, 17, 1519–1528.CrossRefGoogle ScholarPubMed
Flanagan, J. R., Burstedt, M. K. O. & Johansson, R. S. (1999). Control of fingertip forces in multidigit manipulation. J Neurophysiol, 81, 1706–1717.CrossRefGoogle ScholarPubMed
Franz, E. A. & Fahey, S. (2007). Developmental change in interhemispheric communication – evidence from bimanual cost. Psychol Sci, 18, 1030–1031.CrossRefGoogle ScholarPubMed
Franz, E. A., Eliassen, J. C., Ivry, R. B. & Gazzaniga, M. S. (1996). Dissociation of spatial and temporal coupling in the bimanual movements of callosotomy patients. Psychol Sci, 7, 306–310.CrossRefGoogle Scholar
Franz, E. A., Waldie, K. E. & Smith, M. J. (2000). The effect of callosotomy on novel versus familiar bimanual actions: a neural dissociation between controlled and automatic processes?Psychol Sci, 11, 82–85.CrossRefGoogle ScholarPubMed
Gahery, Y. & Massion, J. (1981). Coordination between posture and movement. Trends Neurosci, 4, 199–202.CrossRefGoogle Scholar
Gould, H. J., Cusick, C. G., Pons, T. P. & Kaas, J. H. (1986). The relationship of corpus-callosum connections to electrical-stimulation maps of motor, supplementary motor, and the frontal eye fields in owl monkeys. J Comp Neurol, 247, 297–325.CrossRefGoogle ScholarPubMed
Grafton, S. T., Hazeltine, E. & Ivry, R. B. (2002). Motor sequence learning with the nondominant left hand – a PET functional imaging study. Exp Brain Res, 146, 369–378.CrossRefGoogle Scholar
Guiard, Y. (1987). Asymmetric division of labor in human skilled bimanual action – the kinematic chain as a model. J Motor Behav, 19, 486–517.CrossRefGoogle Scholar
Haaland, K. Y., Elsinger, C. L., Mayer, A. R., Durgerian, S. & Rao, S. M. (2004). Motor sequence complexity and performing hand produce differential patterns of hemispheric lateralization. J Cogn Neurosci, 16, 621–636.CrossRefGoogle ScholarPubMed
Heuer, H. (2007). Control of the dominant and nondominant hand: exploitation and taming of nonmuscular forces. Exp Brain Res, 178, 363–373.CrossRefGoogle ScholarPubMed
Heuer, H., Spijkers, W., Steglich, C. & Kleinsorge, T. (2002). Parametric coupling and generalized decoupling revealed by concurrent and successive isometric contractions of distal muscles. Acta Psychologica, 111, 205–242.CrossRefGoogle ScholarPubMed
Hugon, M., Massion, J. & Wiesendanger, M. (1982). Anticipatory postural changes induced by active unloading and comparison with passive unloading in man. Pflugers Archiv-Eur J Physiol, 393, 292–296.CrossRefGoogle ScholarPubMed
Iyengar, V., Santos, M. J. & Aruin, A. S. (2007). Does the location of the touch from the contralateral finger application affect grip force control while lifting an object?Neurosci Lett, 425, 151–155.CrossRefGoogle ScholarPubMed
Jancke, L., Peters, M., Himelbach, M.et al. (2000). fMRI study of bimanual coordination. Neuropsychologia, 38, 164–174.CrossRefGoogle ScholarPubMed
Jeannerod, M. (1981). Intersegmental coordination during reaching at natural visual objects. In Long, J. & Baddeley, A. (Eds.), Attention and Performance IX (pp. 153–168). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Johansen-Berg, H., Della-Maggiore, V., Behrens, T. E. J., Smith, S. M. & Paus, T. (2007). Integrity of white matter in the corpus callosum correlates with bimanual co-ordination skills. Neuroimage, 36, T16–T21.CrossRefGoogle ScholarPubMed
Johansson, R. S. & Westling, G. (1984). Roles of glabrous skin receptors and sensorimotor memory in automatic-control of precision grip when lifting rougher or more slippery objects. Exp Brain Res, 56, 550–564.CrossRefGoogle ScholarPubMed
Johansson, R. S. & Cole, K. J. (1992). Sensory-motor coordination during grasping and manipulative actions. Curr Opin Neurobiol, 2, 815–823.CrossRefGoogle ScholarPubMed
Johansson, R. S., Theorin, A., Westling, G.et al. (2006). How a lateralized brain supports symmetrical bimanual tasks. PLoS Biol, 4, 1025–1034.CrossRefGoogle ScholarPubMed
Kazennikov, O. V. & Wiesendanger, M. (2005). Goal synchronization of bimanual skills depends on proprioception. Neurosci Lett, 388, 153–156.CrossRefGoogle ScholarPubMed
Kraft, E., Chen, A. W., Flaherty, A. W.et al. (2007). The role of the basal ganglia in bimanual coordination. Brain Res, 1151, 62–73.CrossRefGoogle ScholarPubMed
Lum, P. S., Reinkensmeyer, D. J., Lehman, S. L., Li, P. Y. & Stark, L. W. (1992). Feedforward stabilization in a bimanual unloading task. Exp Brain Res, 89, 172–180.CrossRefGoogle Scholar
Macneilage, P. F., Studdertkennedy, M. G. & Lindblom, B. (1987). Primate handedness reconsidered. Behav Brain Sci, 10, 247–263.CrossRefGoogle Scholar
Marteniuk, R. G., MacKenzie, C. L. & Baba, D. M. (1984). Bimanual movement control – information-processing and interaction effects. Q J Exp Psychol A, 36, 335–365.CrossRefGoogle Scholar
Massion, J. (1992). Movement, posture and equilibrium – interaction and coordination. Progr Neurobiol, 38, 35–56.CrossRefGoogle ScholarPubMed
Muetzel, R. L., Collins, P. F., Mueller, B. A.et al. (2008). The development of corpus callosum microstructure and associations with bimanual task performance in healthy adolescents. Neuroimage, 39, 1918–1925.CrossRefGoogle ScholarPubMed
Nathan, P. W., Smith, M. C. & Deacon, P. (1990). The corticospinal tracts in man – course and location of fibers at different segmental levels. Brain, 113, 303–324.CrossRefGoogle ScholarPubMed
Newman-Norlund, R. D., Schie, H. T., Zuijlen, A. M. J. & Bekkering, H. (2007). The mirror neuron system is more active during complementary compared with imitative action. Nat Neurosci, 10, 817–818.CrossRefGoogle ScholarPubMed
Nozaki, D., Kurtzer, I. & Scott, S. H. (2006). Limited transfer of learning between unimanual and bimanual skills within the same limb. Nat Neurosci, 9, 1364–1366.CrossRefGoogle ScholarPubMed
Ohki, Y. & Johansson, R. S. (2000). Reactive finger responses are influenced by grasp motor set prepared for objects' behaviour. Eur J Neurosci, 12, 197.Google Scholar
Ohki, Y., Edin, B. B. & Johansson, R. S. (2002). Predictions specify reactive control of individual digits in manipulation. J Neurosci, 22, 600–610.CrossRefGoogle ScholarPubMed
Perrig, S., Kazennikov, O. & Wiesendanger, M. (1999). Time structure of a goal-directed bimanual skill and its dependence on task constraints. Behav Brain Res, 103, 95–104.CrossRefGoogle ScholarPubMed
Reed, K., Peshkin, M., Hartmann, M. J.et al. (2006). Haptically linked dyads – are two motor-control systems better than one?Psychol Sci, 17, 365–366.CrossRefGoogle ScholarPubMed
Rinkenauer, G., Ulrich, R. & Wing, A. M. (2001). Brief bimanual force pulses: correlations between the hands in force and time. J Exp Psychol Hum Percept Perform, 27, 1485–1497.CrossRefGoogle Scholar
Rizzolatti, G., Fogassi, L. & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci, 2, 661–670.CrossRefGoogle Scholar
Rouiller, E. M., Babalian, A., Kazennikov, O.et al. (1994). Transcallosal connections of the distal forelimb representations of the primary and supplementary motor cortical areas in macaque monkeys. Exp Brain Res, 102, 227–243.CrossRefGoogle ScholarPubMed
Sabatini, U., Boulanouar, K., Fabre, N.et al. (2000). Cortical motor reorganization in akinetic patients with Parkinson's disease – a functional MRI study. Brain, 123, 394–403.CrossRefGoogle ScholarPubMed
Sainburg, R. L. (2005). Handedness: differential specializations for control of trajectory and position. Exercise Sport Sci Rev, 33, 206–213.CrossRefGoogle Scholar
Schmidt, R. A. (1975). Schema theory of discrete motor skill learning. Psychol Rev, 82, 225–260.CrossRefGoogle Scholar
Scholz, J. P. & Latash, M. L. (1998). A study of a bimanual synergy associated with holding an object. Hum Move Sci, 17, 753–779.CrossRefGoogle Scholar
Schulze, K., Luders, E. & Jancke, L. (2002). Intermanual transfer in a simple motor task. Cortex, 38, 805–815.CrossRefGoogle Scholar
Serrien, D. J. (2008). Coordination constraints during bimanual versus unimanual performance conditions. Neuropsychologia, 46, 419–425.CrossRefGoogle ScholarPubMed
Serrien, D. J. & Wiesendanger, M. (2000). Temporal control of a bimanual task in patients with cerebellar dysfunction. Neuropsychologia, 38, 558–565.CrossRefGoogle ScholarPubMed
Serrien, D. J., Strens, L. H. A., Oliviero, A. & Brown, P. (2002). Repetitive transcranial magnetic stimulation of the supplementary motor area (SMA) degrades bimanual movement control in humans. Neurosci Lett, 328, 89–92.CrossRefGoogle ScholarPubMed
Serrien, D. J., Ivry, R. B. & Swinnen, S. P. (2006). Dynamics of hemispheric specialization and integration in the context of motor control. Nat Rev Neurosci, 7, 160–167.CrossRefGoogle ScholarPubMed
Shibata, H., Suzuki, M. & Gyoba, J. (2007). Cortical activity during the recognition of cooperative actions. Neuroreport, 18, 697–701.CrossRefGoogle ScholarPubMed
Spijkers, W., Tachmatzidis, K., Debus, G., Fischer, M. & Kausche, I. (1994). Temporal coordination of alternative and simultaneous aiming movements of constrained timing structure. Psychol Res Psychologische Forsch, 57, 20–29.CrossRefGoogle ScholarPubMed
Swinnen, S. P. (2002). Intermanual coordination: from behavioural principles to neural-network interactions. Nat Rev Neurosci, 3, 350–361.CrossRefGoogle ScholarPubMed
Swinnen, S. P., Young, D. E., Walter, C. B. & Serrien, D. J. (1991). Control of asymmetrical bimanual movements. Exp Brain Res, 85, 163–173.CrossRefGoogle ScholarPubMed
Theorin, A. & Johansson, R. S. (2007). Zones of bimanual and unimanual preference within human primary sensorimotor cortex during object manipulation. Neuroimage, 36, T2–T15.CrossRefGoogle ScholarPubMed
Ullen, F., Forssberg, H. & Ehrsson, H. H. (2003). Neural networks for the coordination of the hands in time. J Neurophysiol, 89, 1126–1135.CrossRefGoogle ScholarPubMed
Wassermann, E. M., Pascualleone, A. & Hallett, M. (1994). Cortical motor representation of the ipsilateral hand and arm. Exp Brain Res, 100, 121–132.CrossRefGoogle Scholar
Weiss, P. H., Jeannerod, M., Paulignan, Y. & Freund, H. J. (2000). Is the organisation of goal-directed action modality specific? A common temporal structure. Neuropsychologia, 38, 1136–1147.CrossRefGoogle ScholarPubMed
Wiesendanger, M. & Serrien, D. J. (2004). The quest to understand bimanual coordination. Brain Mech Integr Posture Move, 143, 491–505.CrossRefGoogle ScholarPubMed
Witney, A. G., Goodbody, S. J. & Wolpert, D. M. (2000). Learning and decay of prediction in object manipulation. J Neurophysiol, 84, 334–343.CrossRefGoogle ScholarPubMed
Wolpert, D. M., Miall, R. C. & Kawato, M. (1998). Internal models in the cerebellum. Trends Cogn Sci, 2, 338–347.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×