Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T00:48:52.919Z Has data issue: false hasContentIssue false

16 - Dynamic grasp control during gait

Published online by Cambridge University Press:  23 December 2009

Dennis A. Nowak
Affiliation:
Klinik Kipfenberg, Kipfenberg, Germany
Joachim Hermsdörfer
Affiliation:
Technical University of Munich
Get access

Summary

Summary

When transporting an object during locomotion, the inertial forces that are indirectly generated through the motion of multiple body parts must be taken into account to prevent object slippage. The grip–inertial force coupling that maintains a secure grasp on a hand-held object is preserved across a variety of locomotor tasks that include variations in velocity and precision demands (e.g. transporting a cup of water). When the locomotor pattern is altered by changing the step length or stepping over an obstacle, the grip–inertial force coupling continues to be under anticipatory control. However, the coupling is less robust and can be explained by increased attention demands. Furthermore, the fine motor grasping functions and gross motor locomotor functions are precisely coordinated across multiple limb segments to ensure successful performance right from the onset of gait initiation. These findings support the notion that grip force is based on moment-to-moment predictions of inertial forces acting on the object at gait initiation and throughout predictable variations in the gait cycle. Internal representations of the interactions between body segments through which inertia is transferred to the object–digit interface are proposed to provide the basis for this anticipatory grip force control.

Introduction

A central question in the study of systems motor control is how simultaneous tasks involving multiple body segments are coordinated. For example, during voluntary movements with a hand-held object, grip (normal) force is coupled to the object's load as well as to the motion-induced inertial (tangential) force in an anticipatory manner to prevent slippage.

Type
Chapter
Information
Sensorimotor Control of Grasping
Physiology and Pathophysiology
, pp. 219 - 234
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, R. A. & Buneo, C. A. (2002). Intentional maps in posterior parietal cortex. Annu Rev Neurosci, 25, 189–220.CrossRefGoogle ScholarPubMed
Babin-Ratté, S., Sirigu, A., Gilles, M. & Wing, A. (1999). Impaired anticipatory finger grip-force adjustments in a case of cerebellar degeneration. Exp Brain Res, 128, 81–85.CrossRefGoogle Scholar
Baltadjieva, R., Giladi, N., Gruendlinger, L., Peretz, C. & Hausdorff, J. M. (2006). Marked alterations in the gait timing and rhythmicity of patients with de novo Parkinson's disease. Eur J Neurosci, 24, 1815–1820.CrossRefGoogle ScholarPubMed
Blakemore, S. J., Goodbody, S. J. & Wolpert, D. M. (1998). Predicting the consequences of our own actions: the role of sensorimotor context estimation. J Neurosci, 18, 7511–7518.CrossRefGoogle ScholarPubMed
Boecker, H., Lee, A., Mühlau, M.et al. (2005). Force level independent representations of predictive grip force-load force coupling: a PET activation study. Neuroimage, 25, 243–252.CrossRefGoogle ScholarPubMed
Brunt, D., Lafferty, M. J., McKeon, A.et al. (1991). Invariant characteristics of gait initiation. Am J Phys Med Rehabil, 70, 206–212.CrossRefGoogle ScholarPubMed
Brunt, D., Liu, S. M., Trimble, M., Bauer, J. & Short, M. (1999). Principles underlying the organization of movement initiation from quiet stance. Gait Posture, 10, 121–128.CrossRefGoogle ScholarPubMed
Brunt, D., Santos, V., Kim, H. D., Light, K. & Levy, C. (2005). Initiation of movement from quiet stance: comparison of gait and stepping in elderly subjects of different levels of functional ability. Gait Posture, 21, 297–302.CrossRefGoogle ScholarPubMed
Chen, H. C., Schultz, A. B., Ashton-Miller, J. A. (1996). Stepping over obstacles: dividing attention impairs performance of old more than young adults. J Gerontol A Biol Sci Med Sci, 51, M116–M122.CrossRefGoogle ScholarPubMed
Cole, K. J. & Abbs, J. H. (1988). Grip force adjustments evoked by load force perturbations of a grasped object. J Neurophysiol, 60, 1513–1522.CrossRefGoogle ScholarPubMed
Delevoye-Turrell, Y. N., Li, F. X. & Wing, A. M. (2003). Efficiency of grip force adjustments for impulsive loading during imposed and actively produced collisions. Q J Exp Psychol A, 56, 1113–1128.CrossRefGoogle ScholarPubMed
Desmurget, M., Epstein, C. M., Turner, R. S.et al. (1999). Role of the posterior parietal cortex in updating reaching movements to a visual target. Nat Neurosci, 2, 563–567.CrossRefGoogle ScholarPubMed
Di Fabio, R. P., Greany, J. F. & Zampieri, C. (2003a). Saccade-stepping interactions revise the motor plan for obstacle avoidance. J Motor Behav, 35, 383–397.CrossRefGoogle ScholarPubMed
Di Fabio, R. P., Zampieri, C. & Greany, J. F. (2003b). Aging and saccade-stepping interactions in humans. Neurosci Lett, 339, 179–182.CrossRefGoogle ScholarPubMed
Diermayr, G., Gysin, P., Hass, C. J. & Gordon, A. M. (2008). Grip force control during gait initiation with a hand-held object. Exp Brain Res, 190, 337–345.CrossRefGoogle ScholarPubMed
Elble, R. J., Moody, C., Leffler, K. & Sinha, R. (1994). The initiation of normal walking. Mov Disord, 9, 139–146.CrossRefGoogle ScholarPubMed
Flanagan, J. R. & Wing, A. M. (1993). Modulation of grip force with load force during point-to-point arm movements. Exp Brain Res, 95, 131–143.CrossRefGoogle ScholarPubMed
Flanagan, J. R. & Tresilian, J. R. (1994). Grip-load force coupling: a general control strategy for transporting objects. J Exp Psychol Hum Percept Perform, 20, 944–957.CrossRefGoogle ScholarPubMed
Flanagan, J. R. & Wing, A. M. (1995). The stability of precision grip forces during cyclic arm movements with a hand-held load. Exp Brain Res, 105, 455–464.Google ScholarPubMed
Flanagan, J. R. & Wing, A. M. (1997). The role of internal models in motion planning and control: evidence from grip force adjustments during movements of hand-held loads. J Neurosci, 17, 1519–1528.CrossRefGoogle ScholarPubMed
Flanagan, J. R. & Lolley, S. (2001). The inertial anisotropy of the arm is accurately predicted during movement planning. J Neurosci, 21, 1361–1369.CrossRefGoogle ScholarPubMed
Flanagan, J. R., Tresilian, J. & Wing, A. M. (1993). Coupling of grip force and load force during arm movements with grasped objects. Neurosci Lett, 152, 53–56.CrossRefGoogle ScholarPubMed
Flanagan, J. R., King, S., Wolpert, D. M. & Johansson, R. S. (2001). Sensorimotor prediction and memory in object manipulation. Can J Exp Psychol, 55, 87–95.CrossRefGoogle ScholarPubMed
Flanagan, J. R., Vetter, P., Johansson, R. S. & Wolpert, D. M. (2003). Prediction precedes control in motor learning. Curr Biol, 13, 146–150.CrossRefGoogle ScholarPubMed
Forssberg, H., Jucaite, A. & Hadders-Algra, M. (1999). Shared memory representations for programming of lifting movements and associated whole body postural adjustments in humans. Neurosci Lett, 273, 9–12.CrossRefGoogle ScholarPubMed
Gordon, A. M., Westling, G., Cole, K. J. & Johansson, R. S. (1993). Memory representations underlying motor commands used during manipulation of common and novel objects. J Neurophysiol, 69, 1789–1796.CrossRefGoogle ScholarPubMed
Gysin, P., Kaminski, T. R., & Gordon, A. M. (2003). Coordination of fingertip forces in object transport during locomotion. Exp Brain Res, 149, 371–379.CrossRefGoogle ScholarPubMed
Gysin, P., Kaminski, T. R., Hass, C. J. & Gordon, A. M. (2008). Effects of gait variations on grip force coordination during object transport. J Neurophysiol, 100, 2477–2485.CrossRefGoogle ScholarPubMed
Häger-Ross, C., Cole, K. J. & Johansson, R. S. (1996). Grip-force responses to unanticipated object loading: load direction reveals body- and gravity-referenced intrinsic task variables. Exp Brain Res, 110, 142–150.CrossRefGoogle ScholarPubMed
Hermsdörfer, J., Marquardt, C., Philipp, J.et al. (2000). Moving weightless objects. Grip force control during microgravity. Exp Brain Res, 132, 52–64.CrossRefGoogle ScholarPubMed
Ivanenko, Y. P., Cappellini, G., Dominici, N., Poppele, R. E. & Lacquaniti, F. (2005). Coordination of locomotion with voluntary movements in humans. J Neurosci, 25, 7238–7253.CrossRefGoogle ScholarPubMed
Jian, Y., Winter, D. A., Ishac, M. G. & Gilchrist, L. (1993). Trajectory of the body COG and COP during initiation and termination of gait. Gait Posture, 1, 9–22.CrossRefGoogle Scholar
Johansson, R. S. & Westling, G. (1984). Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Res, 56, 550–564.CrossRefGoogle ScholarPubMed
Johansson, R. S. & Westling, G. (1987). Signals in tactile afferents from the fingers eliciting adaptive motor responses during precision grip. Exp Brain Res, 66, 141–154.CrossRefGoogle ScholarPubMed
Johansson, R. S. & Westling, G. (1988). Programmed and triggered actions to rapid load changes during precision grip. Exp Brain Res, 71, 72–86.CrossRefGoogle ScholarPubMed
Johansson, R. S., Häger, C. & Bäckström, L. (1992a). Somatosensory control of precision grip during unpredictable pulling loads. III. Impairments during digital anesthesia. Exp Brain Res, 89, 204–213.CrossRefGoogle ScholarPubMed
Johansson, R. S., Häger, C. & Riso, R. (1992b). Somatosensory control of precision grip during unpredictable pulling loads. II. Changes in load force rate. Exp Brain Res, 89, 192–203.CrossRefGoogle ScholarPubMed
Johansson, R. S., Riso, R., Häger, C. & Bäckström, L. (1992c). Somatosensory control of precision grip during unpredictable pulling loads. I. Changes in load force amplitude. Exp Brain Res, 89, 181–191.CrossRefGoogle ScholarPubMed
Jordan, M. I. & Rumelhart, D. E. (1992). Forward models: supervised learning with a distal teacher. Cogn Sci, 16, 307–354.CrossRefGoogle Scholar
Kawato, M. (1999). Internal models for motor control and trajectory planning. Curr Opin Neurobiol, 9, 718–727.CrossRefGoogle ScholarPubMed
Kawato, M., Kuroda, T., Imamizu, H.et al. (2003). Internal forward models in the cerebellum: fMRI study on grip force and load force coupling. Prog Brain Res, 142, 171–188.CrossRefGoogle ScholarPubMed
Kinoshita, H., Kawai, S., Ikuta, K. & Teraoka, T. (1996). Individual finger forces acting on a grasped object during shaking actions. Ergonomics, 39, 243–256.CrossRefGoogle ScholarPubMed
Lajoie, K. & Drew, T. (2007). Lesions of area 5 of the posterior parietal cortex in the cat produce errors in the accuracy of paw placement during visually guided locomotion. J Neurophysiol, 97, 2339–2354.CrossRefGoogle ScholarPubMed
Lewis, P. A., & Miall, R. C. (2003). Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Curr Opin Neurobiol, 13, 250–255.CrossRefGoogle ScholarPubMed
McFadyen, B. J. & Carnahan, H. (1997). Anticipatory locomotor adjustments for accommodating versus avoiding level changes in humans. Exp Brain Res, 114, 500–506.CrossRefGoogle ScholarPubMed
Mrotek, L. A., Hart, B. A., Schot, P. K. & Fennigkoh, L. (2004). Grip responses to object load perturbations are stimulus and phase sensitive. Exp Brain Res, 155, 413–420.CrossRefGoogle ScholarPubMed
Müller, M. L., Jennings, J. R., Redfern, M. S. & Furman, J. M. (2004). Effect of preparation on dual-task performance in postural control. J Motor Behav, 36, 137–146.CrossRefGoogle ScholarPubMed
Muratori, L. M., McIsaac, T. L., Gordon, A. M. & Santello, M. (2008). Impaired anticipatory control of force sharing patterns during whole-hand grasping in Parkinson's disease. Exp Brain Res, 185, 41–52.CrossRefGoogle ScholarPubMed
Murray, M. P., Drought, A. B. & Kory, R. C. (1964). Walking pattern of normal men. J Bone Joint Surg, 46A, 335–360.CrossRefGoogle Scholar
Murray, M. P., Kory, R. C. & Sepic, S. B. (1970). Walking pattern of normal women. Arch Phys Med Rehabil, 51, 637–650.Google Scholar
Nissan, M. & Whittle, M. W. (1990). Initiation of gait in normal subjects: a preliminary study. J Biomed Eng, 12, 165–171.CrossRefGoogle ScholarPubMed
Nowak, D. A. (2004). Different modes of grip force control: voluntary and externally guided arm movements with a hand-held load. Clin Neurophysiol, 115, 839–848.CrossRefGoogle ScholarPubMed
Nowak, D. A., Hermsdörfer, J., Philipp, J.et al. (2001). Effects of changing gravity on anticipatory grip force control during point-to-point movements of a hand-held object. Motor Control, 5, 231–253.CrossRefGoogle ScholarPubMed
Nowak, D. A., Hermsdörfer, J., Marquardt, C. & Fuchs, H. H. (2002). Grip and load force coupling during discrete vertical arm movements with a grasped object in cerebellar atrophy. Exp Brain Res, 145, 28–39.CrossRefGoogle ScholarPubMed
Nowak, D. A., Hermsdörfer, J., Schneider, E. & Glasauer, S. (2004). Moving objects in a rotating environment: rapid prediction of Coriolis and centrifugal force perturbations. Exp Brain Res, 157, 241–254.CrossRefGoogle Scholar
Patla, A. E. & Vickers, J. N. (1997). Where and when do we look as we approach and step over an obstacle in the travel path?Neuroreport, 8, 3661–3665.CrossRefGoogle ScholarPubMed
Pellijeff, A., Bonilha, L., Morgan, P. S., McKenzie, K. & Jackson, S. R. (2006). Parietal updating of limb posture: an event-related fMRI study. Neuropsychologia, 44, 2685–2690.CrossRefGoogle ScholarPubMed
Pilon, J. F., Serres, S. J. & Feldman, A. G. (2007). Threshold position control of arm movement with anticipatory increase in grip force. Exp Brain Res, 181, 49–67.CrossRefGoogle ScholarPubMed
Pisella, L., Grea, H., Tilikete, C.et al. (2000). An ‘automatic pilot’ for the hand in human posterior parietal cortex: toward reinterpreting optic ataxia. Nat Neurosci, 3, 729–736.CrossRefGoogle ScholarPubMed
Poizner, H., Feldman, A. G., Levin, M. F.et al. (2000). The timing of arm-trunk coordination is deficient and vision-dependent in Parkinson's patients during reaching movements. Exp Brain Res, 133, 279–292.CrossRefGoogle ScholarPubMed
Salimi, I., Hollender, I., Frazier, W. & Gordon, A. M. (2000). Specificity of internal representations underlying grasping. J Neurophysiol, 84, 2390–2397.CrossRefGoogle ScholarPubMed
Saunders, J. B., Inman, V. T. & Eberhart, H. D. (1953). The major determinants in normal and pathological gait. J Bone Joint Surg Am, 35-A, 543–558.CrossRefGoogle ScholarPubMed
Schaal, S., Sternad, D., Osu, R. & Kawato, M. (2004). Rhythmic arm movement is not discrete. Nat Neurosci, 7, 1136–1143.CrossRefGoogle Scholar
Schettino, L. F., Rajaraman, V., Jack, D.et al. (2003). Deficits in the evolution of hand preshaping in Parkinson's disease. Neuropsychologia, 42, 82–94.CrossRefGoogle Scholar
Serrien, D. J. & Wiesendanger, M. (1999). Role of the cerebellum in tuning anticipatory and reactive grip force responses. J Cogn Neurosci, 11, 672–681.CrossRefGoogle ScholarPubMed
Serrien, D. J. & Wiesendanger, M. (2001). Regulation of grasping forces during bimanual in-phase and anti-phase coordination. Neuropsychologia, 39, 1379–1384.CrossRefGoogle ScholarPubMed
Singhal, A., Culham, J. C., Chinellato, E. & Goodale, M. A. (2007). Dual-task interference is greater in delayed grasping than in visually guided grasping. J Vis, 7, 5 1–12.CrossRefGoogle ScholarPubMed
Siu, K. C., Catena, R. D., Chou, L. S., Donkelaar, P. & Woollacott, M. H. (2008). Effects of a secondary task on obstacle avoidance in healthy young adults. Exp Brain Res, 184, 115–120.CrossRefGoogle ScholarPubMed
Sternad, D., Wei, K., Diedrichsen, J. & Ivry, R. B. (2007). Intermanual interactions during initiation and production of rhythmic and discrete movements in individuals lacking a corpus callosum. Exp Brain Res, 176, 559–574.CrossRefGoogle ScholarPubMed
Thorstensson, A., Nilsson, J., Carlson, H. & Zomlefer, M. R. (1984). Trunk movements in human locomotion. Acta Physiol Scand, 121, 9–22.CrossRefGoogle ScholarPubMed
Vaillancourt, D. E., Yu, H., Mayka, M. A. & Corcos, D. M. (2007). Role of the basal ganglia and frontal cortex in selecting and producing internally guided force pulses. Neuroimage, 36, 793–803.CrossRefGoogle ScholarPubMed
Berg, C., Beek, P. J., Wagenaar, R. C. & Wieringen, P. C. (2000). Coordination disorders in patients with Parkinson's disease: a study of paced rhythmic forearm movements. Exp Brain Res, 134, 174–186.CrossRefGoogle ScholarPubMed
Waters, R. L., Morris, J. & Perry, J. (1973). Translational motion of the head and trunk during normal walking. J Biomech, 6, 167–172.CrossRefGoogle ScholarPubMed
White, O., McIntyre, J., Augurelle, A. S. & Thonnard, J. L. (2005). Do novel gravitational environments alter the grip-force/load-force coupling at the fingertips?Exp Brain Res, 163, 324–334.CrossRefGoogle ScholarPubMed
Wing, A. M. & Lederman, S. J. (1998). Anticipating load torques produced by voluntary movements. J Exp Psychol Hum Percept Perform, 24, 1571–1581.CrossRefGoogle ScholarPubMed
Wing, A. M., Flanagan, J. R. & Richardson, J. (1997). Anticipatory postural adjustments in stance and grip. Exp Brain Res, 116, 122–130.CrossRefGoogle ScholarPubMed
Witney, A. G., Goodbody, S. J. & Wolpert, D. M. (1999). Predictive motor learning of temporal delays. J Neurophysiol, 82, 2039–2048.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×