Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T00:43:50.154Z Has data issue: false hasContentIssue false

3 - Digit forces in multi-digit grasps

Published online by Cambridge University Press:  23 December 2009

Dennis A. Nowak
Affiliation:
Klinik Kipfenberg, Kipfenberg, Germany
Joachim Hermsdörfer
Affiliation:
Technical University of Munich
Get access

Summary

Summary

This chapter briefly reviews four issues: (1) Single-digit contacts, (2) multi-digit grasps, (3) constraints on digit forces and (4) prehension synergies. In the section on the single-digit contacts the main models of contact (the point model, hard-finger contact and soft-finger contact) as well as slip prevention are considered. A subchapter on multi-digit grasps is a tutorial-like introduction to grasp mechanics, in particular to the concept of grasp matrices. The following issues are addressed: (a) vertically oriented prismatic grasps, (b) grasp matrices, (c) non-vertical prismatic grasps, (d) arbitrary grasps, (e) virtual finger and (f) internal forces. The constraints on digit forces are classified as mechanical and biological. Among the biological constraints force deficit and finger enslaving are addressed. Inter-finger connection matrices and their use for reconstruction of the neural command are discussed. Prehension synergies, experimental methods of their research, and the principle of superposition are described.

To manipulate hand-held objects, people exert forces on them. Performers grasp objects in different ways. A simplest classification of the grasps (or grips) includes two varieties: a power grip when the object is in contact with the palm of the hand (e.g. holding a tennis racket) and a precision grip when only the digit tips are in contact with the object. The present chapter deals with the precision grip.

Single-digit contacts

This section concentrates on two issues: modeling the digit contacts and slip prevention.

Modeling the digit contacts

Contact is a collection of adjacent points where two bodies touch each other.

Type
Chapter
Information
Sensorimotor Control of Grasping
Physiology and Pathophysiology
, pp. 33 - 51
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aoki, T., Niu, X., Latash, M. L. & Zatsiorsky, V. M. (2006). Effects of friction at the digit-object interface on the digit forces in multi-finger prehension. Exp Brain Res, 172, 425–438.CrossRefGoogle ScholarPubMed
Aoki, T., Latash, M. L. & Zatsiorsky, V. M. (2007). Adjustments to different local friction in multi-finger prehension. J Motor Behav, 39, 276–290.CrossRefGoogle Scholar
Arbib, M. A., Iberall, T. & Lyons, D. (1985). Coordinated control programs for movements of the hand. In Goodwin, A. W. & Darian-Smith, I. (Eds.), Hand Function and the Neocortex (pp. 111–129). Berlin: Springer Verlag.CrossRefGoogle Scholar
Arimoto, S., Tahara, K., Yamaguchi, M., Nguyen, P. T. A. & Han, H. Y. (2001). Principles of superposition for controlling pinch motions by means of robot fingers with soft tips. Robotica, 19, 21–28.CrossRefGoogle Scholar
Augurelle, A. S., Smith, A. M., Lejeune, T. & Thonnard, J. L. (2003). Importance of cutaneous feedback in maintaining a secure grip during manipulation of hand-held objects. J Neurophysiol, 89, 665–671.CrossRefGoogle ScholarPubMed
Baud-Bovy, G. & Soechting, J. F. (2001). Two virtual fingers in the control of the tripod grasp. J Neurophysiol, 86, 604–615.CrossRefGoogle ScholarPubMed
Baud-Bovy, G. & Soechting, J. F. (2002). Factors influencing variability in load forces in a tripod grasp. Exp Brain Res, 143, 57–66.CrossRefGoogle Scholar
Bernstein, N. A. (1967). The Co-ordination and Regulation of Movements. Oxford: Pergamon Press.Google Scholar
Blennerhassett, J. M., Carey, L. M. & Matyas, T. A. (2006). Grip force regulation during pinch grip lifts under somatosensory guidance: comparison between people with stroke and healthy controls. Arch Phys Med Rehabil, 87, 418–429.CrossRefGoogle ScholarPubMed
Bobjer, O., Johansson, S. E. & Piguet, S. (1993). Friction between hand and handle. Effects of oil and lard on textured and non-textured surfaces; perception of discomfort. Appl Ergon 24, 190–202.CrossRefGoogle ScholarPubMed
Budgeon, M. K. (2007). Prehension synergies during finger manipulation. Unpublished Masters Thesis. The Pennsylvania State University.
Burstedt, M. K., Flanagan, J. R. & Johansson, R. S. (1999). Control of grasp stability in humans under different frictional conditions during multidigit manipulation. J Neurophysiol, 82, 2393–2405.CrossRefGoogle ScholarPubMed
Cole, K. J. & Abbs, J. H. (1987). Kinematic and electromyographic responses to perturbation of a rapid grasp. J Neurophysiol, 57, 1498–1510.CrossRefGoogle ScholarPubMed
Cole, K. J. & Abbs, J. H. (1988). Grip force adjustments evoked by load force perturbations of a grasped object. J Neurophysiol, 60, 1513–1522.CrossRefGoogle ScholarPubMed
Cole, K. J. & Beck, C. L. (1994). The stability of precision grip force in older adults. J Motor Behav 26, 171–177.CrossRefGoogle ScholarPubMed
Cole, K. J. & Johansson, R. S. (1993). Friction at the digit-object interface scales the sensorimotor transformation for grip responses to pulling loads. Exp Brain Res, 95, 523–532.CrossRefGoogle ScholarPubMed
Comaish, S. & Bottoms, E. (1971). The skin and friction: deviations from Amonton's laws, and the effects of hydration and lubrication. Br J Dermatol, 84, 37–43.CrossRefGoogle ScholarPubMed
Danion, F., Schoner, G., Latash, M. L.et al. (2003). A mode hypothesis for finger interaction during multi-finger force-production tasks. Biol Cybern, 88, 91–98.CrossRefGoogle ScholarPubMed
Deutsch, K. M. & Newell, K. M. (2002). Children's coordination of force output in a pinch grip task. Dev Psychobiol, 41, 253–264.CrossRefGoogle Scholar
Dumont, C. E., Popovic, M. R., Keller, T. & Sheikh, R. (2006). Dynamic force-sharing in multi-digit task. Clin Biomech (Bristol, Avon), 21, 138–146.CrossRefGoogle ScholarPubMed
Flanagan, J. R. & Johansson, R. S. (2002). Hand movements. In Ramshandran, V. S. (Ed.), Encyclopaedia of the Human Brain (pp. 399–414). San Diego, CA: Academic Press.CrossRefGoogle Scholar
Flanagan, J. R. & Tresilian, J. (1994). Grip-load force coupling: a general control strategy for transporting objects. J Exp Psychol Hum Percept Perform, 20, 944–957.CrossRefGoogle ScholarPubMed
Flanagan, J. R. & Wing, A. M. (1993). Modulation of grip force with load force during point-to-point arm movements. Exp Brain Res, 95, 131–143.CrossRefGoogle ScholarPubMed
Flanagan, J. R. & Wing, A. M. (1995). The stability of precision grip forces during cyclic arm movements with a hand-held load. Exp Brain Res, 105, 455–464.Google ScholarPubMed
Flanagan, J. R., Tresilian, J. & Wing, A. M. (1993). Coupling of grip force and load force during arm movements with grasped objects. Neurosci Lett, 152, 53–56.CrossRefGoogle ScholarPubMed
Flanagan, J. R., Burstedt, M. K. & Johansson, R. S. (1999). Control of fingertip forces in multidigit manipulation. J Neurophysiol, 81, 1706–1717.CrossRefGoogle ScholarPubMed
Gao, F., Li, S., Li, Z. M., Latash, M. L. & Zatsiorsky, V. M. (2003). Matrix analyses of interaction among fingers in static force production tasks. Biol Cybern, 89, 407–414.CrossRefGoogle ScholarPubMed
Gao, F., Latash, M. L. & Zatsiorsky, V. M. (2004). Neural network modeling supports a theory on the hierarchical control of prehension. Neural Comput Appl, 13, 352–359.CrossRefGoogle Scholar
Gao, F., Latash, M. L. & Zatsiorsky, V. M. (2005a). Control of finger force direction in the flexion-extension plane. Exp Brain Res, 161, 307–315.CrossRefGoogle ScholarPubMed
Gao, F., Latash, M. L. & Zatsiorsky, V. M. (2005b). Internal forces during object manipulation. Exp Brain Res, 165, 69–83.CrossRefGoogle ScholarPubMed
Gao, F., Latash, M. L. & Zatsiorsky, V. M. (2005c). In contrast to robots, in humans internal and manipulation forces are coupled (ThP01-18). In Proceedings of 2005 9th IEEE International Conference on Rehabilitation Robotics (pp. 404–407). Chicago, IL, USA.Google Scholar
Gao, F., Latash, M. L. & Zatsiorsky, V. M. (2006). Maintaining rotational equilibrium during object manipulation: linear behavior of a highly non-linear system. Exp Brain Res, 169, 519–531.CrossRefGoogle ScholarPubMed
Gordon, A. M., Quinn, L., Reilmann, R. & Marder, K. (2000). Coordination of prehensile forces during precision grip in Huntington's disease. Exp Neurol, 163, 136–148.CrossRefGoogle ScholarPubMed
Gysin, P., Kaminski, T. R. & Gordon, A. M. (2003). Coordination of fingertip forces in object transport during locomotion. Exp Brain Res, 149, 371–379.CrossRefGoogle ScholarPubMed
Hermsdorfer, J., Marquardt, C., Philipp, J.et al. (1999). Grip forces exerted against stationary held objects during gravity changes. Exp Brain Res, 126, 205–214.CrossRefGoogle ScholarPubMed
Iberall, T. (1987). The nature of human prehension: Three dexterous hands in one. In Proceedings of 1987 IEEE International Conference on Robotics and Automation (pp. 396–401). Raleigh, NC, USA.CrossRefGoogle Scholar
Johansson, R. S. & Cole, K. J. (1994). Grasp stability during manipulative actions. Can J Physiol Pharmacol, 72, 511–524.CrossRefGoogle ScholarPubMed
Johansson, R. S. & Westling, G. (1984). Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Res, 56, 550–564.CrossRefGoogle ScholarPubMed
Jones, L. A. & Hunter, I. W. (1992). Changes in pinch force with bidirectional load forces. J Motor Behav, 24, 157–164.CrossRefGoogle ScholarPubMed
Kerr, J. R. & Roth, B. (1986). Analysis of multifingered hands. J Robotics Res, 4, 3–17.CrossRefGoogle Scholar
Kilbreath, S. L. & Gandevia, S. C. (1994). Limited independent flexion of the thumb and fingers in human subjects. J Physiol, 479, 487–497.CrossRefGoogle ScholarPubMed
Kilbreath, S. L., Gorman, R. B., Raymond, J. & Gandevia, S. C. (2002). Distribution of the forces produced by motor unit activity in the human flexor digitorum profundus. J Physiol, 543, 289–296.CrossRefGoogle ScholarPubMed
Kinoshita, H., Kawai, S. & Ikuta, K. (1995). Contributions and co-ordination of individual fingers in multiple finger prehension. Ergonomics, 38 (6), 1212–1230.CrossRefGoogle ScholarPubMed
Kinoshita, H., Kawai, S., Ikuta, K. & Teraoka, T. (1996). Individual finger forces acting on a grasped object during shaking actions. Ergonomics, 39 (2), 243–256.CrossRefGoogle ScholarPubMed
Latash, M. L. & Zatsiorsky, V. M. (2006). Principle of superposition in human prehension. In Kawamura, S. & Swinin, M. (Eds.), Advances in Robot Control: From Everyday Physics to Human-Like Movements (pp. 249–261). New York, NY: Springer.Google Scholar
Latash, M. L., Danion, F., Scholz, J. F., Zatsiorsky, V. M. & Schoner, G. (2003a). Approaches to analysis of handwriting as a task of coordinating a redundant motor system. Hum Mov Sci, 22, 153–171.CrossRefGoogle ScholarPubMed
Latash, M. L., Gao, F. & Zatsiorsky, V. M. (2003b). Similarities and differences in finger interaction across typical and atypical populations. J Appl Biomech, 19, 264–270.CrossRefGoogle Scholar
Li, Z. M., Latash, M. L. & Zatsiorsky, V. M. (1998a). Force sharing among fingers as a model of the redundancy problem. Exp Brain Res, 119, 276–286.CrossRefGoogle ScholarPubMed
Li, Z. M., Latash, M. L., Newell, K. M. & Zatsiorsky, V. M. (1998b). Motor redundancy during maximal voluntary contraction in four-finger tasks. Exp Brain Res, 122, 71–77.CrossRefGoogle ScholarPubMed
Li, Z. M., Zatsiorsky, V. M., Latash, M. L. & Bose, N. K. (2002). Anatomically and experimentally based neural networks modeling force coordination in static multi-finger tasks. Neurocomputing, 47, 259–275.CrossRefGoogle Scholar
Mason, M. T. & Salisbury, J. K. (1985). Robot Hands and the Mechanics of Manipulation. Cambridge, MA: MIT Press.Google Scholar
Monzee, J., Lamarre, Y. & Smith, A. M. (2003). The effects of digital anesthesia on force control using a precision grip. J Neurophysiol, 89, 672–683.CrossRefGoogle ScholarPubMed
Murray, R. M., Li, Z. & Sastry, S. S. (1994). A Mathematical Introduction to Robotic Manipulation. Boca Raton, FL: CRC Press.Google Scholar
Nakazawa, N., Uekita, Y., Inooka, H. & Ikeura, R. (1996). Experimental study on human grasping force. In IEEE International Workshop on Robot and Human Communication (pp. 280–285). Tsukuba, Japan.Google Scholar
Niu, X., Latash, M. L. & Zatsiorsky, V. M. (2007). Prehension synergies in the grasps with complex friction patterns: local vs. synergic effects and the template control. J Neurophysiol, 98, 16–28.CrossRefGoogle Scholar
Nowak, D. A. & Hermsdorfer, J. (2002). Coordination of grip and load forces during vertical point-to-point movements with a grasped object in Parkinson's disease. Behav Neurosci, 116, 837–850.CrossRefGoogle ScholarPubMed
Nowak, D. A. & Hermsdorfer, J. (2003a). Digit cooling influences grasp efficiency during manipulative tasks. Eur J Appl Physiol, 89, 127–133.CrossRefGoogle ScholarPubMed
Nowak, D. A. & Hermsdorfer, J. (2003b). Sensorimotor memory and grip force control: does grip force anticipate a self-produced weight change when drinking with a straw from a cup?Eur J Neurosci, 18, 2883–2892.CrossRefGoogle Scholar
Nowak, D. A. & Hermsdorfer, J. (2006). Predictive and reactive control of grasping forces: on the role of the basal ganglia and sensory feedback. Exp Brain Res, 173, 650–660.CrossRefGoogle ScholarPubMed
Ohtsuki, T. (1981). Inhibition of individual fingers during grip strength exertion. Ergonomics, 24, 21–36.CrossRefGoogle ScholarPubMed
Pataky, T. C., Latash, M. L. & Zatsiorsky, V. M. (2004a). Tangential load sharing among fingers during prehension. Ergonomics, 47, 876–889.CrossRefGoogle ScholarPubMed
Pataky, T. C., Latash, M. L. & Zatsiorsky, V. M. (2004b). Prehension synergies during nonvertical grasping, I: experimental observations. Biol Cybern, 91, 148–158.Google ScholarPubMed
Pataky, T. C., Latash, M. L. & Zatsiorsky, V. M. (2004c). Prehension synergies during nonvertical grasping, II: Modeling and optimization. Biol Cybern, 91, 231–242.CrossRefGoogle ScholarPubMed
Pataky, T. C., Latash, M. L. & Zatsiorsky, V. M. (2007). Finger interaction during maximal radial and ulnar deviation efforts: experimental data and linear neural network modeling. Exp Brain Res, 179, 301–312.CrossRefGoogle ScholarPubMed
Pylatiuk, C., Kargov, A., Schulz, S. & Doderlein, L. (2006). Distribution of grip force in three different functional prehension patterns. J Med Eng Technol, 30, 176–182.CrossRefGoogle ScholarPubMed
Rearick, M. P. & Santello, M. (2002). Force synergies for multifingered grasping: effect of predictability in object center of mass and handedness. Exp Brain Res, 144, 38–49.CrossRefGoogle ScholarPubMed
Rearick, M. P., Casares, A. & Santello, M. (2003). Task-dependent modulation of multi-digit force coordination patterns. J Neurophysiol, 89, 1317–1326.CrossRefGoogle ScholarPubMed
Santello, M. & Soechting, J. F. (2000). Force synergies for multifingered grasping. Exp Brain Res, 133, 457–467.CrossRefGoogle ScholarPubMed
Savescu, A., Latash, M. L. & Zatsiorsky, V. M. (2007). A method to determine friction at the finger tips. J Appl Biomech, 24, 43–50.CrossRefGoogle Scholar
Schieber, M. H. & Santello, M. (2004). Hand function: peripheral and central constraints on performance. J Appl Physiol, 96, 2293–2300.CrossRefGoogle ScholarPubMed
Shim, J. K. & Park, J. (2007). Prehension synergies: principle of superposition and hierarchical organization in circular object prehension. Exp Brain Res, 180, 541–556.CrossRefGoogle ScholarPubMed
Shim, J. K., Latash, M. L. & Zatsiorsky, V. M. (2003). Prehension synergies: trial-to-trial variability and hierarchical organization of stable performance. Exp Brain Res, 152, 173–184.CrossRefGoogle ScholarPubMed
Shim, J. K., Latash, M. L. & Zatsiorsky, V. M. (2005). Prehension synergies in three dimensions. J Neurophysiol, 93, 766–776.CrossRefGoogle ScholarPubMed
Shim, J. K., Huang, J., Hooke, A. W., Latash, M. L. & Zatsiorsky, V. M. (2007). Multi-digit maximum voluntary torque production on a circular object. Ergonomics, 50, 660–675.CrossRefGoogle ScholarPubMed
Smith, M. A. & Soechting, J. F. (2005). Modulation of grasping forces during object transport. J Neurophysiol, 93, 137–145.CrossRefGoogle ScholarPubMed
Vaillancourt, D. E., Slifkin, A. B. & Newell, K. M. (2002). Inter-digit individuation and force variability in the precision grip of young, elderly, and Parkinson's disease participants. Motor Control, 6, 113–128.CrossRefGoogle ScholarPubMed
Westling, G. & Johansson, R. S. (1984). Factors influencing the force control during precision grip. Exp Brain Res, 53, 277–284.CrossRefGoogle ScholarPubMed
Yoshikawa, T. & Nagai, K. (1991). Manipulating and grasping forces in manipulation by multifingered robot hands. IEEE Trans Robotics Autom, 7, 67–77.CrossRefGoogle Scholar
Zatsiorsky, V. M. (2002). Kinetics of Human Motion. Champaign, IL: Human Kinetics.Google Scholar
Zatsiorsky, V. M. & Latash, M. L. (2004). Prehension synergies. Exerc Sport Sci Rev, 32, 75–80.CrossRefGoogle ScholarPubMed
Zatsiorsky, V. M. & Latash, M. L. (2007). Multi-finger prehension: an overview. J Motor Behav, 40, 446–475.CrossRefGoogle Scholar
Zatsiorsky, V. M., Li, Z. M. & Latash, M. L. (1998). Coordinated force production in multi-finger tasks: finger interaction and neural network modeling. Biol Cybern, 79 (2), 139–150.CrossRefGoogle ScholarPubMed
Zatsiorsky, V. M., Li, Z. M. & Latash, M. L. (2000). Enslaving effects in multi-finger force production. Exp Brain Res, 131, 187–195.CrossRefGoogle ScholarPubMed
Zatsiorsky, V. M., Gregory, R. W. & Latash, M. L. (2002a). Force and torque production in static multifinger prehension: biomechanics and control. I. Biomechanics. Biol Cybern, 87, 50–57.CrossRefGoogle ScholarPubMed
Zatsiorsky, V. M., Gregory, R. W. & Latash, M. L. (2002b). Force and torque production in static multifinger prehension: biomechanics and control. II. Control. Biol Cybern, 87, 40–49.CrossRefGoogle ScholarPubMed
Zatsiorsky, V. M., Gao, F. & Latash, M. L. (2003a). Finger force vectors in multi-finger prehension. J Biomech, 36, 1745–1749.CrossRefGoogle ScholarPubMed
Zatsiorsky, V. M., Gao, F. & Latash, M. L. (2003b). Prehension synergies: effects of object geometry and prescribed torques. Exp Brain Res, 148, 77–87.Google ScholarPubMed
Zatsiorsky, V. M., Latash, M. L., Gao, F. & Shim, J. K. (2004). The principle of superposition in human prehension. Robotica, 22, 231–234.CrossRefGoogle ScholarPubMed
Zatsiorsky, V. M., Gao, F. & Latash, M. L. (2005a). Motor control goes beyond physics: differential effects of gravity and inertia on finger forces during manipulation of hand-held objects. Exp Brain Res, 162, 300–308.CrossRefGoogle ScholarPubMed
Zatsiorsky, V. M., Gao, F. & Latash, M. L. (2005b). Prehension stability: experiments with expanding and contracting handle. J Neurophysiol, 95, 2513–2529.CrossRefGoogle ScholarPubMed
Zuo, B. R. & Qian, W. H. (2000). A general dynamic force distribution algorithm for multifingered grasping. IEEE Trans Syst Man Cybernetics Part B – Cybernetics, 30, 185–192.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×