Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-16T09:15:13.026Z Has data issue: false hasContentIssue false

9 - Models for the control of grasping

Published online by Cambridge University Press:  23 December 2009

Dennis A. Nowak
Affiliation:
Klinik Kipfenberg, Kipfenberg, Germany
Joachim Hermsdörfer
Affiliation:
Technical University of Munich
Get access

Summary

Summary

This chapter underlines the multifaceted nature of reach and grasp behavior by reviewing several computational models that focus on selected features of reach-to-grasp movements. An abstract meta-model is proposed that subsumes previous modeling efforts, and points towards the need to develop computational models that embrace all the facets of reaching and grasping behavior.

Introduction

Hand transport and hand (pre)shaping are basic components of primate grasping. The different views on their dependence and coordination lead to different explanations of human control of grasping. One can view these two components as being controlled independently but coordinated so as to achieve a secure grasp. The alternative view is that the hand and the arm are taken as a single limb and controlled using a single control mechanism. Needless to say, this distinction is not very sharp; but it becomes a choice to be made by a control engineer when it is necessary to actually implement a grasp controller. The experimental findings so far point towards the view that human grasping involves independent but coordinated control of the arm and the hand (see Jeannerod et al., 1998) (see also Chapter 10). However, reports against this view do exist as it has been suggested that human grasping is a generalized reaching movement that involves movement of digits so as to bring the fingers to their targets on the object surface (Smeets & Brenner, 1999, 2001). Although theoretically both control mechanisms are viable, from a computational viewpoint, the former is more likely.

Type
Chapter
Information
Sensorimotor Control of Grasping
Physiology and Pathophysiology
, pp. 110 - 124
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arbib, M. A. & Hoff, B. (1994). Trends in neural modeling for reach to grasp. In Bennett, K. M. B. & Castiello, U. (Eds.), Insights Into The Reach to Grasp Movement (pp. 311–344). Amsterdam: North-Holland.Google Scholar
Baud-Bovy, G. & Soechting, J. F. (2001). Two virtual fingers in the control of the tripod grasp. J Neurophysiol, 86, 604–615.CrossRefGoogle ScholarPubMed
Blakemore, S. J., Wolpert, D. M. & Frith, C. D. (1998). Central cancellation of self-produced tickle sensation. Nat Neurosci, 1(7), 635–640.CrossRefGoogle ScholarPubMed
Boecker, H., Lee, A., Muhlau, M.et al. (2005). Force level independent representations of predictive grip force-load force coupling: a PET activation study. Neuroimage, 25, 243–252.CrossRefGoogle ScholarPubMed
Bortoff, G. A. & Strick, P. L. (1993). Corticospinal terminations in two New-World primates – further evidence that corticomotoneuronal connections provide part of the neural substrate for manual dexterity. J Neurosci, 13, 5105–5118.CrossRefGoogle ScholarPubMed
Bursztyn, L. L., Ganesh, G., Imamizu, H., Kawato, M. & Flanagan, J. R. (2006). Neural correlates of internal-model loading. Curr Biol, 16, 2440–2445.CrossRefGoogle ScholarPubMed
Chaminade, T., Oztop, E., Cheng, G. & Kawato, M. (2008). From self-observation to imitation: visuomotor association on a robotic hand. Brain Res Bull, 75, 775–784.CrossRefGoogle ScholarPubMed
Clifton, R. K., Muir, D. W., Ashmead, D. H. & Clarkson, M. G. (1993). Is visually guided reaching in early infancy a myth? Child Development, 64(4), 1099–1110.CrossRefGoogle ScholarPubMed
Colby, C. L. & Duhamel, J. R. (1996). Spatial representations for action in parietal cortex. Cogn Brain Res, 5, 105–115.CrossRefGoogle ScholarPubMed
Colby, C. L. & Goldberg, M. E. (1999). Space and attention in parietal cortex. Ann Rev Neurosci, 22, 319–349.CrossRefGoogle ScholarPubMed
Culham, J. C. & Valyear, K. F. (2006). Human parietal cortex in action. Curr Opin Neurobiol, 16, 205–212.CrossRefGoogle ScholarPubMed
Culham, J. C., Cavina-Pratesi, C. & Singhal, A. (2006). The role of parietal cortex in visuomotor control: what have we learned from neuroimaging? Neuropsychologia, 44, 2668–2684.CrossRefGoogle ScholarPubMed
Duhamel, J. R., Colby, C. L. & Goldberg, M. E. (1998). Ventral intraparietal area of the macaque: congruent visual and somatic response properties. J Neurophysiol, 79, 126–136.CrossRefGoogle ScholarPubMed
Dum, R. P. & Strick, P. L. (1991). The origin of corticospinal projections from the premotor areas in the frontal lobe. J Neurosci, 11, 667–689.CrossRefGoogle ScholarPubMed
Fagg, A. H. & Arbib, M. A. (1998). Modeling parietal-premotor interactions in primate control of grasping. Neural Networks, 11, 1277–1303.CrossRefGoogle ScholarPubMed
Flanagan, J. R. & Wing, A. M. (1997). The role of internal models in motion planning and control: evidence from grip force adjustments during movements of hand-held loads. J Neurosci, 17, 1519–1528.CrossRefGoogle ScholarPubMed
Fogassi, L., Gallese, V., Buccino, G.et al. (2001). Cortical mechanism for the visual guidance of hand grasping movements in the monkey – a reversible inactivation study. Brain, 124, 571–586.CrossRefGoogle ScholarPubMed
Gallese, V., Murata, A., Kaseda, M., Niki, N. & Sakata, H. (1994). Deficit of hand preshaping after muscimol injection in monkey parietal cortex. Neuroreport, 5, 1525–1529.CrossRefGoogle ScholarPubMed
Harris, C. M. & Wolpert, D. M. (1998). Signal-dependent noise determines motor planning. Nature, 394, 780–784.CrossRefGoogle ScholarPubMed
Haruno, M., Wolpert, D. M. & Kawato, M. (2001). MOSAIC model for sensorimotor learning and control. Neural Computat, 13, 2201–2220.CrossRefGoogle ScholarPubMed
Hoff, B. & Arbib, M. A. (1993). Models of trajectory formation and temporal interaction of reach and grasp. J Motor Behav, 25, 175–192.CrossRefGoogle ScholarPubMed
Iberall, T. & Arbib, M. A. (1990). Schemas for the control of hand movements: an essay on cortical localization. In G, M. A. (Ed.), Vision and Action: the Control of Grasping. Norwood, NJ: Ablex.Google Scholar
Iberall, T. & Fagg, A. H. (1996). Neural network models for selecting hand shapes. In Wing, A. M., Haggard, P. & Flanagan, J. R. (Eds)., Hand and Brain: The Neurophysiology and Psychology of Hand Movements (pp. 243–264). New York, NY: Academic Press.Google Scholar
Iberall, T., Bingham, G. & Arbib, M. (1986). Opposition space as a structuring concept for the analysis of skilled hand movements. In Heuer, H. & Fromm, C. (Eds.), Generation and Modulation of Action Patterns (pp. 158–173). Berlin: Springer-Verlag.CrossRefGoogle Scholar
Imamizu, H., Miyauchi, S., Tamada, T.et al. (2000). Human cerebellar activity reflecting an acquired internal model of a new tool. Nature, 403, 192–195.CrossRefGoogle ScholarPubMed
Jeannerod, M., Arbib, M. A., Rizzolatti, G. & Sakata, H. (1995). Grasping objects – the cortical mechanisms of visuomotor transformation. Trends Neurosci, 18, 314–320.CrossRefGoogle ScholarPubMed
Jeannerod, M., Paulignan, Y. & Weiss, P. (1998). Grasping an object: one movement, several components. Novartis Found Symp, 218, 5–16; discussion 16–20.Google ScholarPubMed
Johansson, R. S. (1996). Sensory control of dexterous manipulation in humans. In Wing, A. M., Haggard, P. & Flanagan, J. R. (Eds.), Hand and Brain: The Neurophysiology and Psychology of Hand Movements (pp. 381–414). New York, NY: Academic Press.Google Scholar
Kawato, M. (1999). Internal models for motor control and trajectory planning. Curr Opin Neurobiol, 9, 718–727.CrossRefGoogle ScholarPubMed
Kawato, M. (2008). Cerebellum: models. In Squire, L. R. (Ed.), Encyclopedia of Neuroscience. Amsterdam, the Netherlands: Elsevier Science.Google Scholar
Kawato, M. & Samejima, K. (2007). Efficient reinforcement learning: computational theories, neuroscience and robotics. Curr Opin Neurobiol, 17, 205–212.CrossRefGoogle ScholarPubMed
Kawato, M., Kuroda, T., Imamizu, H.et al. (2003). Internal forward models in the cerebellum: fMRI study on grip force and load force coupling. In Prablanc, C., Pelisson, D. & Rossetti, Y. (Eds.), Progress in Brain Research: Neural Control of Space Coding and Action Production, vol. 142 (pp. 171–188). Amsterdam, the Netherlands: Elsevier Science.CrossRefGoogle Scholar
Keysers, C. & Perrett, D. I. (2004). Demystifying social cognition: a Hebbian perspective. Trends Cogn Sci, 8, 501–507.CrossRefGoogle ScholarPubMed
Lawrence, D. G. & Hopkins, D. A. (1976). The development of motor control in the rhesus monkey: evidence concerning the role of corticomotoneuronal connections. Brain, 99, 235–254.CrossRefGoogle ScholarPubMed
Lemon, R. N., Armand, J., Olivier, E. & Edgley, S. A. (1997). Skilled action and the development of the corticospinal tract in primates. In Connolly, K. J. & Forssberg, H. (Eds.), The Neurophysiology and Neuropsychology of Motor Development (pp. 162–176). Cambridge: Cambridge University Press.Google Scholar
Lockman, J., Ashmead, D. H. & Bushnell, E. W. (1984). The development of anticipatory hand orientation during infancy. J Exp Child Psychol, 37, 176–186.CrossRefGoogle ScholarPubMed
Luppino, G., Murata, A., Govoni, P. & Matelli, M. (1999). Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4). Exp Brain Res, 128, 181–187.CrossRefGoogle Scholar
Miyamoto, H., Nakano, E., Wolpert, D. & Kawato, M. (2004). TOPS (Task Optimization in the Presence of Signal-dependent noise) model. Systems and Computers in Japan (Translated from Denshi Tsushin Gakkai Ronbunshi, J85-D-II, 940–949), 35, 48–58.CrossRefGoogle Scholar
Murata, A., Gallese, V., Kaseda, M. & Sakata, H. (1996). Parietal neurons related to memory-guided hand manipulation. J Neurophysiol, 75, 2180–2186.CrossRefGoogle ScholarPubMed
Murata, A., Gallese, V., Luppino, G., Kaseda, M. & Sakata, H. (2000). Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. J Neurophysiol, 83, 2580–2601.CrossRefGoogle ScholarPubMed
Newell, K. M., McDonald, P. V. & Baillargeon, R. (1993). Body scale and infant grip configurations. Dev Psychobiol, 26, 195–205.CrossRefGoogle ScholarPubMed
Nowak, D. A., Topka, H., Timmann, D., Boecker, H. & Hermsdorfer, J. (2007). The role of the cerebellum for predictive control of grasping. Cerebellum, 6, 7–17.CrossRefGoogle ScholarPubMed
Oztop, E., Bradley, N. S. & Arbib, M. A. (2004). Infant grasp learning: a computational model. Exp Brain Res, 158, 480–503.CrossRefGoogle ScholarPubMed
Oztop, E., Chaminade, T., Cheng, G. & Kawato, M. (2005a). Imitation Bootstrapping: Experiments on a Robotic Hand. IEEE-RAS International Conference on Humanoid Robots, Tsukuba, Japan.Google Scholar
Oztop, E., Wolpert, D. & Kawato, M. (2005b). Mental state inference using visual control parameters. Brain Res Cogn Brain Res, 22, 129–151.Google ScholarPubMed
Oztop, E., Imamizu, H., Cheng, G. & Kawato, M. (2006). A computational model of anterior intraparietal (AIP) neurons. Neurocomputing, 69, 1354–1361.CrossRefGoogle Scholar
Paulignan, Y., MacKenzie, C., Marteniuk, R. & Jeannerod, M. (1991a). Selective perturbation of visual input during prehension movements. 1. The effects of changing object position. Exp Brain Res, 83, 502–512.CrossRefGoogle ScholarPubMed
Paulignan, Y., Jeannerod, M., MacKenzie, C. & Marteniuk, R. (1991b). Selective perturbation of visual input during prehension movements. 2. The effects of changing object size. Exp Brain Res, 87, 407–420.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Gentilucci, M., Camarda, R. M.et al. (1990). Neurons related to reaching-grasping arm movements in the rostral part of area-6 (Area-6a-Beta). Exp Brain Res, 82, 337–350.CrossRefGoogle Scholar
Rizzolatti, G., Fogassi, L. & Gallese, V. (2002). Motor and cognitive functions of the ventral premotor cortex. Curr Opin Neurobiol, 12, 149–154.CrossRefGoogle ScholarPubMed
Roy, A., Paulignan, Y., Meunier, M. & Boussaoud, D. (2006). Prehension movements in the macaque monkey: effects of perturbation of object size and location. Exp Brain Res, 169, 182–193.CrossRefGoogle ScholarPubMed
Sakata, H., Taira, M., Murata, A. & Mine, S. (1995). Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. Cereb Cortex, 5, 429–438.CrossRefGoogle ScholarPubMed
Sakata, H., Taira, M., Kusunoki, M.et al. (1998). Neural coding of 3D features of objects for hand action in the parietal cortex of the monkey. Philos Trans R Soc Lond B Biol Sci, 353, 1363–1373.CrossRefGoogle ScholarPubMed
Sakata, H., Tsutsui, K.-I. & Taira, M. (2005). Toward an understanding of the neural processing for 3D shape perception. Neuropsychologia, 43, 151–161.CrossRefGoogle ScholarPubMed
Shimoga, K. B. (1996). Robot grasp synthesis algorithms: a survey. Int J Robotics Res, 15, 230–266.CrossRefGoogle Scholar
Smeets, J. B. & Brenner, E. (1999). A new view on grasping. Motor Control, 3, 237–271.CrossRefGoogle ScholarPubMed
Smeets, J. B. & Brenner, E. (2001). Independent movements of the digits in grasping. Exp Brain Res, 139, 92–100.CrossRefGoogle ScholarPubMed
Triggs, W. J., Yathiraj, S., Young, M. S. & Rossi, F. (1998). Effects of task and task persistence on magnetic motor-evoked potentials. J Contemp Neurol (http://mitpress.mit.edu/e-journals/JCN/abstracts/003/cn3-2.html), 1998(2A).Google Scholar
Uno, Y., Fukumura, N., Suzuki, R. & Kawato, M. (1995). A computational model for recognizing objects and planning hand shapes in grasping movements. Neural Networks, 8, 839–851.CrossRefGoogle Scholar
Hofsten, C. (1982). Eye-hand coordination in the newborn. Dev Psychol, 18, 450–461.CrossRefGoogle Scholar
Hofsten, C. (1984). Developmental changes in the organization of prereaching movements. Dev Psychol, 20, 378–388.CrossRefGoogle Scholar
Hofsten, C. & Ronnqvist, L. (1988). Preparation for grasping an object: a developmental study. J Exp Psychol Hum Percept Perform, 14, 610–621.CrossRefGoogle Scholar
Weiss, P. & Jeannerod, M. (1998). Getting a grasp on coordination. News Physiol Sci, 13, 70–75.Google ScholarPubMed
Weiss, P. H., Jeannerod, M., Paulignan, Y. & Freund, H. J. (2000). Is the organisation of goal-directed action modality specific? A common temporal structure. Neuropsychologia, 38, 1136–1147.CrossRefGoogle ScholarPubMed
Wise, S. P., Boussaoud, D., Johnson, P. B. & Caminiti, R. (1997). Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. Ann Rev Neurosci, 20, 25–42.CrossRefGoogle ScholarPubMed
Wolpert, D. M. & Kawato, M. (1998). Multiple paired forward and inverse models for motor control. Neural Networks, 11, 1317–1329.CrossRefGoogle ScholarPubMed
Wolpert, D. M., Doya, K. & Kawato, M. (2003). A unifying computational framework for motor control and social interaction. Philos Trans R Soc Lond B Biol Sci, 358, 593–602.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×