Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-29T11:28:41.357Z Has data issue: false hasContentIssue false

1 - Analysis of grip forces during object manipulation

Published online by Cambridge University Press:  23 December 2009

Dennis A. Nowak
Affiliation:
Klinik Kipfenberg, Kipfenberg, Germany
Joachim Hermsdörfer
Affiliation:
Technical University of Munich
Get access

Summary

Summary

With the invention of strain gauges, isometric finger forces such as those produced during grasping an object could be measured continuously, precisely and without major constraints to the grip. In the precision grip between thumb and index finger, elementary performance aspects such as maximum grip force, ability to maintain a constant force, fast force changes or tracking of a dynamic target have been studied. In 1984, Johansson and Westling presented their paradigm based on the measurement of grip and load forces during grasping and lifting of an object. Their studies inspired a great deal of scientific interest in this aspect of fine motor control examined in healthy subjects as well as in patients with peripheral or central nervous system diseases. Research in this field progressed by introducing other motor tasks with specific demands on the control system, such as the compensation of inertial forces during movements of grasped objects. In addition, methods improved by technical developments such as 6-degree-of-freedom force/torque sensors, autonomous measurement devices, or force matrices to measure pressure distributions at grasping surfaces. Thus, measurements of isometric grip forces during object manipulation became a widely used method in neurophysiological and clinical motor sciences.

Control of isometric grip forces

Historically, the typical way to measure the force generated by the fingers or the whole hand was via compression of springs (e.g. Du Mensil de Rochemont, 1926). In addition, objects with known weights were used to load the hand or the fingers with a defined force (Truschel, 1913).

Type
Chapter
Information
Sensorimotor Control of Grasping
Physiology and Pathophysiology
, pp. 3 - 19
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashe, J. (1997). Force and the motor cortex. Behav Brain Res, 87, 255–269.CrossRefGoogle ScholarPubMed
Augurelle, A. S., Smith, A. M., Lejeune, T. & Thonnard, J. L. (2003). Importance of cutaneous feedback in maintaining a secure grip during manipulation of hand-held objects. J Neurophysiol, 89, 665–671.CrossRefGoogle ScholarPubMed
Avarello, M., Bolsinger, P. & Mai, N. (1988). Fast repetitive force changes in hemiparetic and cerebellar patients. Eur Arch Psychiatry Neurolog Sci, 237, 135–138.CrossRefGoogle ScholarPubMed
Baur, B., Schenk, T., Fürholzer, W.et al. (2006). Modified pen grip in the treatment of writer's cramp. Hum Mov Sci, 25, 464–473.CrossRefGoogle ScholarPubMed
Blank, R., Heizer, W. & Voss, H. v. (1999). Externally guided control of static grip forces by visual feedback – age and task effects in 3–6-year-old children and in adults. Neurosci Lett, 271, 41–44.CrossRefGoogle ScholarPubMed
Blank, R., Heizer, W. & Voss, H. v. (2000). Development of externally guided grip force modulation in man. Neurosci Lett, 286, 187–190.CrossRefGoogle ScholarPubMed
Bohannon, R. W. (1989). Is the measurement of muscle strength appropriate in patients with brain lesions? A special communication. Phys Ther, 69, 225–230.CrossRefGoogle ScholarPubMed
Boissy, P., Bourbonnais, D., Carlotti, M. M., Gravel, D. & Arsenault, B. A. (1999). Maximal grip force in chronic stroke subjects and its relationship to global upper extremity function. Clin Rehabil, 13, 354–362.CrossRefGoogle ScholarPubMed
Cadoret, G. & Smith, A. M. (1997). Comparison of the neuronal-activity in the SMA and the ventral cingulate cortex during prehension in the monkey. J Neurophysiol, 77, 153–166.CrossRefGoogle ScholarPubMed
Cole, K. J., Rotella, D. L. & Harper, J. G. (1999). Mechanisms for age-related changes of fingertip forces during precision gripping and lifting in adults. J Neurosci, 19, 3238–3247.CrossRefGoogle ScholarPubMed
Cole, K. J., Steyers, C. M. & Graybill, E. K. (2003). The effects of graded compression of the median nerve in the carpal canal on grip force. Exp Brain Res, 148, 150–157.CrossRefGoogle ScholarPubMed
Cramer, S. C., Weisskoff, R. M., Schaechter, J. D.et al. (2002). Motor cortex activation is related to force of squeezing. Hum Brain Mapp, 16, 197–205.CrossRefGoogle ScholarPubMed
Cutkosky, M. R. & Howe, R. D. (1990). Human grasp choice and robotic grasp analysis. In Iberall, T. & Venkataraman, S. T. (Eds.), Dextrous Robot Hands (pp. 5–31). New York, NY: Springer.Google Scholar
Delevoye-Turrell, Y. N., Li, F. X. & Wing, A. M. (2003). Efficiency of grip force adjustments for impulsive loading during imposed and actively produced collisions. Quar J Exp Psychol A Hum Exp Psychol, 56 A, 1113–1128.CrossRefGoogle ScholarPubMed
Du Mensil de Rochemont, R. (1926). Über die dritte Komponente für die Wahrnehmung von Gliederbewegungen. Z Biol, 84, 522ff.Google Scholar
Duque, J., Thonnard, J. L., Vandermeeren, Y.et al. (2003). Correlation between impaired dexterity and corticospinal tract dysgenesis in congenital hemiplegia. Brain, 126, 732–747.CrossRefGoogle ScholarPubMed
Eliasson, A. C., Gordon, A. M. & Forssberg, H. (1992). Impaired anticipatory control of isometric forecs during grasping by children with cerebral palsy. Dev Med Child Neurol, 34, 216–225.CrossRefGoogle ScholarPubMed
Fees, E. E. (1986). The need for reliability and validity in hand assessment instruments. J Hand Surg, 11A, 621–622.CrossRefGoogle Scholar
Fellows, S. J., Schwarz, M. & Noth, J. (1998). Precision grip and Parkinson's disease. Brain, 121, 1771–1784.CrossRefGoogle ScholarPubMed
Fellows, S. J., Ernst, J., Schwarz, M., Töpper, R. & Noth, J. (2001). Precision grip deficits in cerebellar disorders in man. Clin Neurophysiol, 112, 1793–1802.CrossRefGoogle ScholarPubMed
Flanagan, J. R. & Wing, A. M. (1993). Modulation of grip force with load force during point-to-point arm movements. Exp Brain Res, 95, 131–143.CrossRefGoogle ScholarPubMed
Flanagan, J. R. & Tresilian, J. (1994). Grip-load force coupling: a general control strategy for transporting objects. J Exp Psychol Hum Perception Perform, 20, 944–957.CrossRefGoogle ScholarPubMed
Flanagan, J. R. & Wing, A. M. (1995). The stability of precision grip forces during cyclic arm movements with a hand held load. Exp Brain Res, 105, 455–464.Google ScholarPubMed
Flanagan, J. R. & Wing, A. M. (1997). The role of internal models in motion planning and control – evidence from grip force adjustments during movements of hand-held loads. J Neurosci, 17, 1519–1528.CrossRefGoogle ScholarPubMed
Flanagan, J. R. & Johansson, R. S. (2002). Hand movements. In Encyclopedia of the Human Brain (pp. 399–414). New York, NY: Elsevier Science.Google Scholar
Flanagan, J. R., Vetter, P., Johansson, R. S. & Wolpert, D. M. (2003). Prediction precedes control in motor learning. Curr Biol, 13, 146–150.CrossRefGoogle ScholarPubMed
Forssberg, H., Eliasson, A. C., Kinoshita, H., Johansson, R. S. & Westling, G. (1991). Development of human precision grip. I: Basic coordination of force. Exp Brain Res, 85, 451–457.CrossRefGoogle Scholar
Forssberg, H., Kinoshita, H., Eliasson, A. C.et al. (1992). Development of human precision grip. 2. Anticipatory control of isometric forces targeted for object's weight. Exp Brain Res, 90, 393–398.Google ScholarPubMed
Forssberg, H., Eliasson, A.-C., Redon-Zouitenn, C., Mercuri, E. & Dubowitz, L. (1999). Impaired grip-lift synergy in children with unilateral brain lesions. Brain, 122, 1157–1168.CrossRefGoogle ScholarPubMed
Freund, H. J. & Büdingen, H. J. (1978). The relationship between speed and amplitude of the fastest voluntary contractions of human arm muscles. Exp Brain Res, 31, 1–12.CrossRefGoogle ScholarPubMed
Ghez, C. & Gordon, J. (1987). Trajectory control in targeted force impulses. I. Role of opposing muscles. Exp Brain Res, 67, 225–240.CrossRefGoogle ScholarPubMed
Gordon, A. M. & Duff, S. V. (1999). Fingertip forces during object manipulation in children with hemiplegic cerebral-palsy. I. Anticipatory scaling. Dev Med Child Neurol, 41, 166–175.CrossRefGoogle ScholarPubMed
Gordon, A. M., Forssberg, H., Johansson, R. S., Eliasson, A. C. & Westling, G. (1992). Development of human precision grip. 3. Integration of visual size cues during the programming of isometric forces. Exp Brain Res, 90, 399–403.Google ScholarPubMed
Gordon, A. M., Ingvarsson, P. E. & Forssberg, H. (1997). Anticipatory control of manipulative forces in Parkinson's disease. Exp Neurol, 145, 477–488.CrossRefGoogle ScholarPubMed
Gordon, A. M., Quinn, L., Reilmann, R. & Marder, K. (2000). Coordination of prehensile forces during precision grip in Huntington's disease. Exp Neurol, 163, 136–148.CrossRefGoogle ScholarPubMed
Gordon, J. & Ghez, C. (1987a). Trajectory control in targeted force impulses. II. Pulse height control. Exp Brain Res, 67, 241–252.CrossRefGoogle ScholarPubMed
Gordon, J. & Ghez, C. (1987b). Trajectory control in targeted force impulses. III. Compensatory adjustments for initial errors. Exp Brain Res, 67, 253–269.CrossRefGoogle ScholarPubMed
Hanten, W. P., Chen, W. Y., Austin, A. A.et al. (1999). Maximum grip strength in normal subjects from 20 to 64 years of age. J Hand Ther, 12, 193–200.CrossRefGoogle ScholarPubMed
Harth, A. & Vetter, W. R. (1994). Grip and pinch strength among selected adult occupational groups. Occup Ther Intern, 1, 13–28.CrossRefGoogle Scholar
Hepp-Reymond, M. C., Wyss, U. R. & Anner, R. (1978). Neuronal coding of static force in the primate motor cortex. J Physiol (Paris), 74, 287–291.Google ScholarPubMed
Hermsdörfer, J. & Mai, N. (1996). Disturbed grip force control following cerebral lesions. J Hand Ther, 9, 33–40.CrossRefGoogle ScholarPubMed
Hermsdörfer, J., Marquardt, C., Philipp, J.et al. (2000). Moving weightless objects: grip force control during microgravity. Exp Brain Res, 132, 52–64.CrossRefGoogle ScholarPubMed
Hermsdörfer, J., Hagl, E., Nowak, D. A. & Marquardt, C. (2003). Grip force control during object manipulation in cerebral stroke. Clin Neurophysiol, 114, 915–929.CrossRefGoogle ScholarPubMed
Hermsdörfer, J., Hagl, E. & Nowak, D. A. (2004). Deficits of anticipatory grip force control after damage to peripheral and central sensorimotor systems. Hum Mov Sci, 23, 643–662.CrossRefGoogle ScholarPubMed
Jenmalm, P. & Johansson, R. S. (1997). Visual and somatosensory information about object shape control manipulative fingertip forces. J Neurosci, 17, 4486–4499.CrossRefGoogle ScholarPubMed
Jenmalm, P., Goodwin, A. W. & Johansson, R. S. (1998). Control of grasp stability when humans lift objects with different surface curvatures. J Neurophysiol, 79, 1643–1652.CrossRefGoogle ScholarPubMed
Johansson, R. S. (1996). Sensory control of dexterous manipulation in humans. In Wing, A. M., Haggard, P. & Flanagan, J. R. (Eds.), Hand and Brain (pp. 381–414). San Diego, CA: Academic Press.Google Scholar
Johansson, R. S. & Westling, G. (1984). Roles of glabrous skin receptors and sensorimotor memory control of precision grip when lifting rougher or more slippery objects. Exp Brain Res, 56, 550–564.CrossRefGoogle ScholarPubMed
Johansson, R. S. & Westling, G. (1988). Programmed and triggered actions to rapid load changes during precision grip. Exp Brain Res, 71, 72–86.CrossRefGoogle ScholarPubMed
Jones, L. A. (1989). The assessment of hand function: a critical review of techniques. J Hand Surg, 14, 221–228.CrossRefGoogle ScholarPubMed
Kinoshita, H., Backstrom, L., Flanagan, J. R. & Johansson, R. S. (1997). Tangential torque effects on the control of grip forces when holding objects with a precision grip. J Neurophysiol, 78, 1619–1630.CrossRefGoogle ScholarPubMed
Kriz, G., Hermsdörfer, J., Marquardt, C. & Mai, N. (1995). Feedback-based training of grip force control in patients with brain damage. Arch Phys Med Rehab, 76, 653–659.CrossRefGoogle ScholarPubMed
Lazarus, J. A. C. & Haynes, J. M. (1997). Isometric pinch force control and learning in older adults. Exp Aging Res, 23, 179–199.CrossRefGoogle ScholarPubMed
MacDermid, J. C., Evenhuis, W. & Louzon, M. (2001). Inter-instrument reliability of pinch strength scores. J Hand Ther, 14, 36–42.CrossRefGoogle ScholarPubMed
Mai, N., Bolsinger, P., Avarello, M., Diener, H.-C. & Dichgans, J. (1988). Control of isometric finger force in patients with cerebellar disease. Brain, 111, 973–998.CrossRefGoogle ScholarPubMed
Maier, M. A. &Hepp-Reymond, M. C. (1995). EMG activation patterns during force production in precision grip. I. Contribution of 15 finger muscles to isometric force. Exp Brain Res, 103, 108–122.CrossRefGoogle Scholar
Mathiowetz, V., Kashman, N., Volland, G.et al. (1985). Grip and pinch strength: normative data for adults. Arch Phys Med Rehab, 66, 69–74.Google ScholarPubMed
Miall, R. C., Weir, D. J. & Stein, J. F. (1985). Visuomotor tracking with delayed visual feedback. Neuroscience, 16, 511–520.CrossRefGoogle ScholarPubMed
Monzee, J., Lamarre, Y. & Smith, A. M. (2003). The effects of digital anesthesia on force control using a precision grip. J Neurophysiol, 89, 672–683.CrossRefGoogle ScholarPubMed
Müller, F. & Dichgans, J. (1994). Dyscoordination of pinch and lift forces during grasp in patients with cerebellar lesions. Exp Brain Res, 101, 485–492.CrossRefGoogle ScholarPubMed
Napier, J. R. (1956). The prehensile movements of the human hand. J Bone Joint Surg, 38, 902–913.CrossRefGoogle ScholarPubMed
Navas, F. & Stark, L. (1968). Sampling or intermittency in hand control system dynamics. Biophys J, 8, 252–302.CrossRefGoogle ScholarPubMed
Nowak, D. A. & Hermsdörfer, J. (2002). Coordination of grip and load forces during vertical point-to-point movements with a grasped object in Parkinson's disease. Behav Neurosci, 116, 837–850.CrossRefGoogle ScholarPubMed
Nowak, D. A. & Hermsdörfer, J. (2003a). Digit cooling influences grasp efficiency during manipulative tasks. Eur J Appl Physiol, 89, 127–133.CrossRefGoogle ScholarPubMed
Nowak, D. A. & Hermsdörfer, J. (2003b). Selective deficits of grip force control during object manipulation in patients with reduced sensibility of the grasping digits. Neurosci Res, 47, 65–72.CrossRefGoogle ScholarPubMed
Nowak, D. A. & Hermsdörfer, J. (2004). Predictability influences finger force control when catching a free-falling object. Exp Brain Res, 154, 411–416.CrossRefGoogle Scholar
Nowak, D. A. & Hermsdörfer, J. (2005). Grip force behavior during object manipulation in neurological disorders: toward an objective evaluation of manual performance deficits. Mov Disord, 20, 11–25.CrossRefGoogle ScholarPubMed
Nowak, D. A. & Hermsdörfer, J. (2006). Objective evaluation of manual performance deficits in neurological movement disorders. Brain Res Brain Res Rev, 51, 108–124.CrossRefGoogle ScholarPubMed
Nowak, D. A., Hermsdörfer, J., Glasauer, S.et al. (2001). The effects of digital anaesthesia on predictive grip force adjustments during vertical movements of a grasped object. Eur J Neurosci, 14, 756–762.CrossRefGoogle ScholarPubMed
Nowak, D. A., Hermsdörfer, J., Marquardt, C. & Fuchs, H. H. (2002). Load force coupling during discrete vertical movements in patients with cerebellar atrophy. Exp Brain Res, 145, 28–39.CrossRefGoogle ScholarPubMed
Nowak, D. A., Hermsdörfer, J. & Topka, H. (2003). Deficits of predictive grip force control during object manipulation in acute stroke. J Neurol, 250, 850–860.CrossRefGoogle ScholarPubMed
Nowak, D. A., Glasauer, S. & Hermsdörfer, J. (2004a). How predictive is grip force control in the complete absence of somatosensory feedback?Brain, 127, 182–192.CrossRefGoogle ScholarPubMed
Nowak, D. A., Hermsdörfer, J., Schneider, E. & Glasauer, S. (2004b). Moving objects in a rotating environment: rapid prediction of Coriolis and centrifugal force perturbations. Exp Brain Res, 157, 241–254.CrossRefGoogle Scholar
Nowak, D. A., Hermsdörfer, J., Timmann, D., Rost, K. & Topka, H. (2005). Impaired generalization of weight-related information during grasping in cerebellar degeneration. Neuropsychologia, 43, 20–27.CrossRefGoogle ScholarPubMed
Philipp, J. (1999). Ein Meßsystem zur Untersuchung der Feinmotorik beim Greifen und Bewegen von Gegenständen. Dissertation, aus der Neurologischen Klinik der Ludwig-Maximilians-Universität München, erworben an der Medizinischen Fakultät der LMU München, München.
Phillips, C. G. (1986). Movements of the Hand (Sherrington Lectures, vol. 17). Herndon, VA: Humanities Pr.Google Scholar
Raghavan, P., Krakauer, J. W. & Gordon, A. M. (2006). Impaired anticipatory control of fingertip forces in patients with a pure motor or sensorimotor lacunar syndrome. Brain, 129, 1415–1425.CrossRefGoogle ScholarPubMed
Rost, K. R., Nowak, D. A., Timman, D. T. & Hermsdörfer, J. (2005). Preserved and impaired aspects of predictive grip force control in cerebellar patients. Clin Neurophysiol, 116, 1405–1414.CrossRefGoogle ScholarPubMed
Rothwell, J. C., Traub, M. M., Day, B. L.et al. (1982). Manual motor performance in a deafferented man. Brain, 105, 515–542.CrossRefGoogle Scholar
Schenk, T., Baur, B., Steidle, B. & Marquardt, C. (2004). Does training improve writer's cramp? An evaluation of a behavioural treatment approach using kinematic analysis. J Hand Ther, 17, 349–363.CrossRefGoogle ScholarPubMed
Schwarz, M., Fellows, S. J., Schaffrath, C. & Noth, J. (2001). Deficits in sensorimotor control during precise hand movements in Huntington's disease. Clin Neurophysiol, 112, 95–106.CrossRefGoogle ScholarPubMed
Stevens, J. C. & Mack, J. D. (1959). Scales of apparent force. J Exp Psychol, 58/5, 405–413.CrossRefGoogle ScholarPubMed
Truschel, L. (1913). Experimentelle Untersuchung über Kraftempfindungen bei Federspannung und Gewichtshebungen. Archiv Ges Psychol, 28, 183–273.Google Scholar
Turrell, Y. N., Li, F. X. & Wing, A. M. (1999). Grip force dynamics in the approach to a collision. Exp Brain Res, 128, 86–91.CrossRefGoogle ScholarPubMed
Ulrich, R., Wing, A. M. & Rinkenauer, G. (1995). Amplitude and duration scaling of brief isometric force pulses. J Exp Psychol Hum Percept Perform, 21, 1457–1472.CrossRefGoogle Scholar
Vaillancourt, D. E., Slifkin, A. B. & Newell, K. M. (2001). Visual control of isometric force in Parkinson's disease. Neuropsychologia, 39, 1410–1418.CrossRefGoogle ScholarPubMed
Vaillancourt, D. E., Larsson, L. & Newell, K. M. (2003). Effects of aging on force variability, single motor unit discharge patterns, and the structure of 10, 20, and 40 Hz EMG activity. Neurobiol Aging, 24, 25–35.CrossRefGoogle ScholarPubMed
Wenzelburger, R., Zhang, B. R., Pohle, S.et al. (2002). Force overflow and levodopa-induced dyskinesias in Parkinson's disease. Brain, 125, 871–879.CrossRefGoogle ScholarPubMed
Wenzelburger, R., Kopper, F., Frenzel, A.et al. (2005). Hand coordination following capsular stroke. Brain, 128, 64–74.CrossRefGoogle ScholarPubMed
Westling, G. & Johansson, R. S. (1984). Factors influencing the force control during precision grip. Exp Brain Res, 53, 277–284.CrossRefGoogle ScholarPubMed
Wolpert, D. M. & Flanagan, J. R. (2001). Motor prediction. Curr Biol, 11, 729–732.CrossRefGoogle ScholarPubMed
Zatsiorsky, V. M., Gao, F. & Latash, M. L. (2003). Prehension synergies: effects of object geometry and prescribed torques. Exp Brain Res, 148, 77–87.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×