Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-28T12:29:04.241Z Has data issue: false hasContentIssue false

3 - Oxygen uptake and transport in water breathers

Published online by Cambridge University Press:  05 June 2012

Göran E. Nilsson
Affiliation:
Universitetet i Oslo
Get access

Summary

Introduction

Empirical studies of O2 uptake and blood O2 transport in fish began at least 100 years ago with the pioneering work of August Krogh (Krogh, 1904; Krogh and Leitch, 1919), who in 1941 published the seminal book on comparative respiratory physiology (Comparative Physiology of Respiratory Mechanisms, 1941). Catalyzed by the research of later-generation visionaries (van Dam, Scholander, Dejours, Johansen, Hughes, Shelton, Piiper, Randall, and Simpson), extensive research continues to examine the mechanisms of O2 uptake and transport within the blood of fish. In this chapter we focus our attention on O2 uptake and blood O2 transport in entirely aquatic water-breathing fishes; Chapter 4 is devoted to modes of O2 uptake in air-breathing fishes. Although some water-breathing species use skin as a supplementary route of O2 uptake (Graham, 1997) (see Chapter 6), the gill is the predominant organ for gas transfer. Thus, in this chapter we will focus exclusively on the gill. Numerous reviews have been written previously on branchial O2 uptake and blood O2 transport (e.g. Jones and Randall, 1978; Randall et al., 1982; Randall and Daxboeck, 1984; Malte and Weber, 1985; Butler and Metcalfe, 1988; Weber and Jensen, 1988; Cameron, 1989; Nikinmaa and Tufts, 1989; Perry and Wood, 1989; Piiper, 1989; Piiper, 1990; Randall, 1990; Thomas and Motais, 1990; Jensen, 1991; Nikinmaa, 1992; Thomas and Perry, 1992; Fritsche and Nilsson, 1993; Perry and McDonald, 1993; Nikinmaa and Boutilier, 1995; Val, 1995; Brauner and Randall, 1996; Gilmour, 1997; Nikinmaa, 1997; Val, 2000; Nikinmaa, 2001; Perry and Gilmour, 2002; Jensen, 2004; Graham, 2006; Nikinmaa, 2006).

Type
Chapter
Information
Respiratory Physiology of Vertebrates
Life With and Without Oxygen
, pp. 49 - 94
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avella, M., Masoni, A., Bornancin, M. and Mayer-Gostan, N. (1987). Gill morphology and sodium influx in the rainbow trout (Salmo gairdneri) acclimated to artificial freshwater environments. J. Exp. Zool. 241, 159–69.CrossRefGoogle Scholar
Bailly, Y., Dunel-Erb, S. and Laurent, P. (1992). The neuroepithelial cells of the fish gill filament – indolamine-immunocytochemistry and innervation. Anat. Rec. 233, 143–61.CrossRefGoogle ScholarPubMed
Baroin, A., Garcia-Romeu, F., Lamarre, T. and Motais, R. (1984). A transient sodium-hydrogen exchange system induced by catecholamines in erythrocytes of rainbow trout, Salmo gairdneri. J. Physiol. 356, 21–31.CrossRefGoogle ScholarPubMed
Bartels, H. (1998). The gills of hagfishes. In The Biology of Hagfishes, ed. Jorgensen, J. M., Lomholt, J. P., Weber, R. E., and Malte, H.. London: Chapman & Hall, pp. 205–19.CrossRefGoogle Scholar
Berenbrink, M. (2007). Historical reconstructions of evolving physiological complexity: O2 secretion in the eye and swimbladder of fishes. J. Exp. Biol. 209, 1641–52.CrossRefGoogle Scholar
Berenbrink, M., Koldkjær, P., Kepp, O. and Cossins, A. R. (2005). Evolution of oxygen secretion in fishes and the emergence of a complex physiological system. Science 307, 1752–7.CrossRefGoogle ScholarPubMed
Bernier, N. J., Fuentes, J. and Randall, D. J. (1996). Adenosine receptor blockade and hypoxia-tolerance in rainbow trout and Pacific hagfish II. Effects on plasma catecholamines and erythrocytes. J. Exp. Biol. 199, 497–507.Google ScholarPubMed
Bindon, S. F., Fenwick, J. C. and Perry, S. F. (1994b). Branchial chloride cell proliferation in the rainbow trout, Oncorhynchus mykiss: implications for gas transfer. Can. J. Zool. 72, 1395–402.CrossRefGoogle Scholar
Bindon, S. D., Gilmour, K. M., Fenwick, J. C. and Perry, S. F. (1994a). The effect of branchial chloride cell proliferation on respiratory function in the rainbow trout, Oncorhynchus mykiss. J. Exp. Biol. 197, 47–63.Google ScholarPubMed
Booth, J. H. (1979). Circulation in trout gills: the relationship between branchial perfusion and the width of the lamellar blood space. Can. J. Zool. 57, 2183–5.CrossRefGoogle Scholar
Borgese, F., Sardet, C., Cappadoro, M., Pouyssegur, J. and Motais, R. (1992). Cloning and expression of a cAMP-activated Na+/H+ exchanger – evidence that the cytoplasmic domain mediates hormonal regulation. Proc. Natl. Acad. Sci. USA 89, 6765–9.CrossRefGoogle ScholarPubMed
Boutilier, R. G. and Ferguson, R. A. (1989). Nucleated red cell function: metabolism and pH regulation. Can. J. Zool. 67, 2986–93.CrossRefGoogle Scholar
Boutilier, R. G., Iwama, G. K. and Randall, D. J. (1986). The promotion of catecholamine release in rainbow trout, Salmo gairdneri, by acute acidosis: Interactions between red cell pH and haemoglobin oxygen-carrying capacity. J. Exp. Biol. 123, 145–57.Google ScholarPubMed
Boutilier, R. G., Dobson, G., Hoeger, U. and Randall, D. J. (1988). Acute exposure to graded levels of hypoxia in rainbow trout (Salmo gairdneri): metabolic and respiratory adaptations. Respir. Physiol. 71, 69–82.CrossRefGoogle ScholarPubMed
Brauner, C. J. and Randall, D. J. (1996). The interaction between oxygen and carbon dioxide movements in fishes. Comp. Biochem. Physiol. A 113, 83–90.CrossRefGoogle Scholar
Brauner, C. J. and Randall, D. J. (1998). The linkage between oxygen and carbon dioxide transport. In Fish Physiology vol. 17 Fish Respiration, ed. Perry, S. F., and Tufts, B. L.San Diego: Academic Press, pp. 283–319.Google Scholar
Brauner, C. J., Gilmour, K. M. and Perry, S. F. (1996). Effect of haemoglobin oxygenation on Bohr proton release and CO2 excretion in the rainbow trout. Respir. Physiol. 106, 65–70.CrossRefGoogle ScholarPubMed
Brauner, C. J., Matey, V., Wilson, J. M., Bernier, N. J. and Val, A. L. (2004). Transition in organ function during the evolution of air-breathing; insights from Arapaima gigas, an obligate air-breathing teleost from the Amazon. J. Exp. Biol. 207, 1433–8.CrossRefGoogle ScholarPubMed
Brill, R. W. and Bushnell, P. G. (1991). Effects of open- and closed-system temperature changes on blood oxygen dissociation curves of skipjack tuna, Katsuwonus pelamis, and yellowfin tuna, Thunnus albacares. Can. J. Zool. 69, 1814–21.CrossRefGoogle Scholar
Brittain, T. (2005). Root effect hemoglobins. J. Inorg. Biochem. 99, 120–9.CrossRefGoogle ScholarPubMed
Burggren, W. W. (1982). ‘Air gulping’ improves blood oxygen transport during aquatic hypoxia in the goldfish Carassius auratus. Physiol. Zool. 55, 327–34.CrossRefGoogle Scholar
Burleson, M. L. and Milsom, W. K. (1993). Sensory receptors in the 1st gill arch of rainbow trout. Resp. Physiol. 93, 97–110.CrossRefGoogle Scholar
Burleson, M. L. and Smatresk, N. J. (1990a). Effects of sectioning cranial nerves IX and X on cardiovascular and ventilatory reflex responses to hypoxia and NaCN in channel catfish. J. Exp. Biol. 154, 407–20.Google Scholar
Burleson, M. L. and Smatresk, N. J. (1990b). Evidence for two oxygen-sensitive chemoreceptor loci in channel catfish, Ictalurus punctatus. Physiol. Zool. 63, 208–21.CrossRefGoogle Scholar
Burleson, M. L.Mercer, S. E. and Wilk-Blaszczak, M. A. (2006). Isolation and characterization of putative O2 chemoreceptor cells from the gills of channel catfish (Ictalurus punctatus). Brain Res. 1092, 100–7.CrossRefGoogle Scholar
Burleson, M. L., Smatresk, N. J. and Milsom, W. K. (1992). Afferent inputs associated with cardioventilatory control in fish. In Fish Physiology vol. XIIB The Cardiovascular System, ed. Hoar, W. S., Randall, D. J. and Farrell, A. P.San Diego: Academic Press, pp. 389–423.Google Scholar
Bushnell, P. G. and Jones, D. R. (1994). Cardiovascular and respiratory physiology of tuna: adaptations for support of exceptionally high metabolic rates. Env. Biol. Fish. 40, 303–18.CrossRefGoogle Scholar
Butler, P. J. and Metcalfe, J. D. (1988). Cardiovascular and respiratory systems. In Physiology of Elasmobranch Fishes, ed. Shuttleworth, T. J.. Berlin: Springer-Verlag, pp. 1–47.Google Scholar
Butler, P. J., Taylor, E. W. and Davison, W. (1979). The effect of long term, moderate hypoxia on acid-base balance, plasma catecholamines and possible anaerobic end products in the unrestrained dogfish Scyliorhinus canicula. J. Comp. Physiol. 132, 297–303.Google Scholar
Cameron, J. N. (1989). The Respiratory Physiology of Animals. New York: Oxford University Press, pp. 1–353.Google Scholar
Cameron, J. N. and Davis, J. C. (1970). Gas exchange in rainbow trout (Salmo gairdneri) with varying blood oxygen capacity. J. Fish Res. Bd. Can. 27, 1069–85.CrossRefGoogle Scholar
Cech, J. J., Jr., Laurs, R. M. and Graham, J. B. (1984). Temperature-induced changes in blood gas equilibria in the albacore, Thunnus alalunga, a warm-bodied tuna. J. Exp. Biol. 109, 21–34.Google Scholar
Chou, C.-F., Tohari, S., Brenner, S. and Venkatesh, B. (2004). Erythropoietin gene from a teleost fish, Fugu rubripes. Blood 104, 1498–503.CrossRefGoogle ScholarPubMed
Cossins, A. R. and Richardson, P. A. (1985). Adrenalin-induced Na+/H+ exchange in trout erythrocytes and its effects upon oxygen-carrying capacity. J. Exp. Biol. 118, 229–46.Google Scholar
Davie, P. S. and Daxboeck, C. (1982). Effect of pulse pressure on fluid exchange between blood and tissues in trout gills. Can. J. Zool. 60, 1000–6.CrossRefGoogle Scholar
Davis, J. C. and Cameron, J. N. (1971). Water flow and gas exchange at the gills of rainbow trout, Salmo gairdneri. J. Exp. Biol. 54, 1–18.Google ScholarPubMed
Daxboeck, C. and Holeton, G. F. (1978). Oxygen receptors in the rainbow trout, Salmo gairdneri. Can. J. Zool. 56, 1254–9.CrossRefGoogle Scholar
Desforges, P. R., Harman, S. S., Gilmour, K. M. and Perry, S. F. (2002). The sensitivity of CO2 excretion to changes in blood flow in rainbow trout is determined by carbonic anhydrase availability. Am. J. Physiol. 282, R501–8.Google ScholarPubMed
Dobson, G., Wood, S. C., Daxboeck, C. and Perry, S. F. (1986). Intracellular buffering and oxygen transport in the Pacific blue marlin (Makaira nigricans): adaptations to high-speed swimming. Physiol. Zool. 59, 150–6.CrossRefGoogle Scholar
Dunel-Erb, S., Bailly, Y. and Laurent, P. (1982). Neuroepithelial cells in fish gill primary lamellae. J. Appl. Physiol. 53, 1342–53.CrossRefGoogle ScholarPubMed
Egginton, S. (1997). A comparison of the response to induced exercise in red- and white-blooded Antarctic fishes. J. Comp. Physiol. B 167, 129–34.CrossRefGoogle Scholar
Evans, D. H., Piermarini, P. M. and Choe, K. P. (2005). The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol. Rev. 85, 97–177.CrossRefGoogle Scholar
Fänge, R. and Nilsson, S. (1985). The fish spleen: structure and function. Experientia 41, 152–7.CrossRefGoogle ScholarPubMed
Farrell, A. P. (2007). Tribute to P. L. Lutz: a message from the heart – why hypoxic bradycardia in fishes?J. Exp. Biol. 210, 1715–25.CrossRefGoogle Scholar
Farrell, A. P., Sobin, S. S., Randall, D. J. and Crosby, S. (1980). Intralamellar blood flow patterns in fish gills. Am. J. Physiol. 239, R428–36.Google ScholarPubMed
Ferguson, R. A., Tufts, B. L. and Boutilier, R. G. (1989). Energy metabolism in trout red cells: consequences of adrenergic stimulation in vivo and in vitro. J. Exp. Biol. 143, 133–47.Google ScholarPubMed
Fievet, B., Caroff, J. and Motais, R. (1990). Catecholamine release controlled by blood oxygen tension during deep hypoxia in trout: effect on red blood cell Na/H exchanger activity. Respir. Physiol. 79, 81–90.CrossRefGoogle ScholarPubMed
Frangioni, G., Berti, R. and Borgioli, G. (1997). Hepatic respiratory compensation and haematological changes in the cave cyprinid, Phreatichthys andruzzii. J. Comp. Physiol. B 167, 461–7.CrossRefGoogle Scholar
Fritsche, R. and Nilsson, S. (1989). Cardiovascular responses to hypoxia in the Atlantic cod, Gadus morhua. Exp. Biol. 48, 153–60.Google ScholarPubMed
Fritsche, R. and Nilsson, S. (1990). Autonomic nervous control of blood pressure and heart rate during hypoxia in the cod, Gadus morhua. J. Comp. Physiol. B 160, 287–92.CrossRefGoogle Scholar
Fritsche, R. and Nilsson, S. (1993). Cardiovascular and ventilatory control during hypoxia. In Fish Ecophysiology, ed. Rankin, J. C. and Jensen, F. B.. London: Chapman & Hall, pp. 180–206.CrossRefGoogle Scholar
Gallaugher, P. and Farrell, A. P. (1998). Hematocrit and blood oxygen-carrying capacity. In Fish Physiology vol. 17 Fish Respiration, ed. Perry, S. F. and Tufts, B. L.. San Diego: Academic Press, pp. 185–227.Google Scholar
Gallaugher, P., Axelsson, M. and Farrell, A. P. (1992). Swimming performance and haematological variables in splenectomized rainbow trout, Oncorhynchus mykiss. J. Exp. Biol. 171, 301–14.Google Scholar
Gallaugher, P., Thorarensen, H. and Farrell, A. P. (1995). Hematocrit in oxygen transport and swimming in rainbow trout (Oncorhynchus mykiss). Respir. Physiol. 102, 279–92.CrossRefGoogle Scholar
Gilmour, K. M. (1997). Gas exchange. In The Physiology of Fishes, ed. Evans, D. H.. Boca Raton: CRC Press, pp. 101–27.Google Scholar
Gilmour, K. M. (2001). The CO2/pH ventilatory drive in fish. Comp. Biochem. Physiol. A 130, 219–40.CrossRefGoogle Scholar
Gilmour, K. M. and MacNeill, G. K. (2003). Apparent diffusion limitations on branchial CO2 transfer are revealed by severe experimental anaemia in brown bullhead (Ameiurus nebulosus). Comp. Biochem. Physiol. A 135, 165–75.CrossRefGoogle Scholar
Gilmour, K. M. and Perry, S. F. (2007). Branchial chemoreceptor regulation of cardiorespiratory function. In Fish Physiology Vol. 25 Sensory Systems Neuroscience, ed. Zielinski, B. and Hara, T. J.San Diego: Academic Press, pp. 97–151.Google Scholar
Gilmour, K. M., Bayaa, M., Kenney, L., McNeill, B. and Perry, S. F. (2007). Type IV carbonic anhydrase is present in the gills of spiny dogfish (Squalus acanthias). Am. J. Physiol. 292, R556–67.Google Scholar
Gollock, M. J., Currie, S., Petersen, L. H. and Gamperl, A. K. (2006). Cardiovascular and haematological responses of Atlantic cod (Gadus morhua) to acute temperature increase. J. Exp. Biol. 209, 2961–70.CrossRefGoogle Scholar
Goniakowska-Witalinska, L., Zaccone, G., Fasulo, S., Mauceri, A., Licata, A. and Youson, J. (1995). Neuroendocrine cells in the gills of the bowfin Amia calva. An ultrastructural and immunocytochemical study. Folia Histochem. Cytobiol. 33, 171–7.Google ScholarPubMed
Graham, J. B. (1997). Air-breathing Fishes. San Diego: Academic Press.Google Scholar
Graham, J. B. (2006). Aquatic and aerial respiration. In The Physiology of Fishes, ed. Evans, D. H. and Claiborne, J. B.Boca Raton: CRC Press, pp. 85–152.Google Scholar
Greaney, G. S. and Powers, D. A. (1978). Allosteric modifiers of fish hemoglobins: in vitro and in vivo studies of the effect of ambient oxygen and pH on erythrocyte ATP concentrations. J. Exp. Zool. 203, 339–50.CrossRefGoogle ScholarPubMed
Greco, A. M., Fenwick, J. C. and Perry, S. F. (1996). The effects of softwater acclimation on gill morphology in the rainbow trout, Oncorhynchus mykiss. Cell. Tiss. Res. 285, 75–82.CrossRefGoogle Scholar
Greco, A. M., Gilmour, K. M., Fenwick, J. C. and Perry, S. F. (1995). The effects of soft-water acclimation on respiratory gas transfer in the rainbow trout, Oncorhynchus mykiss. J. Exp. Biol. 198, 2557–67.Google Scholar
Hedrick, M. S. and Jones, D. R. (1999). Control of gill ventilation and air breathing in the bowfin Amia Calva. J. Exp. Biol. 202, 87–94.Google ScholarPubMed
Hemmingsen, E. A., Douglas, E. L., Johansen, K. and Millard, R. W. (1972). Aortic blood flow and cardiac output in the hemoglobin-free fish Chaenocephalus aceratus. Comp. Biochem. Physiol. 43A, 1045–51.CrossRefGoogle Scholar
Hill, R. W., Wyse, G. A. and Anderson, M. (2004). Animal Physiology. Sunderland, Massachusetts: Sinauer Associates.Google Scholar
Holeton, G. F. (1970). Oxygen uptake and circulation by a hemoglobinless Antarctic fish (Chaenocephalus aceratus Lonnberg) compared with three red-blooded Antarctic fish. Comp. Biochem. Physiol. 34, 457–71.CrossRefGoogle Scholar
Holeton, G. F. and Randall, D. J. (1967). Changes in blood pressure in the rainbow trout during hypoxia. J. Exp. Biol. 46, 297–305.Google ScholarPubMed
Hughes, G. M. (1966). The dimensions of fish gills in relation to their function. J. Exp. Biol. 45, 177–95.Google ScholarPubMed
Hughes, G. M. and Morgan, M. (1973). The structure of fish gills in relation to their respiratory function. Biol. Rev. 48, 419–75.CrossRefGoogle Scholar
Hughes, G. M. and Shelton, G. (1962). Respiratory mechanisms and their nervous control in fish. Adv. Comp. Physiol. Biochem. 1, 275–364.Google Scholar
Hyde, D. A., Moon, T. W. and Perry, S. F. (1987). Physiological consequences of prolonged aerial exposure in the Americal eel, Anguilla rostrata: blood respiratory and acid-base status. J. Comp. Physiol. B 157, 635–42.CrossRefGoogle Scholar
Jensen, F. B. (1986). Pronounced influence of Hb–O2 saturation on red cell pH in tench blood in vivo and in vitro. J. Exp. Zool. 238, 119–24.CrossRefGoogle ScholarPubMed
Jensen, F. B. (1991). Multiple strategies in oxygen and carbon dioxide transport by haemoglobin. In Physiological Strategies for Gas Exchange and Metabolism, ed. Woakes, A. J., Grieshaber, M. K. and Bridges, C. R.. Society for Experimental Biology Seminar Series. Cambridge: Cambridge University Press, pp. 55–78.Google Scholar
Jensen, F. B. (2004). Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport. Acta Physiol Scand. 182, 215–27.CrossRefGoogle ScholarPubMed
Jensen, F. B. and Weber, R. E. (1982). Respiratory properties of tench blood and hemoglobin adaptation to hypoxic-hypercapnic water. Mol. Physiol. 2, 235–50.Google Scholar
Jensen, F. B., Fago, A. and Weber, R. E. (1998). Hemoglobin structure and function. In Fish Physiology Vol. 17 Fish Respiration, ed. Perry, S. F. and Tufts, B. L.. San Diego: Academic Press, pp. 1–40.Google Scholar
Johansen, K., Mangum, C. P. and Lykkeboe, G. (1978a). Respiratory properties of the blood of Amazon fishes. Can. J. Zool. 56, 898–906.CrossRefGoogle Scholar
Johansen, K., Mangum, C. P. and Weber, R. E. (1978b). Reduced blood O2 affinity associated with air breathing in osteoglossid fishes. Can. J. Zool. 56, 891–7.CrossRefGoogle Scholar
Jones, D. R. and Randall, D. J. (1978). The respiratory and circulatory sytems during exercise. In Fish Physiology Vol. VII Locomotion. ed. Hoar, W. S. and Randall, D. J.. San Diego: Academic Press, pp. 425–500.Google Scholar
Jones, D. R. and Schwarzfeld, T. (1974). The oxygen cost to the metabolism and efficiency of breathing in trout (Salmo gairdneri). Respir. Physiol. 21, 241–53.CrossRefGoogle Scholar
Jones, D. R., Brill, R. W. and Mense, D. C. (1986). The influence of blood gas properties on gas tensions and pH of ventral and dorsal aortic blood in free-swimming tuna, Euthynnus affinis. J. Exp. Biol. 120, 201–13.Google Scholar
Jonz, M. G. and Nurse, C. A. (2003). Neuroepithelial cells and associated innervation of the zebrafish gill: a confocal immunofluorescence study. J. Comp. Neurol. 461, 1–17.CrossRefGoogle ScholarPubMed
Jonz, M. G. and Nurse, C. A. (2005). Development of oxygen sensing in the gills of zebrafish. J. Exp. Biol. 208, 1537–1549.CrossRefGoogle ScholarPubMed
Jonz, M. G., Fearon, I. M. and Nurse, C. A. (2004). Neuroepithelial oxygen chemoreceptors of the zebrafish gill. J. Physiol. 560, 737–52.CrossRefGoogle ScholarPubMed
Julio, A. E., Desforges, P. and Perry, S. F. (2000). Apparent diffusion limitations for carbon dioxide excretion in rainbow trout (Oncorhynchus mykiss) are relieved by intravascular injections of carbonic anhydrase. Respir. Physiol. 121, 53–64.CrossRefGoogle Scholar
Kinkead, R., Fritsche, R., Perry, S. F. and Nilsson, S. (1991). The role of circulating catecholamines in the ventilatory and hypertensive responses to hypoxia in the Atlantic cod (Gadus morhua). Physiol. Zool. 64, 1087–109.CrossRefGoogle Scholar
Krogh, A. (1904). Some experiments on the cutaneous respiration of vertebrate animals. Skand. Arch. Physiol. 16, 348–67.CrossRefGoogle Scholar
Krogh, A. (1941). Comparative Physiology of Respiratory Mechanisms. Philadelphia: University of Pennsylvania Press, pp. 1–172.Google Scholar
Krogh, A. and Leitch, I. (1919). The respiratory function of the blood in fishes. J. Physiol. 52, 288–300.CrossRefGoogle ScholarPubMed
Lai, J. C. C., Kakuta, I., Mok, H. O. L., Rummer, J. L. and Randall, D. J. (2006). Effects of moderate and substantial hypoxia on erythropoietin levels in rainbow trout kidney and spleen. J. Exp. Biol. 209, 2734–8.CrossRefGoogle ScholarPubMed
Laurent, P., Hobe, H. and Dunel-Erb, S. (1985). The role of environmental sodium chloride relative to calcium in gill morphology of freshwater salmonid fish. Cell. Tiss. Res. 240, 675–92.CrossRefGoogle Scholar
Leino, R. L., McCormick, J. H. and Jensen, K. M. (1987). Changes in gill histology of fathead minnows and yellow perch transferred to soft water or acidified soft water with particular reference to chloride cells. Cell. Tiss. Res. 250, 389–99.CrossRefGoogle Scholar
Lenfant, C. and Johansen, K. (1966). Respiratory function in the elasmobranch Squalus suckleyi G. Respir. Physiol. 1, 13–29.CrossRefGoogle ScholarPubMed
Malte, H. and Lomholt, J. P. (1998). Ventilation and gas exchange. In The Biology of Hagfishes, ed. Jorgensen, J. M., Lomholt, J. P., Weber, R. E. and Malte, H.. London: Chapman & Hall, pp. 223–34.CrossRefGoogle Scholar
Malte, H. and Weber, R. E. (1985). A mathematical model for gas exchange in the fish gill based on non-linear blood gas equilibrium curves. Respir. Physiol. 62, 359–74.CrossRefGoogle ScholarPubMed
McKenzie, D. J., Burleson, M. L. and Randall, D. J. (1991). The effects of branchial denervation and pseudobranch ablation on cardioventilatory control in an air-breathing fish. J. Exp. Biol. 161, 347–65.Google Scholar
McKenzie, D. J., Taylor, E. W., Bronzi, P. and Bolis, C. L. (1995). Aspects of cardioventilatory control in the adriatic sturgeon (Acipenser naccarii). Respir. Physiol. 100, 45–53.CrossRefGoogle Scholar
Milsom, W. K. (1989). Mechanisms of ventilation in lower vertebrates: adaptations to respiratory and nonrespiratory constraints. Can. J. Zool. 67, 2943–55.CrossRefGoogle Scholar
Milsom, W. K. (1995a). Regulation of respiration in lower vertebrates: role of CO2/pH chemoreceptors. In Advances in Comparative and Environmental Physiology Vol. 21 Mechanisms of Systemic Regulation: Acid-base Regulation, Ion Transfer and Metabolism, ed. Heisler, N.. Berlin: Spinger-Verlag, pp. 62–104.Google Scholar
Milsom, W. K. (1995b). The role of CO2/pH chemoreceptors in ventilatory control. Braz. J. Med. Biol. Res. 28, 1147–60.Google ScholarPubMed
Milsom, W. K. (2002). Phylogeny of CO2/H+ chemoreception in vertebrates. Respir. Physiol. Neurobiol. 131, 29–41.CrossRefGoogle ScholarPubMed
Milsom, W. K. and Brill, R. W. (1986). Oxygen sensitive afferent information arising from the first gill arch of yellowfin tuna. Respir. Physiol. 66, 193–203.CrossRefGoogle ScholarPubMed
Milsom, W. K., Sundin, L., Reid, S., Kalinin, A. and Rantin, F. T. (1999). Chemoreceptor control of cardiovascular reflexes. In Biology of Tropical Fishes, ed. Val, A. L. and Almeida-Val, V. M. F.. Manaus: INPA, pp. 363–74.Google Scholar
Nickerson, J. G., Drouin, G., Perry, S. F. and Moon, T. W. (2004). In vitroregulation of β-adrenoreceptor signaling in the rainbow trout, Oncorhynchus mykiss. Fish Physiol. Biochem. 27, 157–71.CrossRefGoogle Scholar
Nickerson, J. G., Dugan, S. G., Drouin, G., Perry, S. F. and Moon, T. W. (2003). Activity of the unique β-adrenergic Na+/H+ exchanger in trout erythrocytes is controlled by a novel β3-AR subtype. Am. J. Physiol. 285, R526–35.Google ScholarPubMed
Nikinmaa, M. (1982). Effects of adrenaline on red cell volume and concentration gradient of protons across the red cell membrane in the rainbow trout, Salmo gairdneri. Mol. Physiol. 2, 287–97.Google Scholar
Nikinmaa, M. (1983). Adrenergic regulation of haemoglobin oxygen affinity in rainbow trout red cells. J. Comp. Physiol. B 152, 67–72.CrossRefGoogle Scholar
Nikinmaa, M. (1990). Vertebrate Red Blood Cells. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Nikinmaa, M. (1992). Membrane transport and control of hemoglobin-oxygen affinity in nucleated erythrocytes. Physiol. Rev. 72, 301–21.CrossRefGoogle ScholarPubMed
Nikinmaa, M. (1997). Oxygen and carbon dioxide transport in vertebrate erythrocytes: an evolutionary change in the role of membrane transport. J. Exp. Biol. 200, 369–80.Google ScholarPubMed
Nikinmaa, M. (2001). Haemoglobin function in vertebrates: evolutionary changes in cellular regulation in hypoxia. Respir. Physiol. 128, 317–29.CrossRefGoogle ScholarPubMed
Nikinmaa, M. (2006). Gas transport. In The Physiology of Fishes, ed. Evans, D. H. and Claiborne, J. B.. Boca Raton: CRC Press, pp. 153–74.Google Scholar
Nikinmaa, M. and Boutilier, R. G. (1995). Adrenergic control of red cell pH, organic phosphate concentrations and haemoglobin function in teleost fish. In Advances in Comparative and Environmental Physiology Vol. 21 Mechanisms of Systemic Regulation: Respiration and Circulation, ed. Heisler, N.. Berlin: Springer-Verlag, pp. 107–33.Google Scholar
Nikinmaa, M. and Huestis, W. H. (1984). Adrenergic swelling of nucleated erythrocytes: cellular mechanisms in a bird, domestic goose, and two teleosts, striped bass and rainbow trout. J. Exp. Biol. 113, 215–24.Google Scholar
Nikinmaa, M. and Rees, B. B. (2005). Oxygen-dependent gene expression in fishes. Am. J. Physiol. 288, R1079–90.Google ScholarPubMed
Nikinmaa, M. and Salama, A. (1998). Oxygen transport in fish. In Fish Physiology Vol. 17 Fish Respiration, ed. Perry, S. F. and Tufts, B. L.. San Diego: Academic Press, pp. 141–84.Google Scholar
Nikinmaa, M. and Soivio, A. (1982). Blood oxygen transport of hypoxic Salmo gairdneri. J. Exp. Zool. 219, 173–8.CrossRefGoogle ScholarPubMed
Nikinmaa, M. and Tufts, B. L. (1989). Regulation of acid and ion transfer across the membrane of nucleated erythrocytes. Can. J. Zool. 67, 3039–45.CrossRefGoogle Scholar
Nikinmaa, M. and Weber, R. E. (1984). Hypoxic acclimation in the lamprey, Lampetra fluviatilis: organismic and erythrocytic responses. J. Exp. Biol. 109, 109–19.Google Scholar
Nikinmaa, M., Airaksinen, S. and Virkki, L. V. (1995) Haemoglobin function in intact lamprey erythrocytes: interactions with membrane function in the regulation of gas transport and acid-base balance. J. Exp. Biol. 198, 2423–30.Google ScholarPubMed
Nilsson, G. E. (2007). Gill remodeling in fish–a new fashion or an ancient secret?J. Exp. Biol. 210, 2403–9.CrossRefGoogle ScholarPubMed
Nilsson, S. and Grove, D. J. (1974). Adrenergic and cholinergic innervation of the spleen of the cod: Gadus morhua. Eur. J. Pharmacol. 28, 135–43.CrossRefGoogle ScholarPubMed
Nilsson, S., Forster, N. E., Davison, W. and Axelsson, M. (1996). Nervous control of the spleen in the red-blooded Antarctic fish, Pagothenia borchgrevinki. Am. J. Physiol. 39, R599–604.Google Scholar
Olson, K. R. (2002). Vascular anatomy of the fish gill. J. Exp. Zool. 293, 214–31.CrossRefGoogle ScholarPubMed
Ong, K. J., Stevens, E. D. and Wright, P. A. (2007). Gill morphology of the mangrove killifish (Kryptolebias marmoratus) is plastic and changes in response to terrestrial air exposure. J. Exp. Biol. 210, 1109–15.CrossRefGoogle ScholarPubMed
Pearson, M. P. and Stevens, E. D. (1991). Size and hematological impact of the splenic erythrocyte reservoir in rainbow trout, Oncorhynchus mykiss. Fish Physiol. Biochem. 9, 39–50.CrossRefGoogle ScholarPubMed
Perry, S. F. (1986). Carbon dioxide excretion in fish. Can. J. Zool. 64, 565–72.CrossRefGoogle Scholar
Perry, S. F. (1998). Relationships between branchial chloride cells and gas transfer in freshwater fish. Comp. Biochem. Physiol. A 119, 9–16.CrossRefGoogle ScholarPubMed
Perry, S. F. and Desforges, P. R. (2006). Does bradycardia or hypertension enhance gas transfer in rainbow trout (Oncorhynchus mykiss) exposed to hypoxia or hypercarbia?Comp. Biochem. Physiol. A 144, 163–72.CrossRefGoogle Scholar
Perry, S. F. and Gilmour, K. M. (1993). An evaluation of factors limiting carbon dioxide excretion by trout red blood cells in vitro. J. Exp. Biol. 180, 39–54.Google Scholar
Perry, S. F. and Gilmour, K. M. (1996). Consequences of catecholamine release on ventilation and blood oxygen transport during hypoxia and hypercapnia in an elasmobranch (Squalus acanthias) and a teleost (Oncorhynchus mykiss). J. Exp. Biol. 199, 2105–18.Google Scholar
Perry, S. F. and Gilmour, K. M. (2002). Sensing and transfer of respiratory gases at the fish gill. J. Exp. Zool. 293, 249–63.CrossRefGoogle ScholarPubMed
Perry, S. F. and Kinkead, R. (1989). The role of catecholamines in regulating arterial oxygen content during acute hypercapnic acidosis in rainbow trout (Salmo gairdneri). Respir. Physiol. 77, 365–78.CrossRefGoogle Scholar
Perry, S. F. and Laurent, P. (1989). Adaptational responses of rainbow trout to lowered external NaCl concentration: contribution of the branchial chloride cell. J. Exp. Biol. 147, 147–68.Google Scholar
Perry, S. F. and McDonald, D. G. (1993). Gas exchange. In The Physiology of Fishes, ed. Evans, D. H.. Boca Raton: CRC Press, pp. 251–78.Google Scholar
Perry, S. F. and Reid, S. D. (1992a). Relationship between blood O2 content and catecholamine levels during hypoxia in rainbow trout and American eel. Am. J. Physiol. 263, R240–9.Google ScholarPubMed
Perry, S. F. and Reid, S. D. (1992b). The relationship between β-adrenoceptors and adrenergic responsiveness in trout (Oncorhynchus mykiss) and eel (Anguilla rostrata) erythrocytes. J. Exp. Biol. 167, 235–50.Google ScholarPubMed
Perry, S. F. and Vermette, M. G. (1987). The effects of prolonged epinephrine infusion on the physiology of the rainbow trout, Salmo gairdneri I. Blood respiratory, acid-base and ionic states. J. Exp. Biol. 128, 235–53.Google ScholarPubMed
Perry, S. F. and Wood, C. M. (1989). Control and coordination of gas transfer in fishes. Can. J. Zool. 67, 2961–70.CrossRefGoogle Scholar
Perry, S. F., Reid, S. G., Gilmour, K. M., et al. (2004). A comparison of adrenergic stress responses in three tropical teleosts exposed to acute hypoxia. Am. J. Physiol. 287, R188–97.Google ScholarPubMed
Perry, S. F., Wood, C. M., Walsh, P. J. and Thomas, S. (1996b). Fish red blood cell carbon dioxide transport in vitro: a comparative study. Comp. Biochem. Physiol. 113A, 121–30.CrossRefGoogle Scholar
Perry, S. F., Reid, S. G., Wankiewicz, E., Iyer, V. and Gilmour, K. M. (1996a). Physiological responses of rainbow trout (Oncorhynchus mykiss) to prolonged exposure to softwater. Physiol. Zool. 69, 1419–41.CrossRefGoogle Scholar
Pichavant, K., Maxime, V., Soulier, P., Boeuf, G. and Nonnotte, G. (2003). A comparative study of blood oxygen transport in turbot and sea bass: effect of chronic hypoxia. J. Fish Biol. 62, 928–37.CrossRefGoogle Scholar
Piiper, J. (1989). Factors affecting gas transfer in respiratory organs of vertebrates. Can. J. Zool. 67, 2956–60.CrossRefGoogle Scholar
Piiper, J. (1990). Modeling of gas exchange in lungs, gills and skin. In Advances in Comparative and Environmental Physiology, ed. Boutilier, R. G.. Berlin: Springer-Verlag, pp. 15–44.Google Scholar
Piiper, J. (1998). Branchial gas transfer models. Comp. Biochem. Physiol. 119A, 125–30.CrossRefGoogle Scholar
Primmett, D. R. N., Randall, D. J., Mazeaud, M. M. and Boutilier, R. G. (1986). The role of catecholamines in erythrocyte pH regulation and oxygen transport in rainbow trout (Salmo gairdneri) during exercise. J. Exp. Biol. 122, 139–48.Google ScholarPubMed
Randall, D. J. (1990). Control and co-ordination of gas exchange in water breathers. In Advances in Comparative and Environmental Physiology, ed. Boutilier, R. G.. Berlin: Springer-Verlag, pp. 253–78.Google Scholar
Randall, D. J. and Daxboeck, C. (1984). Oxygen and carbon dioxide transfer across fish gills. In Fish Physiology Vol. XA, ed. Hoar, W. S. and Randall, D. J.. New York: Academic Press, pp. 263–314.Google Scholar
Randall, D. J. and Perry, S. F. (1992). Catecholamines. In Fish Physiology Vol. XIIB The Cardiovascular System, ed. Hoar, W. S., Randall, D. J. and Farrell, A. P.. San Diego: Academic Press, pp. 255–300.Google Scholar
Randall, D. J., Holeton, G. F. and Stevens, E. D. (1967). The exchange of oxygen and carbon dioxide across the gills of rainbow trout. J. Exp. Biol. 46, 339–48.Google ScholarPubMed
Randall, D. J., Perry, S. F. and Heming, T. A. (1982). Gas transfer and acid-base regulation in salmonids. Comp. Biochem. Physiol. B 73, 93–103.CrossRefGoogle Scholar
Reid, S. G. and Perry, S. F. (2003). Peripheral O2 chemoreceptors mediate humoral catecholamine secretion from fish chromaffin cells. Am. J. Physiol. 284, R990–9.Google ScholarPubMed
Reid, S. G., Bernier, N. J. and Perry, S. F. (1998). The adrenergic stress response in fish: control of catecholamine storage and release. Comp. Biochem. Physiol. C120, 1–27.Google Scholar
Riera, M., Prats, M. T., Palacios, L., Pesquero, J. and Planas, J. (1993). Seasonal adaptations in oxygen transport in brown trout Salmo trutta fario. Comp. Biochem. Physiol. 106A, 695–700.CrossRefGoogle Scholar
Riggs, A. F. (1979). Studies of the hemoglobins of Amazonian fishes: an overview. Comp. Biochem. Physiol. 62A, 257–71.CrossRefGoogle Scholar
Root, R. W. (1931). The respiratory functions of the blood of marine fishes. Biol. Bull. 61, 427–56.CrossRefGoogle Scholar
Rutjes, H. A., Nieveen, M. C., Weber, R. E., Witte, F. and Thillart, G. E. E. J. M. (2007). Multiple strategies of Lake Victoria cichlids to cope with lifelong hypoxia include hemoglobin switching. Am. J. Physiol. 293, R1376–83.Google ScholarPubMed
Saltys, H. A., Jonz, M. G. and Nurse, C. A. (2006). Comparative study of gill neuroepithelial cells and their innervation in teleosts and Xenopus tadpoles. Cell Tissue Res. 323, 1–10.CrossRefGoogle ScholarPubMed
Shelton, G., Jones, D. R. and Milsom, W. K. (1986). Control of breathing in ectothermic vertebrates. In Handbook of Physiology, Section 3. The Respiratory System, Vol. 2, Control of Breathing, eds. Cherniak, N. S. and Widdicombe, J. G.. Bethesda: American Physiological Society, pp. 857–909.Google Scholar
Short, S., Taylor, E. W. and Butler, P. J. (1979). The effectiveness of oxygen transfer during normoxia and hypoxia in the dogfish (Scyliohinus canicula L.) before and after cardiac vagotomy. J. Comp. Physiol. B 132, 289–95.Google Scholar
Sidell, B. D. and O'Brien, K. M. (2006). When bad things happen to good fish: the loss of hemoglobin and myoglofin expression in Antarctic icefishes. J. Exp. Biol. 209, 1791–802.CrossRefGoogle ScholarPubMed
Smatresk, N. J. (1990). Chemoreceptor modulation of endogenous respiratory rhythms in vertebrates. Am. J. Physiol. 259, R887–97.Google ScholarPubMed
Smith, F. M. and Jones, D. R. (1978). Localization of receptors causing hypoxic bradycardia in trout (Salmo gairdneri). Can. J. Zool. 56, 1260–5.CrossRefGoogle Scholar
Soivio, A., Nikinmaa, M. and Westman, K. (1980). The blood oxygen binding properties of hypoxic Salmo gairdneri. J. Comp. Physiol. 136, 83–7.CrossRefGoogle Scholar
Sollid, J. and Nilsson, G. E. (2006). Plasticity of respiratory structures–adaptive remodeling of fish gills induced by ambient oxygen and temperature. Respir. Physiol. Neurobiol. 154, 241–51.CrossRefGoogle ScholarPubMed
Sollid, J., Weber, R. E. and Nilsson, G. E. (2005). Temperature alters the respiratory surface area of crucian carp Carassius carassius and goldfish Carassius auratus. J. Exp. Biol. 208, 1109–16.CrossRefGoogle ScholarPubMed
Sollid, J., Angelis, P., Gundersen, K. and Nilsson, G. E. (2003). Hypoxia induces adaptive and reversible gross morphological changes in crucian carp gills. J. Exp. Biol. 206, 3667–73.CrossRefGoogle ScholarPubMed
Strahan, R. (1958). The velum and the respiratory current of Myxine. Acta. Zool. 39, 227–40.CrossRefGoogle Scholar
Sundin, L., Holmgren, S. and Nilsson, S. (1998). The oxygen receptor of the teleost gill?Acta. Zool. 79, 207–14.CrossRefGoogle Scholar
Sundin, L., Reid, S. G., Rantin, F. T. and Milsom, W. K. (2000). Branchial receptors and cardiorespiratory reflexes in the neotropical fish, Tambaqui (Colossoma macropomum). J. Exp. Biol. 203, 1225–39.Google Scholar
Szebedinszky, C. and Gilmour, K. M. (2002). High plasma buffering and the absence of a red blood cell β-NHE response in brown bullhead (Ameiurus nebulosus). Comp. Biochem. Physiol. A 133, 399–409.CrossRefGoogle Scholar
Taglialatela, R. and Della Corte, F. (1997). Human and recombinant erythropoietin stimulate erythropoiesis in the goldfish Carassius auratus. Eur. J. Histochem. 41, 301–4.Google ScholarPubMed
Takeda, T. (1990). Ventilation, cardiac output and blood respiratory parameters in the carp, Cyprinus carpio, during hyperoxia. Respir. Physiol. 81, 227–40.CrossRefGoogle ScholarPubMed
Taylor, E. W. and Barrett, D. J. (1985). Evidence of a respiratory role for the hypoxic bradycardia in the dogfish Scyliohinus canicula L. Comp. Biochem. Physiol. A 80, 99–102.CrossRefGoogle ScholarPubMed
Taylor, E. W., Short, S. and Butler, P. J. (1977). The role of the cardiac vagus in the response of the dogfish Scyliorhinus canicula to hypoxia. J. Exp. Biol. 70, 57–75.Google Scholar
Tetens, V. and Christensen, N. J. (1987). Beta-adrenergic control of blood oxygen affinity in acutely hypoxia exposed rainbow trout. J. Comp. Physiol. B 157, 667–75.CrossRefGoogle ScholarPubMed
Tetens, V. and Lykkeboe, G. (1981). Blood respiratory properties of rainbow trout, Salmo gairdneri: responses to hypoxia acclimation and anoxic incubation of blood in vitro. J. Comp. Physiol. 145, 117–25.CrossRefGoogle Scholar
Tetens, V., Wells, R. M. G. and DeVries, A. L. (1984). Antarctic fish blood: respiratory properties and the effects of thermal acclimation. J. Exp. Biol. 109, 265–79.Google Scholar
Thomas, S. and Motais, R. (1990). Acid-base balance and oxygen transport during acute hypoxia in fish. Comp. Physiol. 6, 76–91.Google Scholar
Thomas, S. and Perry, S. F. (1992). Control and consequences of adrenergic activation of red blood cell Na+/H+ exchange on blood oxygen and carbon dioxide transport. J. Exp. Zool. 263, 160–75.CrossRefGoogle ScholarPubMed
Thomas, S., Perry, S. F., Pennec, Y. and Maxime, V. (1992). Metabolic alkalosis and the response of the trout, Salmo fario, to acute severe hypoxia. Respir. Physiol. 87, 91–104.CrossRefGoogle ScholarPubMed
Tufts, B. L. (1991). Acid-base regulation and blood gas transport following exhaustive exercise in an agnathan, the sea lamprey Petromyzon marinus. J. Exp. Biol. 159, 371–85.Google Scholar
Tufts, B. L. and Perry, S. F. (1998). Carbon dioxide transport and excretion. In Fish Physiology Vol. 17 Fish Respiration, ed. Perry, S. F. and Tufts, B. L.. New York: Academic Press, pp. 229–81.Google Scholar
Tufts, B. L. and Randall, D. J. (1989). The functional significance of adrenergic pH regulation in fish erythrocytes. Can. J. Zool. 67, 235–8.CrossRefGoogle Scholar
Val, A. L. (1995). Oxygen transfer in fish: morphological and molecular adjustments. Braz. J. Med. Biol. Res. 28, 1119–27.Google ScholarPubMed
Val, A. L. (2000). Organic phosphates in the red blood cells of fish. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 125, 417–35.CrossRefGoogle ScholarPubMed
Val, A. L., Lessard, J. and Randall, D. J. (1995). Effects of hypoxia on rainbow trout (Oncorhynchus mykiss): intraerythrocytic phosphates. J. Exp. Biol. 198, 305–10.Google ScholarPubMed
Vermette, M. G. and Perry, S. F. (1988a). Adrenergic involvement in blood oxygen transport and acid-base balance during hypercapnic acidosis in the rainbow trout, Salmo gairdneri. J. Comp. Physiol. B 158, 107–15.CrossRefGoogle Scholar
Vermette, M. G. and Perry, S. F. (1988b). Effects of prolonged epinephrine infusion on blood respiratory and acid-base states in the rainbow trout: alpha and beta effects. Fish Physiol. Biochem. 4, 189–202.CrossRefGoogle ScholarPubMed
Vulesevic, B., McNeill, B. and Perry, S. F. (2006). Chemoreceptor plasticity and respiratory acclimation in the zebrafish, Danio rerio. J. Exp. Biol. 209, 1261–73.CrossRefGoogle Scholar
Weber, R. E. (1990). Functional significance and structural basis of multiple hemoglobins with special reference to ectothermic vertebrates. In Animal Nutrition and Transport Processes. 2. Transport, Respiration and Excretion: Comparative and Environmental Aspects, ed. Truchot, J.-P. and Lahlou, B.. Basel: S. Karger, pp. 58–75.Google Scholar
Weber, R. E. (1996). Hemoglobin adaptations in Amazonian and temperate fish with special reference to hypoxia, allosteric effectors and functional heterogeneity. In Physiology and Biochemistry of the Fishes of the Amazon, ed. Val, A. L., Almeida-Val, V. M. F. and Randall, D. J.. Manaus, Brazil: INPA, pp. 75–90.Google Scholar
Weber, R. E. and Fago, A. (2004). Functional adaptation and its molecular basis in vertebrate hemoglobins, neuroglobins and cytoglobins. Respir. Physiol. Neurobiol. 144, 141–59.CrossRefGoogle ScholarPubMed
Weber, R. E. and Jensen, F. B. (1988). Functional adaptations in hemoglobins from ectothermic vertebrates. Annu. Rev. Physiol. 50, 161–79.CrossRefGoogle ScholarPubMed
Weber, R. E. and Lykkeboe, G. (1978). Respiratory adaptations in carp blood. Influences of hypoxia, red cell organic phosphates, divalent cations and CO2 on hemoglobin-oxygen affinity. J. Comp. Physiol. 128, 127–37.CrossRefGoogle Scholar
Wegner, N. C., Sepulveda, C. A. and Graham, J. B. (2006). Gill specializations in high-performance pelagic teleosts with reference to striped marlin (Tetrapturus audax) and wahoo (Acanthocybium solandri). Bull. Mar. Sci. 79, 747–59.Google Scholar
Wells, R. M. G. and Weber, R. E. (1990). The spleen in hypoxic and exercised rainbow trout. J. Exp. Biol. 150, 461–6.Google Scholar
Wells, R. M. G. and Weber, R. E. (1991). Is there an optimal haematocrit for rainbow trout, Oncorhynchus mykiss (Walbaum)? An interpretation of recent data based on blood viscosity measurements. J. Fish Biol. 38, 53–65.CrossRefGoogle Scholar
Wells, R. M. G., Grigg, G. C., Beard, L. A. and Summers, G. (1989). Hypoxic responses in a fish from a stable environment: blood oxygen transport in the Antarctic fish Pagothenia borchgrevinki. J. Exp. Biol. 141, 97–111.Google Scholar
Wood, S. C. and Johansen, K. (1972). Adaptation to hypoxia by increased HbO2 affinity and decreased red cell ATP concentration. Nature 237, 278–9.Google Scholar
Wood, S. C. and Johansen, K. (1973). Blood oxygen transport and acid-base balance in eels during hypoxia. Am. J. Physiol. 225, 849–51.Google ScholarPubMed
Wood, C. M. and Perry, S. F. (1985). Respiratory, circulatory, and metabolic adjustments to exercise in fish. In Circulation, Respiration and Metabolism, ed. Gilles, R.. Berlin: Springer-Verlag, pp. 2–22.Google Scholar
Wood, C. M. and Shelton, G. (1980). The reflex control of heart rate and cardiac output in the rainbow trout: interactive influences of hypoxia, haemorrhage, and systemic vasomotor tone. J. Exp. Biol. 87, 271–84.Google ScholarPubMed
Wood, S. C., Johansen, K. and Weber, R. E. (1975). Effects of ambient PO2 on hemoglobin-oxygen affinity and red cell ATP concentrations in a benthic fish, Pleuronectes platessa. Respir. Physiol. 25, 259–67.Google Scholar
Wood, C. M., McMahon, B. R. and McDonald, D. G. (1977). An analysis of changes in blood pH following exhausting activity in the starry flounder, Platichthys stellatus. J. Exp. Biol. 69, 173–85.Google ScholarPubMed
Wood, C. M., McMahon, B. R. and McDonald, D. G. (1979a). Respiratory gas exchange in the resting starry flounder, Platichthys stellatus: a comparison with other teleosts. J. Exp. Biol. 78, 167–79.Google ScholarPubMed
Wood, C. M., McMahon, B. R. and McDonald, D. G. (1979b). Respiratory, ventilatory, and cardiovascular responses to experimental anaemia in the starry flounder, Platichthys stellatus. J. Exp. Biol. 82, 139–62.Google ScholarPubMed
Wood, C. M., Perry, S. F., Walsh, P. J. and Thomas, S. (1994). HCO3– dehydration by the blood of an elasmobranch in the absence of a Haldane effect. Respir. Physiol. 98, 319–37.CrossRefGoogle ScholarPubMed
Yamamoto, K. (1988). Contraction of spleen in exercised freshwater teleost. Comp. Biochem. Physiol. 89A, 65–6.Google Scholar
Yamamoto, K. and Itazawa, Y. (1989). Erythrocyte supply from the spleen of exercised carp. Comp. Biochem. Physiol. 92A, 139–44.Google Scholar
Yamamoto, K., Itazawa, Y. and Kobayashi, H. (1980). Supply of erythrocytes into the circulating blood from the spleen of exercised fish. Comp. Biochem. Physiol. 65A, 5–11.Google Scholar
Yamamoto, K., Itazawa, Y. and Kobayashi, H. (1985). Direct observation of fish spleen by an abdominal window method and its application to exercised and hypoxic yellowtail. Japan. J. Ichthyol. 31, 427–33.Google Scholar
Zaccone, G., Fasulo, S., Ainis, L. and Licata, A. (1997). Paraneurons in the gills and airways of fishes. Microsc. Res. Tech. 37, 4–12.3.0.CO;2-R>CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×