Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T08:25:02.177Z Has data issue: false hasContentIssue false

2 - Sensing oxygen

Published online by Cambridge University Press:  05 June 2012

Göran E. Nilsson
Affiliation:
Universitetet i Oslo
Get access

Summary

Introduction

Oxygen is required as the ultimate electron acceptor in aerobic energy production. In the long run, all vertebrates need oxygen to support metabolism. In the short term, however, some animals can cope with a total lack of oxygen (anoxia), and others can tolerate reduced oxygen levels (hypoxia). Furthermore, eutrophic aquatic systems in particular are characterized by supra-atmospheric oxygen tensions (hyperoxia) during active photosynthesis of green plants. Hyperoxic conditions may also occur in the closed system of circulation, especially near the gas gland and avascular retina of fishes (Ingermann and Terwilliger, 1982; Pelster and Scheid, 1992).

With regard to oxygen requirements, there is an intricate balance between reactions that produce energy and those that consume it. It is generally agreed that energy (and oxygen) consumption is reduced when adapting to conditions of low oxygen (e.g. channel arrest) (Hochachka and Lutz, 2001). However, even in conditions in which oxygen is not limiting, adjustments of metabolic rate occur (Rissanen et al., 2006a). Because several phenomena, at both integrative and molecular levels, have turned out to be oxygen sensitive, the search for mechanisms by which oxygen is sensed has intensified in recent years.

Several questions relate to how oxygen is sensed and how oxygen-dependent responses occur. First, what is actually sensed, when apparently oxygen-dependent phenomena occur? Secondly, which molecules are utilized in sensing oxygen? Thirdly, what are the pathways used in oxygen sensing – i.e. how is the primary signal converted to be used by the effector systems in an oxygen-dependent manner?

Type
Chapter
Information
Respiratory Physiology of Vertebrates
Life With and Without Oxygen
, pp. 14 - 48
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acker, H. (1994a). Cellular oxygen sensors. Ann. N.Y. Acad. Sci. 718, 3–12.CrossRefGoogle ScholarPubMed
Acker, H. (1994b). Mechanisms and meaning of cellular oxygen sensing in the organism. Respir. Physiol., 95, 1–10.CrossRefGoogle ScholarPubMed
Acker, H. and Xue, D. (1995). Mechanisms of O2 sensing in the carotid body in comparison with other O2-sensing cells. News Physiol. Sci., 10, 211–16.Google Scholar
Acker, T., Fandrey, J. and Acker, H. (2006). The good, the bad and the ugly in oxygen-sensing: ROS, cytochromes and prolyl-hydroxylases. Cardiovasc. Res., 71, 195–207.CrossRefGoogle ScholarPubMed
Adair, T. H. (2005). Growth regulation of the vascular system: an emerging role for adenosine. Am. J. Physiol. Regul. Integr. Comp. Physiol., 289, R283–96.CrossRefGoogle ScholarPubMed
Appelhoff, R. J., Tian, Y. M., Raval, R. R., et al. (2004). Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J. Biol. Chem., 279, 38458–65.CrossRefGoogle ScholarPubMed
Archer, S. L., Reeve, H. L., Michelakis, E., et al. (1999). O2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase. Proc. Natl. Acad. Sci. USA, 96, 7944–9.CrossRefGoogle ScholarPubMed
Babior, B. M. (1984). The respiratory burst of phagocytes. J. Clin. Invest., 73, 599–601.CrossRefGoogle ScholarPubMed
Baggiolini, M. and Wymann, M. P. (1990). Turning on the respiratory burst. Trends Biochem. Sci., 15, 69–72.CrossRefGoogle ScholarPubMed
Baird, N. A., Turnbull, D. W. and Johnson, E. A. (2006). Induction of the heat shock pathway during hypoxia requires regulation of heat shock factor by hypoxia-inducible factor-1. J. Biol. Chem., 281, 38675–81.CrossRefGoogle ScholarPubMed
Bedard, K. and Krause, K. H. (2007). The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev., 87, 245–313.CrossRefGoogle ScholarPubMed
Bell, E. L., Emerling, B. M. and Chandel, N. S. (2005). Mitochondrial regulation of oxygen sensing. Mitochondrion, 5, 322–32.CrossRefGoogle ScholarPubMed
Berchner-Pfannschmidt, U., Yamac, H, Trinidad, B. and Fandrey, J. (2007). Nitric oxide modulates oxygen sensing by hypoxia-inducible factor 1-dependent induction of prolyl hydroxylase 2. J. Biol. Chem., 282, 1788–96.CrossRefGoogle ScholarPubMed
Berra, E., Benizri, E., Ginouves, A., Volmat, V., Roux, D. and Pouyssegur, J. (2003). HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1α in normoxia. EMBO J., 22, 4082–90.CrossRefGoogle ScholarPubMed
Berra, E., Ginouves, A. and Pouyssegur, J. (2006). The hypoxia-inducible-factor hydroxylases bring fresh air into hypoxia signalling. EMBO Rep., 7, 41–5.CrossRefGoogle ScholarPubMed
Bogdanova, A. and Nikinmaa, M. (2001). Reactive oxygen species regulate oxygen-sensitive potassium flux in rainbow trout erythrocytes. J. Gen. Physiol., 117, 181–90.CrossRefGoogle ScholarPubMed
Bracken, C. P., Whitelaw, M. L. and Peet, D. J. (2003). The hypoxia-inducible factors: key transcriptional regulators of hypoxic responses. Cell. Mol. Life Sci., 60, 1376–93.CrossRefGoogle ScholarPubMed
Brunori, M. (2001a). Nitric oxide moves myoglobin centre stage. Trends Biochem. Sci., 26, 209–10.CrossRefGoogle ScholarPubMed
Brunori, M. (2001b). Nitric oxide, cytochrome-c oxidase and myoglobin. Trends Biochem. Sci., 26, 21–3.CrossRefGoogle ScholarPubMed
Brunori, M. and Vallone, B. (2007). Neuroglobin, seven years after. Cell. Mol. Life Sci. 64, 1259–68.CrossRef
Bunn, H. F., and Poyton, R. O. (1996). Oxygen sensing and molecular adaptation to hypoxia. Physiol. Rev., 76, 839–85.CrossRefGoogle ScholarPubMed
Burleson, M. L., Mercer, S. E. and Wilk-Blaszczak, M. A. (2006). Isolation and characterization of putative O2 chemoreceptor cells from the gills of channel catfish (Ictalurus punctatus). Brain Res., 1092, 100–7.CrossRefGoogle Scholar
Burmester, T., Ebner, B., Weich, B. and Hankeln, T. (2002). Cytoglobin: a novel globin type ubiquitously expressed in vertebrate tissues. Mol. Biol. Evol., 19, 416–21.CrossRefGoogle ScholarPubMed
Burmester, T., Haberkamp, M., Mitz, S., Roesner, A., Schmidt, M., Ebner, B., Gerlach, F., Fuchs, C., Hankeln, T. (2004). Neuroglobin and cytoglobin: genes, proteins and evolution. IUBMB Life, 56, 703–7.CrossRefGoogle ScholarPubMed
Burmester, T., Weich, B., Reinhardt, S. and Hankeln, T. (2000). A vertebrate globin expressed in the brain. Nature, 407, 520–3.CrossRefGoogle Scholar
Bussolati, B., Ahmed, A., Pemberton, H., Landis, R. C., Di Carlo, F., Haskard, D. O. and Mason, J. C. (2004). Bifunctional role for VEGF-induced heme oxygenase-1 in vivo: induction of angiogenesis and inhibition of leukocytic infiltration. Blood, 103, 761–6.CrossRefGoogle ScholarPubMed
Camenisch, G., Wenger, R. H. and Gassmann, M. (2002). DNA-binding activity of hypoxia-inducible factors (HIFs). Methods Mol. Biol., 196, 117–29.Google Scholar
Chan, W. K., Yao, G., Gu, Y. Z. and Bradfield, C. A. (1999). Cross-talk between the aryl hydrocarbon receptor and hypoxia inducible factor signaling pathways – demonstration of competition and compensation. J. Biol. Chem., 274, 12115–23.CrossRefGoogle ScholarPubMed
Chandel, N. S. and Budinger, G. R. S. (2007). The cellular basis for diverse responses to oxygen. Free Rad. Biol. Med., 42, 165–74.CrossRefGoogle Scholar
Chaudary, N., Naydenova, Z., Shuralyova, I. and Coe, I. R. (2004). Hypoxia regulates the adenosine transporter, mENT1, in the murine cardiomyocyte cell line, HL-1. Cardiovasc. Res., 61, 780–8.CrossRefGoogle ScholarPubMed
Chavez, J. C., Baranova, O., Lin, J. and Pichiule, P. (2006). The transcriptional activator hypoxia inducible factor 2 (HIF-2/EPAS-1) regulates the oxygen-dependent expression of erythropoietin in cortical astrocytes. J. Neurosci., 26, 9471–81.CrossRefGoogle ScholarPubMed
Choi, S. L., Kim, S. J., Lee, K. T., et al. (2001). The regulation of AMP-activated protein kinase by H2oxygen. Biochem. Biophys. Res. Comm., 287, 92–7.CrossRefGoogle Scholar
Conde, S. V. and Monteiro, E. C. (2004). Hypoxia induces adenosine release from the rat carotid body. J. Neurochem., 89, 1148–56.CrossRefGoogle ScholarPubMed
Dahlgren, C. and Karlsson, A. (1999). Respiratory burst in human neutrophils. J. Immunol. Methods, 232, 3–14.CrossRefGoogle ScholarPubMed
D'Amico, G., Lam, F., Hagen, T. and Moncada, S. (2006). Inhibition of cellular respiration by endogenously produced carbon monoxide. J. Cell Sci., 119, 2291–8.CrossRefGoogle ScholarPubMed
Dayan, F., Roux, D., Brahimi-Horn, M. C., Pouyssegur, J. and Mazure, N. M. (2006). The oxygen sensor factor-inhibiting hypoxia-inducible factor-1 controls expression of distinct genes through the bifunctional transcriptional character of hypoxia-inducible factor-α. Cancer Res., 66, 3688–98.CrossRefGoogle Scholar
Decoursey, T. E. and Ligeti, E. (2005). Regulation and termination of NADPH oxidase activity. Cell. Mol. Life Sci., 62, 2173–93.CrossRefGoogle ScholarPubMed
Dejours, P. (1975). Principles of Comparative Respiratory Physiology. Amsterdam: Elsevier.Google Scholar
DeLeo, F. R., Allen, L. A., Apicella, M. and Nauseef, W. M. (1999). NADPH oxidase activation and assembly during phagocytosis. J. Immunol., 163, 6732–40.Google ScholarPubMed
Dery, M. A. C., Michaud, M. D. and Richard, D. E. (2005). Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. Int. J. Biochem. Cell Biol., 37, 535–40.CrossRefGoogle ScholarPubMed
Di Giulio, C., Bianchi, G., Cacchio, M., et al. (2006). Neuroglobin, a new oxygen binding protein is present in the carotid body and increases after chronic intermittent hypoxia. Adv. Exp. Med. Biol., 580, 15–19.CrossRefGoogle ScholarPubMed
Dinger, B., He, L., Chen, J., et al. (2007). The role of NADPH oxidase in carotid body arterial chemoreceptors. Respir. Physiol. Neurobiol., 157, 45–54.CrossRef
Dombkowski, R. A., Doellman, M. M., Head, S. K. and Olson, K. R. (2006). Hydrogen sulfide mediates hypoxia-induced relaxation of trout urinary bladder smooth muscle. J. Exp. Biol., 209, 3234–40.CrossRefGoogle ScholarPubMed
Drew, C., Ball, V., Robinson, H., Ellory, J. C. and Gibson, J. S. (2004). Oxygen sensitivity of red cell membrane transporters revisited. Bioelectrochemistry, 62, 153–8.CrossRefGoogle ScholarPubMed
Dunel-Erb, S., Bailly, Y. and Laurent, P. (1982). Neuroepithelial cells in fish gill primary lamellae. J. Appl. Physiol., 53, 1342–53.CrossRefGoogle ScholarPubMed
Duranteau, J., Chandel, N. S., Kulisz, A., Shao, Z. H. and Schumacker, P. T. (1998). Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes. J. Biol. Chem., 273, 11619–24.CrossRefGoogle ScholarPubMed
Eckardt, K. U. and Kurtz, A. (2005). Regulation of erythropoietin production. Eur. J. Clin. Invest., 35, 13–19.CrossRefGoogle ScholarPubMed
Ehleben, W., Bolling, B., Merten, E., Porwol, T., Strohmaier, A. R. and Acker, H. (1998). Cytochromes and oxygen radicals as putative members of the oxygen sensing pathway. Respir. Physiol., 114, 25–36.CrossRefGoogle ScholarPubMed
El Benna, J., Dang, P. M., Gougerot-Pocidalo, M. A. and Elbim, C. (2005). Phagocyte NADPH oxidase: a multicomponent enzyme essential for host defenses. Arch. Immunol. Ther. Exp. (Warsz.), 53, 199–206.Google ScholarPubMed
Ellory, J. C., Wolowyk, M. W. and Young, J. D. (1987). Hagfish (Eptatretus stouti). erythrocytes show minimal chloride transport activity. J. Exp. Biol., 129, 377–83.Google ScholarPubMed
Eltzschig, H. K., Abdulla, P., Hoffman, E., et al. (2005). HIF-1-dependent repression of equilibrative nucleoside transporter (ENT) in hypoxia. J. Exp. Med., 202, 1493–505.CrossRefGoogle Scholar
Engeszer, R. E., Patterson, L. B., Rao, A. A. and Parichy, D. M. (2007). Zebrafish in the wild: a review of natural history and new notes from the field. Zebrafish, 4, 21–40.CrossRefGoogle ScholarPubMed
Fandrey, J. (2004). Oxygen-dependent and tissue-specific regulation of erythropoietin gene expression. Am. J. Physiol. Regul. Integr. Comp. Physiol., 286, R977–88.CrossRefGoogle ScholarPubMed
Fandrey, J., Gorr, T. A. and Gassmann, M. (2006). Regulating cellular oxygen sensing by hydroxylation. Cardiovasc. Res., 71, 642–51.CrossRefGoogle ScholarPubMed
Fievet, B., Claireaux, G., Thomas, S. and Motais, R. (1988). Adaptive respiratory responses of trout to acute hypoxia. III. Ion movements and pH changes in the red blood cell. Respir. Physiol., 74, 99–114.CrossRefGoogle ScholarPubMed
Finkel, T. (1998). Oxygen radicals and signaling. Curr. Opin. Cell Biol., 10, 248–53.CrossRefGoogle ScholarPubMed
Firth, J. D., Ebert, B. L. and Ratcliffe, P. J. (1995). Hypoxic regulation of lactate dehydrogenase A: interaction between hypoxia-inducible factor 1 and cAMP response elements. J. Biol. Chem., 270, 21021–7.CrossRefGoogle ScholarPubMed
Fraser, J., Mello, L. V., Ward, D., et al. (2006). Hypoxia-inducible myoglobin expression in nonmuscle tissues. Proc. Natl. Acad. Sci. USA, 103, 2977–81.CrossRefGoogle ScholarPubMed
Freitas, T. A. K., Saito, J. A., Hou, S. B. and Alam, M. (2005). Globin-coupled sensors, protoglobins, and the last universal common ancestor. J. Inorg. Biochem., 99, 23–33.CrossRefGoogle ScholarPubMed
Fridovich, I. (1986a). Biological effects of the superoxide radical. Arch. Biochem. Biophys., 247, 1–11.CrossRefGoogle ScholarPubMed
Fridovich, I. (1986b). Superoxide dismutases. Adv. Enzymol. Relat. Areas Mol. Biol., 58, 61–97.Google ScholarPubMed
Fu, X. W., Wang, D. S., Nurse, C. A., Dinauer, M. C. and Cutz, E. (2000). NADPH oxidase is an O2 sensor in airway chemoreceptors: evidence from K+ current modulation in wild-type and oxidase-deficient mice. Proc. Natl. Acad. Sci. USA, 97, 4374–9.CrossRefGoogle Scholar
Fuchs, C., Luckhardt, A., Gerlach, F., Burmester, T. and Hankeln, T. (2005). Duplicated cytoglobin genes in teleost fishes. Biochem. Biophys. Res. Comm., 337, 216–23.CrossRefGoogle ScholarPubMed
Fukuda, R., Zhang, H. F., Kim, J. W., Shimoda, L., Dang, C. V. and Semenza, G. L. (2007). HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell, 129, 111–22.CrossRefGoogle ScholarPubMed
Fung, M. L. and Tipoe, G. L. (2003). Role of HIF-1 in physiological adaptation of the carotid body during chronic hypoxia. Adv. Exp. Med. Biol., 536, 593–601.CrossRefGoogle ScholarPubMed
Galtieri, A., Tellone, E., Romano, L., et al. (2002). Band-3 protein function in human erythrocytes: effect of oxygenation-deoxygenation. Biochim. Biophys. Acta Biomembr., 1564, 214–18.CrossRefGoogle ScholarPubMed
Gardner, L. B., Li, Q., Park, M. S., Flanagan, W. M., Semenza, G. L. and Dang, C. V. (2001). Hypoxia inhibits G(1)/S transition through regulation of p27 expression. J. Biol. Chem., 276, 7919–26.CrossRefGoogle Scholar
Gess, B., Schricker, K., Pfeifer, M. and Kurtz, A. (1997). Acute hypoxia upregulates NOS gene expression in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol., 273, R905–10.CrossRefGoogle ScholarPubMed
Gibson, J. S., Cossins, A. R. and Ellory, J. C. (2000). Oxygen-sensitive membrane transporters in vertebrate red cells. J. Exp. Biol., 203, 1395–407.Google ScholarPubMed
Gilles-Gonzalez, M. A. and Gonzalez, G. (2005). Heme-based sensors: defining characteristics, recent developments, and regulatory hypotheses. J. Inorg. Biochem., 99, 1–22.CrossRefGoogle ScholarPubMed
Gilmour, K. M. and Perry, S. F. (2006). Branchial chemoreceptor regulation of cardiorespiratory function. In Fish Physiology vol. 25: Sensory Systems Neuroscience, ed. Hara, T. J. and Zielinski, B. S.. New York: Academic Press, pp. 97–151.CrossRefGoogle Scholar
Gloire, G., Legrand-Poels, S. and Piette, J. (2006). NF-⎢B activation by reactive oxygen species: fifteen years later. Biochem. Pharmacol., 72, 1493–505.CrossRefGoogle Scholar
Goda, N., Ryan, H. E., Khadivi, B., McNulty, W., Rickert, R. C. and Johnson, R. S. (2003). Hypoxia-inducible factor 1 α is essential for cell cycle arrest during hypoxia. Mol. Cell. Biol., 23, 359–69.CrossRefGoogle ScholarPubMed
Gonzalez, C., Agapito, M. T., Rocher, A., et al. (2007). Chemoreception in the context of the general biology of ROS. Respir. Physiol. Neurobiol., 157, 30–44.CrossRefGoogle ScholarPubMed
Gonzalez, C., Almaraz, L., Obeso, A. and Rigual, R. (1994). Carotid body chemoreceptors: from natural stimuli to sensory discharges. Physiol. Rev., 74, 829–98.CrossRefGoogle ScholarPubMed
Gonzalez, C., Lopez-Lopez, J. R., Obeso, A., Perez-Garcia, M. T. and Rocher, A. (1995a). Cellular mechanisms of oxygen chemoreception in the carotid body. Respir. Physiol., 102, 137–47.CrossRefGoogle ScholarPubMed
Gonzalez, C., Vicario, I., Almaraz, L. and Rigual, R. (1995b). Oxygen sensing in the carotid body. Biol. Signals, 4, 245–56.CrossRefGoogle ScholarPubMed
Gorr, T. A., Cahn, J. D., Yamagata, H. and Bunn, H. F. (2004). Hypoxia-induced synthesis of hemoglobin in the crustacean Daphnia magna is hypoxia-inducible factor-dependent. J. Biol. Chem., 279, 36038–47.CrossRefGoogle ScholarPubMed
Greijer, A. E., Groep, P., Kemming, D., et al. (2005). Up-regulation of gene expression by hypoxia is mediated predominantly by hypoxia-inducible factor 1 (HIF-1). J. Pathol., 206, 291–304.CrossRefGoogle Scholar
Guzy, R. D., Hoyos, B., Robin, E., et al. (2005). Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metabolism, 1, 401–8.CrossRefGoogle ScholarPubMed
Guzy, R. D. and Schumacker, P. T. (2006). Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp. Physiol., 91, 807–19.CrossRefGoogle ScholarPubMed
Haddad, J. J. (2002). Oxygen-sensing mechanisms and the regulation of redox- responsive transcription factors in development and pathophysiology. Respir. Res., 3, article 26.CrossRefGoogle ScholarPubMed
Halliwell, B. and Gutteridge, J. M. C. (1984). Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J., 219, 1–14.CrossRefGoogle ScholarPubMed
Halliwell, B. and Gutteridge, J. M. C. (2007). Free Radicals in Biology and Medicine, 4th edn. Oxford: Oxford University Press.Google Scholar
Hamdane, D., Kiger, L., Dewilde, S., et al. (2003). The redox state of the cell regulates the ligand binding affinity of human neuroglobin and cytoglobin. J. Biol. Chem., 278, 51713–21.CrossRefGoogle ScholarPubMed
Hankeln, T., Ebner, B., Fuchs, C., et al. (2005). Neuroglobin and cytoglobin in search of their role in the vertebrate globin family. J. Inorg. Biochem., 99, 110–19.CrossRefGoogle ScholarPubMed
Hardie, D. G. (2003). Minireview: the AMP-activated protein kinase cascade – the key sensor of cellular energy status. Endocrinology, 144, 5179–83.CrossRefGoogle ScholarPubMed
Hardie, D. G., Hawley, S. A. and Scott, J. (2006). AMP-activated protein kinase – development of the energy sensor concept. J. Physiol. (London), 574, 7–15.CrossRefGoogle ScholarPubMed
Heise, K., Puntarulo, S., Nikinmaa, M., Abele, D. and Portner, H. O. (2006a). Oxidative stress during stressful heat exposure and recovery in the North Sea eelpout Zoarces viviparus L. J. Exp. Biol., 209, 353–63.CrossRefGoogle ScholarPubMed
Heise, K., Puntarulo, S., Nikinmaa, M., Lucassen, M., Portner, H. O. and Abele, D. (2006b). Oxidative stress and HIF-1 DNA binding during stressful cold exposure and recovery in the North Sea eelpout (Zoarces viviparus). Comp. Biochem. Physiol. A Mol. Integr. Physiol., 143, 494–503.CrossRefGoogle Scholar
Hirota, K. and Semenza, G. L. (2005). Regulation of hypoxia-inducible factor 1 by prolyl and asparaginyl hydroxylases. Biochem. Biophys. Res. Comm., 338, 610–16.CrossRefGoogle ScholarPubMed
Hochachka, P. W. and Lutz, P. L. (2001). Mechanism, origin, and evolution of anoxia tolerance in animals. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 130, 435–59.CrossRefGoogle ScholarPubMed
Hofer, T., Pohjanvirta, R., Spielmann, P., et al. (2004). Simultaneous exposure of rats to dioxin and carbon monoxide reduces the xenobiotic but not the hypoxic response. Biol. Chem., 385, 291–4.CrossRefGoogle Scholar
Infanger, D. W., Sharma, R. V. and Davisson, R. L. (2006). NADPH oxidases of the brain: distribution, regulation, and function. Antioxid. Redox. Signal., 8, 1583–96.CrossRefGoogle ScholarPubMed
Ingermann, R. L. and Terwilliger, R. C. (1982). Presence and possible function of Root effect hemoglobins in fishes lacking functional swim bladders. J. Exp. Zool., 220, 171–7.CrossRefGoogle ScholarPubMed
Ivan, M., Kondo, K., Yang, H. F., et al. (2001). HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science, 292, 464–8.CrossRefGoogle ScholarPubMed
Jaakkola, P., Mole, D. R., Tian, Y. M., et al. (2001). Targeting of HIFα to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science, 292, 468–72.CrossRefGoogle Scholar
Jelkmann, W. (2007). Erythropoietin after a century of research: younger than ever. Eur. J. Haematol., 78, 183–205.CrossRefGoogle Scholar
Jensen, F. B., Jakobsen, M. H. and Weber, R. E. (1998). Interaction between haemoglobin and synthetic peptides of the N-terminal cytoplasmic fragment of trout Band 3 (AE1) protein. J. Exp. Biol., 201, 2685–90.Google ScholarPubMed
Jonz, M. G., Fearon, I. M. and Nurse, C. A. (2004). Neuroepithelial oxygen chemoreceptors of the zebrafish gill. J. Physiol. (London), 560, 737–52.CrossRefGoogle ScholarPubMed
Jurgens, K. D., Papadopoulos, S., Peters, T. and Gros, G. (2000). Myoglobin: just an oxygen store or also an oxygen transporter?News Physiol. Sci., 15, 269–74.Google ScholarPubMed
Kaelin, W. G. (2005). Proline hydroxylation and gene expression. Annu. Rev. Biochem., 74, 115–28.CrossRefGoogle ScholarPubMed
Khan, A. I., Drew, C., Ball, S. E., Ball, V., Ellory, J. C. and Gibson, J. S. (2004). Oxygen dependence of K+-Cl- cotransport in human red cell ghosts and sickle cells. Bioelectrochemistry, 62, 141–6.CrossRefGoogle ScholarPubMed
Khomenko, T., Deng, X. M., Sandor, Z., Tarnawski, A. S. and Szabo, S. (2004). Cysteamine alters redox state, HIF-1 α transcriptional interactions and reduces duodenal mucosal oxygenation: novel insight into the mechanisms of duodenal ulceration. Biochem. Biophys. Res. Comm., 317, 121–7.CrossRefGoogle ScholarPubMed
Kietzmann, T. and Gorlach, A. (2005). Reactive oxygen species in the control of hypoxia-inducible factor-mediated gene expression. Sem. Cell Devel. Biol., 16, 474–86.CrossRefGoogle ScholarPubMed
Kim, K. H., Song, M. J., Chung, J., Park, H. and Kim, J. B. (2005). Hypoxia inhibits adipocyte differentiation in a HDAC-independent manner. Biochem. Biophys. Res. Comm., 333, 1178–84.CrossRefGoogle Scholar
Kline, D. D., Peng, Y. J., Manalo, D. J., Semenza, G. L. and Prabhakar, N. R. (2002). Defective carotid body function and impaired ventilatory responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1 α. Proc. Natl. Acad. Sci. USA, 99, 821–6.CrossRefGoogle ScholarPubMed
Koivisto, A., Matthias, A., Bronnikov, G. and Nedergaard, J. (1997). Kinetics of the inhibition of mitochondrial respiration by NO. FEBS Lett., 417, 75–80.CrossRefGoogle Scholar
Kong, T. Q., Westerman, K. A., Faigle, M., Eltzschig, H. K. and Colgan, S. P. (2006). HIF-dependent induction of adenosine A2B receptor in hypoxia. FASEB J., 20, 2242–50.CrossRefGoogle ScholarPubMed
Kugelstadt, D., Haberkamp, M., Hankeln, T. and Burmester, T. (2004). Neuroglobin, cytoglobin, and a novel, eye-specific globin from chicken. Biochem. Biophys. Res. Comm., 325, 719–25.CrossRefGoogle Scholar
Kumar, P. and Prabhakar, N. (2007). Sensing hypoxia: carotid body mechanisms and reflexes in health and disease. Respir. Physiol. Neurobiol., 157, 1–3.CrossRefGoogle ScholarPubMed
Kummer, W. and Acker, H. (1995). Immunohistochemical demonstration of four subunits of neutrophil NAD(P)H oxidase in type I cells of carotid body. J. Appl. Physiol., 78, 1904–9.CrossRefGoogle ScholarPubMed
Lahiri, S. and Acker, H. (1999). Redox-dependent binding of CO to heme protein controls PO2-sensitive chemoreceptor discharge of the rat carotid body. Respir. Physiol., 115, 169–77.CrossRefGoogle Scholar
Lahiri, S., Roy, A., Baby, S. M., Hoshi, T., Semenza, G. L. and Prabhakar, N. R. (2006). Oxygen sensing in the body. Progr. Biophys. Mol. Biol., 91, 249–86.CrossRefGoogle ScholarPubMed
Lando, D., Pongratz, I., Poellinger, L. and Whitelaw, M. L. (2000). A redox mechanism controls differential DNA binding activities of hypoxia-inducible factor (HIF) 1α and the HIF-like factor. J. Biol. Chem., 275, 4618–27.CrossRefGoogle ScholarPubMed
Law, S. H. W., Wu, R. S. S., Ng, P. K. S., Yu, R. M. K. and Kong, R. Y. C. (2006). Cloning and expression analysis of two distinct HIF-α isoforms – gcHIF-1α and gcHIF-4α – from the hypoxia-tolerant grass carp, Ctenopharyngodon idellus. BMC Mol. Biol., 7 art. 15.CrossRefGoogle ScholarPubMed
Lee, P. J., Jiang, B. H., Chin, B. Y., Iyer, N. V., Alam, J., Semenza, G. L. and Choi, A. M. K. (1997). Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J. Biol. Chem., 272, 5375–81.CrossRefGoogle ScholarPubMed
Lei, B. A., Matsuo, K., Labinskyy, V., Sharma, N., Chandler, M. P., Ahn, A., et al. (2005). Exogenous nitric oxide reduces glucose transporters translocation and lactate production in ischemic myocardium in vivo. Proc. Natl. Acad. Sci. USA, 102, 6966–71.CrossRefGoogle ScholarPubMed
Lesser, M. P. (2006). Oxidative stress in marine environments: biochemistry and physiological ecology. Annu. Rev. Physiol., 68, 253–78.CrossRefGoogle ScholarPubMed
Li, R. C., Lee, S. K., Pouranfar, F., et al. (2006). Hypoxia differentially regulates the expression of neuroglobin and cytoglobin in rat brain. Brain Res., 1096, 173–9.CrossRefGoogle ScholarPubMed
Liu, L. P., Cash, T. P., Jones, R. G., Keith, B., Thompson, C. B. and Simon, M. C. (2006). Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol. Cell, 21, 521–31.CrossRefGoogle ScholarPubMed
Liu, Q., Berchner-Pfannschmidt, U., Moller, U., et al. (2004). A Fenton reaction at the endoplasmic reticulum is involved in the redox control of hypoxia-inducible gene expression. Proc. Natl. Acad. Sci. USA, 101, 4302–7.CrossRefGoogle ScholarPubMed
Liu, Y. V. and Semenza, G. L. (2007). RACK1 vs. HSP90 – competition for HIF-1α degradation vs. stabilization. Cell Cycle, 6, 656–9.CrossRefGoogle ScholarPubMed
Liu, Y. V., Baek, J. H., Zhang, H., Diez, R., Cole, R. N. and Semenza, G. L. (2007). RACK1 competes with HSP90 for binding to HIF-1 alpha and is required for O2-independent and HSP90 inhibitor-induced degradation of HIF-1 alpha. Mol. Cell, 25, 207–217.CrossRefGoogle Scholar
Lopez-Barneo, J. (2003). Oxygen and glucose sensing by carotid body glomus cells. Curr. Opin. Neurobiol., 13, 493–9.CrossRefGoogle ScholarPubMed
Lopez-Barneo, J., Pardal, R. and Ortega-Saenz, P. (2001). Cellular mechanism of oxygen sensing. Annu. Rev. Physiol., 63, 259–87.CrossRefGoogle ScholarPubMed
Lutz, P. L., and Nilsson, G. E. (2004). Vertebrate brains at the pilot light. Respir. Physiol. Neurobiol. 141, 285–96.CrossRefGoogle ScholarPubMed
Mammen, P. P. A., Shelton, J. M., Ye, Q., et al. (2006). Cytoglobin is a stress-responsive hemoprotein expressed in the developing and adult brain. J. Histochem. Cytochem., 54, 1349–61.CrossRefGoogle ScholarPubMed
Manalo, D. J., Rowan, A., Lavoie, T., et al. (2005). Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood, 105, 659–69.CrossRefGoogle Scholar
Martin, E. D., Fernandez, M., Perea, G., et al. (2007). Adenosine released by astrocytes contributes to hypoxia-induced modulation of synaptic transmission. Glia, 55, 36–45.CrossRefGoogle ScholarPubMed
Michiels, C., Minet, E., Mottet, D. and Raes, M. (2002). Regulation of gene expression by oxygen: NF⎢B and HIF-1, two extremes. Free Rad. Biol. Med., 33, 1231–42.CrossRefGoogle Scholar
Milsom, W. K. and Burleson, M. L. (2007). Peripheral arterial chemoreceptors and the evolution of the carotid body. Respir. Physiol. Neurobiol., 157, 4–11.CrossRefGoogle ScholarPubMed
Nie, M. H., Blankenship, A. L. and Giesy, J. P. (2001). Interactions between aryl hydrocarbon receptor (AhR) and hypoxia signaling pathways. Environ. Toxicol. Pharmacol., 10, 17–27.CrossRefGoogle Scholar
Nikinmaa, M. (1992). Membrane transport and the control of haemoglobin-oxygen affinity in nucleated erythrocytes. Physiol. Rev., 72, 301–21.CrossRefGoogle Scholar
Nikinmaa, M. (2003). Gas transport. In Red Cell Membrane Transport in Health and Disease, ed. Bernhardt, I. and Ellory, J. C.. Berlin: Springer, pp. 489–509.CrossRefGoogle Scholar
Nikinmaa, M. (2005). Gas transport. In The Physiology of Fishes, 3rd edn, ed. Evans, D. H. and Claiborne, J. B.. Boca Raton: CRC Press, pp. 153–74.Google Scholar
Nikinmaa, M. and Railo, E. (1987). Anion movements across lamprey (Lampetra fluviatilis) red cell membrane. Biochim. Biophys. Acta, 899, 134–6.CrossRefGoogle ScholarPubMed
Nikinmaa, M. and Rees, B. B. (2005). Oxygen-dependent gene expression in fishes. Amer. J. Physiol. Regul. Integr. Comp. Physiol., 288, R1079–90.CrossRefGoogle ScholarPubMed
Nikinmaa, M. and Salama, A. (1998). Oxygen transport in fish. In Fish Physiology vol. 17, Fish Respiration, ed. Perry, S. F. and Tufts, B. L.. New York: Academic Press, pp. 141–84.Google Scholar
O'Driscoll, C. M. and Gorman, A. M. (2005). Hypoxia induces neurite outgrowth in PC12 cells that is mediated through adenosine A2A receptors. Neuroscience, 131, 321–9.CrossRefGoogle ScholarPubMed
Oehme, F., Ellinghaus, P., Kolkhof, P., et al. (2002). Overexpression of PH-4, a novel putative proline 4-hydroxylase, modulates activity of hypoxia-inducible transcription factors. Biochem. Biophys. Res. Comm., 296, 343–9.CrossRefGoogle ScholarPubMed
Olson, K. R., Dombkowski, R. A., Russell, M. J., et al. (2006). Hydrogen sulfide as an oxygen sensor/transducer in vertebrate hypoxic vasoconstriction and hypoxic vasodilation. J. Exp. Biol., 209, 4011–23.CrossRefGoogle ScholarPubMed
Ordway, G. A. and Garry, D. J. (2004). Myoglobin: an essential hemoprotein in striated muscle. J. Exp. Biol., 207, 3441–6.CrossRefGoogle ScholarPubMed
Otto, C. M. and Baumgardner, J. E. (2001). Effect of culture PO2 on macrophage (RAW 264.7) nitric oxide production. Am. J. Physiol. Cell Physiol., 280, C280–7.CrossRefGoogle ScholarPubMed
Pardal, R. and Lopez-Barneo, J. (2004). Combined oxygen and glucose sensing in the carotid body. Undersea Hyperbaric Med., 31, 113–21.Google ScholarPubMed
Pelster, B. and Scheid, P. (1992). Countercurrent concentration and gas secretion in the fish swimbladder. Physiol. Zool., 65, 1–16.CrossRefGoogle Scholar
Perry, S. F. and Gilmour, K. M. (2002). Sensing and transfer of respiratory gases at the fish gill. J. Exp. Zool., 293, 249–63.CrossRefGoogle ScholarPubMed
Pesce, A., Bolognesi, M., Bocedi, A., et al. (2002). Neuroglobin and cytoglobin. Fresh blood for the vertebrate globin family. EMBO Rep., 3, 1146–51.CrossRefGoogle ScholarPubMed
Pettersen, E. O., Larsen, L. H., Ramsing, N. B. and Ebbesen, P. (2005). Pericellular oxygen depletion during ordinary tissue culturing, measured with oxygen microsensors. Cell Prolif., 38, 257–67.CrossRefGoogle ScholarPubMed
Porwol, T., Ehleben, W., Brand, V. and Acker, H. (2001). Tissue oxygen sensor function of NADPH oxidase isoforms, an unusual cytochrome aa3 and reactive oxygen species. Respir. Physiol., 128, 331–48.CrossRefGoogle ScholarPubMed
Prabhakar, N. R. (2006). O2 sensing at the mammalian carotid body: why multiple O2 sensors and multiple transmitters? Exp. Physiol., 91, 17–23.CrossRefGoogle ScholarPubMed
Rankin, E. B., Biju, M. P., Liu, , et al. (2007). Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. J. Clin. Invest., 117, 1068–77.CrossRefGoogle ScholarPubMed
Ratcliffe, P. J. (2007). HIF-1 and HIF-2: working alone or together in hypoxia? J. Clin. Invest., 117, 862–5.CrossRefGoogle Scholar
Rees, B. B., Bowman, J. A. and Schulte, P. M. (2001). Structure and sequence conservation of a putative hypoxia response element in the lactate dehydrogenase-B gene of Fundulus. Biol. Bull., 200, 247–51.CrossRefGoogle ScholarPubMed
Rees, B. B., Figueroa, Y. G., Wiese, T. E., Beckman, B. S. and Schulte, P. M. (2009). A novel hypoxia response element in the lactate dehydrogenase-B gene of the killi fishFundulus heteroclitus. Comp. Biochem. Physiol. A. 154, 70–77.CrossRefGoogle Scholar
Rissanen, E., Tranberg, H. K. and Nikinmaa, M. (2006a). Oxygen availability regulates metabolism and gene expression in trout hepatocyte cultures. Am. J. Physiol. Regul. Integr. Comp. Physiol., 291, R1507–15.CrossRefGoogle ScholarPubMed
Rissanen, E., Tranberg, H. K., Sollid, J., Nilsson, G. E. and Nikinmaa, M. (2006b). Temperature regulates hypoxia-inducible factor-1 (HIF-1) in a poikilothermic vertebrate, crucian carp (Carassius carassius). J. Exp. Biol., 209, 994–1003.CrossRefGoogle Scholar
Roesner, A., Hankeln, T. and Burmester, T. (2006). Hypoxia induces a complex response of globin expression in zebrafish (Danio rerio). J. Exp. Biol., 209, 2129–37.CrossRefGoogle Scholar
Roesner, A., Fuchs, C., Hankeln, T. and Burmester, T. (2005). A globin gene of ancient evolutionary origin in lower vertebrates: evidence for two distinct globin families in animals. Mol. Biol. Evol., 22, 12–20.CrossRefGoogle ScholarPubMed
Rotrosen, D., Yeung, C. L., Leto, T. L., Malech, H. L. and Kwong, C. H. (1992). Cytochrome b558: the flavin-binding component of the phagocyte NADPH oxidase. Science, 256, 1459–62.CrossRefGoogle ScholarPubMed
Roux, J. C., Brismar, H., Aperia, A. and Lagercrantz, H. (2005). Developmental changes in HIF transcription factor in carotid body: relevance for O2 sensing by chemoreceptors. Pediatr. Res., 58, 53–7.CrossRefGoogle ScholarPubMed
Roy, A., Rozanov, C., Mokashi, A., et al. (2000). Mice lacking in gp91 phox subunit of NAD(P)H oxidase showed glomus cell [Ca2+]i and respiratory responses to hypoxia. Brain Res., 872, 188–93.CrossRefGoogle ScholarPubMed
Rytkonen, K. T., Vuori, K. A. M., Primmer, C. R. and Nikinmaa, M. (2007). Comparison of hypoxia-inducible factor-1α in hypoxia-sensitive and hypoxia-tolerant fish species. Comp. Biochem. Physiol. D: Genom. Proteom., 2, 177–86.Google Scholar
Sanders, K. A., Sundar, K. M., He, L., Dinger, B., Fidone, S. and Hoidal, J. R. (2002). Role of components of the phagocytic NADPH oxidase in oxygen sensing. J. Appl. Physiol., 93, 1357–64.CrossRefGoogle ScholarPubMed
Schmidt, M., Gerlach, F., Avivi, A., et al. (2004). Cytoglobin is a respiratory protein in connective tissue and neurons, which is up-regulated by hypoxia. J. Biol. Chem., 279, 8063–9.CrossRefGoogle ScholarPubMed
Schnell, P. O., Ignacak, M. L., Bauer, A. L., Striet, J. B., Paulding, W. R. and Czyzyk-Krzeska, M. F. (2003). Regulation of tyrosine hydroxylase promoter activity by the von Hippel-Lindau tumor suppressor protein and hypoxia-inducible transcription factors. J. Neurochem., 85, 483–91.CrossRefGoogle ScholarPubMed
Semenza, G. L. (2004). Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology, 19, 176–82.CrossRefGoogle ScholarPubMed
Shams, I., Nevo, E. and Avivi, A. (2004). Ontogenetic expression of erythropoietin and hypoxia-inducible factor-1α genes in subterranean blind mole rats. FASEB J., 19, 307–9.CrossRefGoogle ScholarPubMed
Soliz, J., Joseph, V., Soulage, C., et al. (2005). Erythropoietin regulates hypoxic ventilation in mice by interacting with brainstem and carotid bodies. J. Physiol. (London), 568, 559–71.CrossRefGoogle ScholarPubMed
Stensløkken, K. O., Sundin, L., Renshaw, G. M. C. and Nilsson, G. E. (2004). Adenosinergic and cholinergic control mechanisms during hypoxia in the epaulette shark (Hemiscyllium ocellatum), with emphasis on branchial circulation. J. Exp. Biol., 207, 4451–61.CrossRefGoogle Scholar
Stiehl, D. P., Jelkmann, W., Wenger, R. H. and Hellwig-Burgel, T. (2002). Normoxic induction of the hypoxia-inducible factor 1α by insulin and interleukin-1β involves the phosphatidylinositol 3-kinase pathway. FEBS Lett., 512, 157–62.CrossRefGoogle ScholarPubMed
Takagi, H., King, G. L., Robinson, G. S., Ferrara, N. and Aiello, L. P. (1996). Adenosine mediates hypoxic induction of vascular endothelial growth factor in retinal pericytes and endothelial cells. Invest. Ophthalmol. Visual Sci., 37, 2165–76.Google ScholarPubMed
Tetens, V. and Christensen, N. J. (1987). Beta-adrenergic control of blood oxygen affinity in acutely hypoxia exposed rainbow trout. J. Comp. Physiol. B, 157, 667–75.CrossRefGoogle ScholarPubMed
Treinin, M., Shliar, J., Jiang, H. Q., Powell-Coffman, J. A., Bromberg, Z. and Horowitz, M. (2003). HIF-1 is required for heat acclimation in the nematode Caenorhabditis elegans. Physiol. Genomics, 14, 17–24.CrossRefGoogle ScholarPubMed
Triantafyllou, A., Liakos, P., Tsakalof, A., et al. (2007). The flavonoid quercetin induces hypoxia-inducible factor-1α (HIF-1α) and inhibits cell proliferation by depleting intracellular iron. Free Rad. Res., 41, 342–56.CrossRefGoogle ScholarPubMed
Tufts, B. L. and Boutilier, R. G. (1989). The absence of rapid chloride/bicarbonate exchange in lamprey erythrocytes: implications for CO2 transport and ion distributions between plasma and erythrocytes in the blood of Petromyzon marinus. J. Exp. Biol., 144, 565–76.Google Scholar
Meer, D. L. M., Thillart, G. E. E. J., Witte, F., et al. (2005). Gene expression profiling of the long-term adaptive response to hypoxia in the gills of adult zebrafish. Am. J. Physiol. Regul. Integr. Comp. Physiol., 289, R1512–19.CrossRefGoogle ScholarPubMed
Virkki, L. V., Salama, A. and Nikinmaa, M. (1998). Regulation of ion transport across lamprey (Lampetra fluviatilis) erythrocyte membrane by oxygen tension. J. Exp. Biol., 201, 1927–37.Google ScholarPubMed
Wang, R. (2003). The gasotransmitter role of hydrogen sulphide. Antioxid. Redox Signal., 5, 493–501.CrossRefGoogle Scholar
Weber, R. E., Voelter, W., Fago, A., Echner, H., Campanella, E. and Low, P. S. (2004). Modulation of red cell glycolysis: interactions between vertebrate hemoglobins and cytoplasmic domains of band 3 red cell membrane proteins. Am. J. Physiol. Regul. Integr. Comp. Physiol., 287, R454–64.CrossRefGoogle ScholarPubMed
Wenger, R. H. (2000). Mammalian oxygen sensing, signalling and gene regulation. J. Exp. Biol., 203, 1253–63.Google ScholarPubMed
Wenger, R. H. and Gassmann, M. (1996). Little difference. Nature, 380, 100.CrossRefGoogle ScholarPubMed
Wientjes, F. B. and Segal, A. W. (1995). NADPH oxidase and the respiratory burst. Semin. Cell Biol., 6, 357–65.CrossRefGoogle ScholarPubMed
Williams, S. E. J., Wootton, P., Mason, H. S., et al. (2004). Hemoxygenase-2 is an oxygen sensor for a calcium-sensitive potassium channel. Science, 306, 2093–7.CrossRefGoogle ScholarPubMed
Wittenberg, J. B. and Wittenberg, B. A. (2003). Myoglobin function reassessed. J. Exp. Biol., 206, 2011–20.CrossRefGoogle ScholarPubMed
Wolin, M. S., Ahmad, M. and Gupte, S. A. (2005). Oxidant and redox signaling in vascular oxygen sensing mechanisms: basic concepts, current controversies, and potential importance of cytosolic NADPH. Am. J. Physiol. Lung Cell. Mol. Physiol., 289, L159–73.CrossRefGoogle Scholar
Wyatt, C. N., and Evans, A. M. (2007). AMP-activated protein kinase and chemotransduction in the carotid body. Respir. Physiol. Neurobiol., 157, 22–9.CrossRefGoogle ScholarPubMed
Wyatt, C. N., Mustard, K. J., Pearson, S. A., et al. (2007). AMP-activated protein kinase mediates carotid body excitation by hypoxia. J. Biol. Chem., 282, 8092–8.CrossRefGoogle ScholarPubMed
Yun, H., Lee, M., Kim, S. S. and Ha, J. (2005). Glucose deprivation increases mRNA stability of vascular endothelial growth factor through activation of AMP-activated protein kinase in DU145 prostate carcinoma. J. Biol. Chem., 280, 9963–72.CrossRefGoogle ScholarPubMed
Zhang, M., Buttigieg, J. and Nurse, C. A. (2007). Neurotransmitter mechanisms mediating low-glucose signalling in cocultures and fresh tissue slices of rat carotid body. J. Physiol. (London), 578, 735–50.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×