Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-19T18:42:24.228Z Has data issue: false hasContentIssue false

10 - Energy saving in low-rate systems

from Part II - Low-rate systems

Published online by Cambridge University Press:  01 June 2011

Tae Rim Park
Affiliation:
Samsung Advanced Institute of Technology, Republic of Korea
Myung J. Lee
Affiliation:
City University of New York, City College, New York, USA
Ismail Guvenc
Affiliation:
DoCoMo Communications Laboratories USA, Inc.
Sinan Gezici
Affiliation:
Bilkent University, Ankara
Zafer Sahinoglu
Affiliation:
Mitsubishi Electric Research Laboratories, Cambridge, Massachusetts
Ulas C. Kozat
Affiliation:
DoCoMo Communications Laboratories USA, Inc.
Get access

Summary

In low-rate wireless networks, energy saving has been one of the recent important research challenges. Compared to high-rate networks designed for multimedia data streaming or large file transfer, low-rate systems focus mainly on monitoring and control applications. In most of these applications, devices are expected to have low data rates and to operate on battery. Since replacing or recharging the battery is difficult in many situations, conserving battery power without comprising reliability is one of the essential challenges. In this chapter, we discuss the energy efficiency of medium access control (MAC) layer protocols because they control actual transmission and reception of devices, and therefore play a critical role in the energy consumption aspects.

Background on energy efficiency

Recently, saving energy has been a prominent topic in the wireless communications and networking community. Almost all devices changing our lifestyle such as laptops, smart phones, and small environmental sensors operate on battery, and equip wireless interfaces to connect to the outside world. Trouble comes mainly from the following fact: while most technologies for portable electronic devices are evolving very rapidly, the energy density of batteries has crawled by merely a factor of 3 over the past 15 years [1]. Moreover, in many applications, such as environmental sensing, replacing or recharging batteries is costly and not feasible.

The only standard MAC protocol for the low-power and low-rate wireless networks is the IEEE 802.15.4 protocol [2]. Although the standard supports energy saving, the actual energy saving is not realized without proper use of certain functions.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×