Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-01T21:35:47.653Z Has data issue: false hasContentIssue false

9 - Characterization of Wi-Fi interference for dynamic channel allocation in WPANs

from Part II - Low-rate systems

Published online by Cambridge University Press:  01 June 2011

Federico Penna
Affiliation:
Istituto Superiore Mario Boella (ISMB), Torino, Italy
Claudio Pastrone
Affiliation:
Istituto Superiore Mario Boella (ISMB), Torino, Italy
Hussein Khaleel
Affiliation:
Politecnico di Torino, Torino, Italy
Maurizio A. Spirito
Affiliation:
Istituto Superiore Mario Boella (ISMB), Torino, Italy
Roberto Garello
Affiliation:
Politecnico di Torino, Torino, Italy
Ismail Guvenc
Affiliation:
DoCoMo Communications Laboratories USA, Inc.
Sinan Gezici
Affiliation:
Bilkent University, Ankara
Zafer Sahinoglu
Affiliation:
Mitsubishi Electric Research Laboratories, Cambridge, Massachusetts
Ulas C. Kozat
Affiliation:
DoCoMo Communications Laboratories USA, Inc.
Get access

Summary

Towards adaptive wireless personal area networks (WPANs)

Introduction and motivation

Recent years have witnessed a growing demand on wireless technologies, thanks to their convenience and the variety of services offered. This success is leading to an increasing adoption of wireless systems, especially the ones operating in the unlicensed 2.4 GHz industrial, scientific, and medical (ISM) frequency band. As a result, the spectrum is overcrowded and shared by a variety of standards, causing serious coexistence problems due to their cross-interference: this may lead to performance degradation or even network malfunctioning.

To overcome the problem of spectrum scarcity, and allow the network to maintain its level of performance and reliability, a cognitive radio (CR) approach can be applied. As will be discussed here, this emerging wireless communication paradigm aims at providing a more effective and flexible spectrum usage by observing the radio environment and adapting transmission parameters consequently. According to the CR approach, instead of a fixed frequency assignment, smart nodes are envisioned to constantly perform “spectrum sensing” and dynamically allocate themselves to the best available channel, thus achieving reliable and spectrally efficient communication. The first step towards the implementation of a CR system is the characterization of interference between coexisting systems. This chapter in particular focuses on wireless personal area networks (WPANs), based on the IEEE 802.15.4 standard, operating in the presence of IEEE 802.11b Wi-Fi traffic. As is evident in Figure 9.1, there is an almost complete overlap between the channels allocated for these two systems [1, 2].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×