Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-20T02:20:36.457Z Has data issue: false hasContentIssue false

7 - Dynamics: correlation and response

Published online by Cambridge University Press:  05 June 2012

P. M. Chaikin
Affiliation:
Princeton University, New Jersey
T. C. Lubensky
Affiliation:
University of Pennsylvania
Get access

Summary

Much of what we observe in nature is either time- or frequency-dependent. In this chapter, we will introduce language to describe time- and frequency-dependent phenomena in condensed matter systems near thermal equilibrium. We will focus on dynamic correlations and on linear response to time-dependent external fields that are described by time-dependent generalizations of correlation functions and susceptibilities introduced in Chapters 2 and 3. These functions, whose definitions are detailed in Sec. 7.1, contain information about the nature of dynamical modes. To understand how and why, we will consider linear response in damped harmonic oscillators in Sees. 7.2 and 7.3, and in systems whose dynamics are controlled by diffusion in Sec. 7.4. These examples show that complex poles in a complex, frequency-dependent response function determine the frequency and damping of system modes. Furthermore, the imaginary part of this response function is a measure of the rate of dissipation of energy of external forces.

A knowledge of phenomenological equations of motion in the presence of external forces is sufficient to determine dynamical response functions. The calculation of dynamical correlation functions in dissipative systems requires either a detailed treatment of many degrees of freedom or some phenomenological model for how thermal equilibrium is approached. In Sec. 7.5, we follow the latter approach and introduce Langevin theory, in which thermal equilibrium is maintained by interactions with random forces with well prescribed statistical properties. Frequency-dependent correlation functions for a diffusing particle and a damped harmonic oscillator are proportional to the imaginary part of a response function.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×