Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-19T10:41:12.439Z Has data issue: false hasContentIssue false

1 - Overview

Published online by Cambridge University Press:  05 June 2012

P. M. Chaikin
Affiliation:
Princeton University, New Jersey
T. C. Lubensky
Affiliation:
University of Pennsylvania
Get access

Summary

Condensed matter physics

Imagine that we knew all of the fundamental laws of nature, understood them completely, and could identify all of the elementary particles. Would we be able to explain all physical phenomena with this knowledge? We could do a good job of predicting how a single particle moves in an applied potential, and we could equally well predict the motion of two interacting particles (by separating center of mass and interparticle coordinates). But there are only a few problems involving three particles that we could solve exactly. The phenomena we commonly observe involve not two or three but of order 1027 particles (e.g., in a liter of water); there is little hope of finding an analytical solution for the motion of all of these particles. Moreover, it is not clear that such a solution, even if it existed, would be useful. We cannot possibly observe the motion of each of 1027 particles. We can, however, observe macroscopic variables, such as particle density, momentum density, or magnetization, and measure their fluctuations and response to external fields. It is these observables that characterize and distinguish the many different thermodynamically stable phases of matter: liquids flow, solids are rigid; some matter is transparent, other matter is colored; there are insulators, metals and semiconductors, and so on.

Condensed matter physics provides a framework for describing and determining what happens to large groups of particles when they interact via presumably well known forces.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Overview
  • P. M. Chaikin, Princeton University, New Jersey, T. C. Lubensky, University of Pennsylvania
  • Book: Principles of Condensed Matter Physics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511813467.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Overview
  • P. M. Chaikin, Princeton University, New Jersey, T. C. Lubensky, University of Pennsylvania
  • Book: Principles of Condensed Matter Physics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511813467.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Overview
  • P. M. Chaikin, Princeton University, New Jersey, T. C. Lubensky, University of Pennsylvania
  • Book: Principles of Condensed Matter Physics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511813467.002
Available formats
×