Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T17:42:07.541Z Has data issue: false hasContentIssue false

12 - Magnetic fields in high-mass star-forming regions

from III - Stars and their environment

Published online by Cambridge University Press:  05 May 2015

Ludmilla Kolokolova
Affiliation:
University of Maryland, College Park
James Hough
Affiliation:
University of Hertfordshire
Anny-Chantal Levasseur-Regourd
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, J., Chrysostomou, A., Hough, J. H.et al. (1998). Circular polarization in star-formation regions: Implications for biomolecular homochirality. Science, 281, 672674.CrossRefGoogle ScholarPubMed
Barvainis, R., Clemens, D. P., and Leach, R. (1988). Polarimetry at 1.3 mm using MILLIPOL – Methods and preliminary results for Orion. The Astronomical Journal, 95, 510515.CrossRefGoogle Scholar
Bastien, P. and Ménard, F. (1988). On the interpretation of polarization maps of young stellar objects. The Astrophysical Journal, 326, 334338.CrossRefGoogle Scholar
Bastien, P., Bissonnette, E., Simon, A.et al. (2012). POL-2: The SCUBA-2 Polarimeter. In Bastien, P., Manset, N., Clemens, D. P., and St-Louis, N., eds., Astronomical Polarimetry 2008: Science from Small to Large Telescopes. ASP Conference Series, Vol. 449. San Francisco, USA: Astronomical Society of the Pacific, p. 68.Google Scholar
Bolatto, A. D., Leroy, A. K., Rosolowsky, E., Walter, F., and Blitz, L. (2008). The resolved properties of extragalactic giant molecular clouds. The Astrophysical Journal, 686, 948.CrossRefGoogle Scholar
Chandrasekhar, S. and Fermi, E. (1953). Magnetic fields in spiral arms. The Astrophysical Journal, 118, 113.CrossRefGoogle Scholar
Chrysostomou, A., Hough, J. H., Aspin, C. A., and Bailey, J. A. (1994a). Dissecting the Bipolar Nebula in NGC6334V. Monthly Notices of the Royal Astronomical Society, 268, L63L67.CrossRefGoogle Scholar
Chrysostomou, A., Hough, J. H., Burton, M. G., and Tamura, M. (1994b). Twisting magnetic fields in the core region of Orion Molecular Cloud-1. Monthly Notices of the Royal Astronomical Society, 268, 325334.CrossRefGoogle Scholar
Chrysostomou, A., Ménard, F., Gledhill, T. M.et al. (1997). Polarimetry of young stellar objects—II. Circular polarization of GSS 30. Monthly Notices of the Royal Astronomical Society, 285, 750758.CrossRefGoogle Scholar
Chrysostomou, A., Lucas, P. W., and Hough, J. H. (2007). Circular polarimetry reveals helical magnetic fields in the young stellar object HH 135–136. Nature, 450, 7173.CrossRefGoogle Scholar
Clark, S. and McCall, A. (1997). Polarization models of bipolar reflection nebulae—I. Monthly Notices of the Royal Astronomical Society, 284, 513526.CrossRefGoogle Scholar
Clark, S., McCall, A., Chrysostomou, A.et al. (2000). Polarization models of young stellar objects—II. Linear and circular polarimetry of R Coronae Australis. Monthly Notices of the Royal Astronomical Society, 319, 337349.Google Scholar
Clayton, G. C., Whitney, B. A., Wolff, M. J., Smith, P., and Gordon, K. D. (2005). Circular polarization mapping of protostellar environments: Searching for aligned grains. In Adamson, A., Aspin, C., Davis, C. J., and Fujiyoshi, T., eds., Astronomical Polarimetry: Current Status and Future Directions. ASP Conference Series, Vol. 343. Proceedings of the Conference 15–19 March, 2004 in Waikoloa HI, USA. San Francisco, USA: Astronomical Society of the Pacific, p. 122.Google Scholar
Crutcher, R. M. (2012). Magnetic fields in molecular clouds. Annual Review of Astronomy and Astrophysics, 50, 2963.CrossRefGoogle Scholar
Crutcher, R. M., Nutter, D. J., Ward-Thompson, D., and Kirk, J. M. (2004). SCUBA polarization measurements of the magnetic field strengths in the L183, L1544, and L43 prestellar cores. The Astrophysical Journal, 600, 279285.CrossRefGoogle Scholar
Cudlip, W., Furniss, I., King, K. J., and Jennings, R. E. (1982). Far infrared polarimetry of W51A and M42. Monthly Notices of the Royal Astronomical Society, 200, 11691173.CrossRefGoogle Scholar
Curran, R. L. and Chrysostomou, A. (2007). Magnetic fields in massive star-forming regions. Monthly Notices of the Royal Astronomical Society, 382, 699716.CrossRefGoogle Scholar
Dennison, B., Ward, D. B., Gull, G. E., and Harwit, M. (1977). Far-infrared polarization of M42. The Astronomical Journal, 82, 3941.CrossRefGoogle Scholar
Dobbs, C. L., Krumholz, M. R., Ballesteros-Paredes, J.et al. (2014). Formation of molecular clouds and global conditions for star formation. Accepted for publication as a chapter in Beuther, H., Klessen, R., Dullemond, C., and Henning, Th., eds., Protostars and Planets VI. University of Arizona Press.Google Scholar
Dotson, J. L. (1996). Polarization of the far-infrared emission from M17. The Astrophysical Journal, 470, 566.CrossRefGoogle Scholar
Dowell, C. D., Hildebrand, R. H., Schleuning, D. A.et al. (1998). Submillimeter array polarimetry with Hertz. The Astrophysical Journal, 504, 588.CrossRefGoogle Scholar
Falceta-Gonçalves, D., Lazarian, A., and Kowal, G. (2008). Studies of regular and random magnetic fields in the ISM: Statistics of polarization vectors and the Chandrasekhar–Fermi technique. The Astrophysical Journal, 679, 537.CrossRefGoogle Scholar
Federrath, C. and Klessen, R. S. (2012). The star formation rate of turbulent magnetized clouds: Comparing theory, simulations, and observations. The Astrophysical Journal, 761, 156.CrossRefGoogle Scholar
Fiedler, R. A. and Mouschovias, T. C. (1993). Ambipolar diffusion and star formation: Formation and contraction of axisymmetric cloud cores. II. Results. The Astrophysical Journal, 415, 680.CrossRefGoogle Scholar
Fischer, O., Henning, T., and Yorke, H. W. (1996). Simulation of polarization maps. II. The circumstellar environment of pre-main sequence objects. Astronomy and Astrophysics, 308, 863885.Google Scholar
Flett, A. M. and Murray, A. G. (1991). First results from a submillimeter polarimeter on the James Clerk Maxwell Telescope. Monthly Notices of the Royal Astronomical Society, 249, 46.CrossRefGoogle Scholar
Franco, G. A., Alves, F. D. O., and Girart, J. M. (2010). Detailed interstellar polarimetric properties of the Pipe Nebula at core scales. The Astrophysical Journal, 723, 146.CrossRefGoogle Scholar
Frisch, U. (1995). Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Galli, D. and Shu, F. H. (1993). Collapse of magnetized molecular cloud cores. II. Numerical results. The Astrophysical Journal, 544, 243.CrossRefGoogle Scholar
Girart, J. M., Rao, R., and Marrone, D. P. (2006). Magnetic fields in the formation of sun-like stars. Science, 313, 812814.CrossRefGoogle ScholarPubMed
Girart, J. M., Frau, P., Zhang, Q.et al. (2013). DR 21 (OH): A highly fragmented, magnetized, turbulent dense core. The Astrophysical Journal, 772, 69.CrossRefGoogle Scholar
Gledhill, T. M. (1991). Linear polarization maps of bipolar and cometary nebulae – A polarized source interpretation. Monthly Notices of the Royal Astronomical Society, 252, 138150.CrossRefGoogle Scholar
Gledhill, T. M. and McCall, A. (2000). Circular polarization by scattering from spheroidal dust grains. Monthly Notices of the Royal Astronomical Society, 314, 123137.CrossRefGoogle Scholar
Gledhill, T. M., Chrysostomou, A., and Hough, J. H. (1996). Linear and circular imaging polarimetry of the Chamaeleon infrared nebula. Monthly Notices of the Royal Astronomical Society, 282, 14181436.CrossRefGoogle Scholar
Gull, G. E., Houck, J. R., McCarthy, J. F., Forrest, W. G., and Harwit, M. (1978). Far-infrared polarization of the Kleinmann-Low Nebula in Orion. The Astronomical Journal, 83, 14401444.CrossRefGoogle Scholar
Gull, G. E., Russell, R. W., and Harwit, M. (1980). Far-infrared polarization of the Kleinmann-Low Nebula. The Astronomical Journal, 85, 13791381.CrossRefGoogle Scholar
Hartmann, L., Ballesteros-Paredes, J., and Bergin, E. A. (2001). Rapid formation of molecular clouds and stars in the solar neighborhood. The Astrophysical Journal, 562, 852.CrossRefGoogle Scholar
Heitsch, F., Mac Low, M. M., and Klessen, R. S. (2001). Gravitational collapse in turbulent molecular clouds. II. Magnetohydrodynamical turbulence. The Astrophysical Journal, 547, 280.CrossRefGoogle Scholar
Heyer, M., Krawczyk, C., Duval, J., and Jackson, J. M. (2009). Re-examining Larson’s scaling relationships in galactic molecular clouds. The Astrophysical Journal, 699, 1092.CrossRefGoogle Scholar
Hildebrand, R. H., Dragovan, M., and Novak, G. (1984). Detection of submillimeter polarization in the Orion nebula. The Astrophysical Journal, 284, L51L54.CrossRefGoogle Scholar
Hildebrand, R. H., Davidson, J. A., Dotson, J. L.et al. (2000). A primer on far-infrared polarimetry. Publications of the Astronomical Society of the Pacific, 112, 12151235.CrossRefGoogle Scholar
Hildebrand, R. H., Kirby, L., Dotson, J. L., Houde, M., and Vaillancourt, J. E. (2009). Dispersion of magnetic fields in molecular clouds. I. The Astrophysical Journal, 696, 567.CrossRefGoogle Scholar
Houde, M. (2004). Evaluating the magnetic field strength in molecular clouds. The Astrophysical Journal Letters, 616, L111.CrossRefGoogle Scholar
Houde, M., Akeson, R. L., Carlstrom, J. E.et al. (2001). Polarizing grids, their assemblies, and beams of radiation. The Publications of the Astronomical Society of the Pacific, 113, 622638.CrossRefGoogle Scholar
Houde, M., Dowell, C. D., Hildebrand, R. H.et al. (2004). Tracing the magnetic field in Orion A. The Astrophysical Journal, 604, 717740.CrossRefGoogle Scholar
Houde, M., Vaillancourt, J. E., Hildebrand, R. H., Chitsazzadeh, S., and Kirby, L. (2009). Dispersion of magnetic fields in molecular clouds. II. The Astrophysical Journal, 706, 1504.CrossRefGoogle Scholar
Houde, M., Rao, R., Vaillancourt, J. E., and Hildebrand, R. H. (2011a). Dispersion of magnetic fields in molecular clouds. III. The Astrophysical Journal, 733, 109.CrossRefGoogle Scholar
Houde, M., Hezareh, T., Li, H., and Phillips, T. G. (2011b). Ambipolar diffusion and turbulent magnetic fields in molecular clouds. Modern Physics Letters A, 26, 235249.CrossRefGoogle Scholar
Houde, M., Fletcher, A., Beck, R.et al. (2013). Characterizing magnetized turbulence in M51. The Astrophysical Journal, 766, 49.CrossRefGoogle Scholar
Hough, J. (2011). High sensitivity polarimetry: techniques and applications. In Polarimetric Detection, Characterization and Remote Sensing. The Netherlands: Springer, pp. 177204.CrossRefGoogle Scholar
Hough, J. H., Chrysostomou, A., and Bailey, J. A. (1994). A new imaging infrared polarimeter. In McLean, Ian S., ed., Infrared Astronomy with Arrays, The Next Generation. Astrophysics and Space Science Library, Vol. 190. Springer, p. 287.CrossRefGoogle Scholar
Jiang, Z., Tamura, M., Fukagawa, M.et al. (2005). A circumstellar disk associated with a massive protostellar object. Nature, 437, 112115.CrossRefGoogle ScholarPubMed
Kawamura, A., Mizuno, Y., Minamidani, T.et al. (2009). The second survey of the molecular clouds in the Large Magellanic Cloud by NANTEN. II. Star formation. The Astrophysical Journal Supplement Series, 184, 1.CrossRefGoogle Scholar
Kemp, J. C. (1972). Circular polarization of Omicron Scorpii: Possible interstellar origin. The Astrophysical Journal, 175, 35.CrossRefGoogle Scholar
Koda, J., Scoville, N., Sawada, T.et al. (2009). Dynamically driven evolution of the interstellar medium in M51. The Astrophysical Journal Letters, 700, L132.CrossRefGoogle Scholar
Lada, C. J. and Lada, E. A. (2003). Embedded clusters in molecular clouds. Annual Review of Astronomy and Astrophysics, 4, 57115.CrossRefGoogle Scholar
Lai, S. P., Crutcher, R. M., Girart, J. M., and Rao, R. (2001). Interferometric mapping of magnetic fields in star-forming regions. I. W51 e1/e2 molecular cores. The Astrophysical Journal, 561, 864.CrossRefGoogle Scholar
Lai, S. P., Crutcher, R. M., Girart, J. M., and Rao, R. (2002). Interferometric mapping of magnetic fields in star-forming regions. II. NGC 2024 FIR 5. The Astrophysical Journal, 566, 925930.CrossRefGoogle Scholar
Lai, S. P., Girart, J. M., and Crutcher, R. M. (2003). Interferometric mapping of magnetic fields in star-forming regions. III. Dust and CO polarization in DR 21 (OH). The Astrophysical Journal, 598, 392.CrossRefGoogle Scholar
Larson, R. B. (1981). Turbulence and star formation in molecular clouds. Monthly Notices of the Royal Astronomical Society, 194, 809826.CrossRefGoogle Scholar
Leisawitz, D., Bash, F. N., and Thaddeus, P. (1989). A CO survey of regions around 34 open clusters. The Astrophysical Journal Supplement, 70, 731812.CrossRefGoogle Scholar
Li, H. B. and Houde, M. (2008). Probing the turbulence dissipation range and magnetic field strengths in molecular clouds. The Astrophysical Journal, 677, 1151.CrossRefGoogle Scholar
Li, H., Attard, M., Dowell, C. D.et al. (2006). SHARP: The SHARC-II polarimeter for CSO, millimeter and submillimeter detectors and instrumentation for astronomy III. In Zmuidzinas, J., Holland, W. S., Withington, S., and Duncan, W. D., eds., Proceedings of the SPIE, Vol. 6275. Bellingham WA: International Society for Optics and Photonics, p. 48.Google Scholar
Lonsdale, C. J., Dyck, H. M., Capps, R. W., and Wolstencroft, R. D. (1980). Near-infrared circular polarization observations of molecular cloud sources. The Astrophysical Journal, 238, L31L35.CrossRefGoogle Scholar
Lucas, P. W. and Roche, P. F. (1998). Imaging polarimetry of class I young stellar objects. Monthly Notices of the Royal Astronomical Society, 299, 699722.CrossRefGoogle Scholar
Lucas, P. W., Hough, J. H., Bailey, J.et al. (2005). UV circular polarisation in star formation regions: The origin of homochirality?Origins of Life and Evolution of Biospheres, 35, 2960.CrossRefGoogle ScholarPubMed
Matthews, B. C., McPhee, C. A., Fissel, L. M., and Curran, R. L. (2009). The legacy of SCUPOL: 850 μm imaging polarimetry from 1997 to 2005. The Astrophysical Journal Supplement Series, 182, 143.CrossRefGoogle Scholar
McKee, C. F. and Ostriker, E. C. (2007). Theory of star formation. Annual Review of Astronomy and Astrophysics, 45, 565687.CrossRefGoogle Scholar
Ménard, F., Bastien, P., and Robert, C. (1988). Detection of circular polarization in R Monocerotis and NGC 2261 – Implications for the polarization mechanism. The Astrophysical Journal, 335, 290294.CrossRefGoogle Scholar
Mouschovias, T. C. (1987). Star Formation in Magnetic Interstellar Clouds: I. Interplay between Theory and Observations. The Netherlands: Springer, pp. 453489.Google Scholar
Myers, P. C. and Goodman, A. A. (1991). On the dispersion in direction of interstellar polarization. The Astrophysical Journal, 373, 509524.Google Scholar
Novak, G., Dotson, J. L., Dowell, C. D.et al. (1997). Polarized far-infrared emission from the core and envelope of the Sagittarius B2 molecular cloud. The Astrophysical Journal, 487, 320.CrossRefGoogle Scholar
Novak, G., Chuss, D. T., Davidson, J. A. et al. (2004). A polarimetry module for CSO/SHARC-II. In Astronomical Telescopes and Instrumentation. Bellingham WA: International Society for Optics and Photonics, pp. 278289.Google Scholar
Packham, C., Hough, J., and Telesco, C. M. (2005). CanariCam-Polarimetry: A dual-beam 10μm polarimeter for the GTC. In Astronomical Polarimetry: Current Status and Future Directions. ASP Conference Series, Vol. 343. San Francisco, USA: Astronomical Society of the Pacific, pp. 3842.Google Scholar
Padoan, P. and Nordlund, Å. (1999). A super-alfvenic model of dark clouds. The Astrophysical Journal, 526, 279.CrossRefGoogle Scholar
Sakamoto, K., Ho, P. T., Mao, R. Q., Matsushita, S., and Peck, A. B. (2007). Detection of CO hot spots associated with young clusters in the southern starburst galaxy NGC 1365. The Astrophysical Journal, 654, 782.CrossRefGoogle Scholar
Sandstrom, K. M., Peek, J. E. G., Bower, G. C., Bolatto, A. D., and Plambeck, R. L. (2007). A parallactic distance of 389-21+ 24 parsecs to the Orion Nebula Cluster from very long baseline array observations. The Astrophysical Journal, 667, 1161.CrossRefGoogle Scholar
Sato, S., Nagata, T., Nakajima, T.et al. (1985). Polarimetry of infrared sources in bipolar CO flows. The Astrophysical Journal, 291, 708715.CrossRefGoogle Scholar
Scarrott, S. M., Draper, P. W., and Warren-Smith, R. F. (1989). The origin of the “polarization disc” in NGC2261/R Mon. Monthly Notices of the Royal Astronomical Society, 237, 621634.CrossRefGoogle Scholar
Schleuning, D. A. (1998). Far-infrared and submillimeter polarization of OMC-1: Evidence for magnetically regulated star formation. The Astrophysical Journal, 493, 811.Google Scholar
Scoville, N. Z., Solomon, P. M., and Sanders, D. B. (1979). CO observations of spiral structure and the lifetime of giant molecular clouds. In Burton, W. B., ed., The Large-Scale Characteristics of the Galaxy. Proceedings of the IAU Symposium, Vol. 84, pp. 277282.CrossRefGoogle Scholar
Shu, F. H., Adams, F. C., and Lizano, S. (1987). Star formation in molecular clouds – Observation and theory. Annual Review of Astronomy and Astrophysics, 25, 2381.CrossRefGoogle Scholar
Stone, J. M., Ostriker, E. C., and Gammie, C. F. (1998). Dissipation in compressible magnetohydrodynamic turbulence. The Astrophysical Journal Letters, 508, L99.CrossRefGoogle Scholar
Tan, J., Beltran, M. T., Caselli, P.et al. (2014). Massive star formation. Accepted for publication as a chapter in Beuther, H., Klessen, R., Dullemond, C., and Henning, Th., eds., Protostars and Planets VI. University of Arizona Press.Google Scholar
Vaillancourt, J. E., Dowell, C. D., Hildebrand, R. H.et al. (2008). New results on the submillimeter polarization spectrum of the Orion molecular cloud. The Astrophysical Journal, 679, L25L28.Google Scholar
Walther, D. M., Robson, E. I., Aspin, C., and Dent, W. R. F. (1993). JHKL imaging and K polarimetry of the bipolar outflow NGC 2071. The Astrophysical Journal, 418, 310.CrossRefGoogle Scholar
Warren-Smith, R. F., Draper, P. W., and Scarrott, S. M. (1987). Magnetic fields and star formation – Evidence from imaging polarimetry of the Serpens Reflection Nebula. Monthly Notices of the Royal Astronomical Society, 227, 749771.CrossRefGoogle Scholar
Whitney, B. A. and Hartmann, L. (1993). Model scattering envelopes of young stellar objects. II – Infalling envelopes. The Astrophysical Journal, 402, 605622.CrossRefGoogle Scholar
Whitney, B. A. and Wolff, M. J. (2002). Scattering and absorption by aligned grains in circumstellar environments. The Astrophysical Journal, 574, 205.CrossRefGoogle Scholar
Wilson, C. D., Scoville, N., Madden, S. C., and Charmandaris, V. (2000). High-resolution imaging of molecular gas and dust in the Antennae (NGC 4038/39): Super giant molecular complexes. The Astrophysical Journal, 542, 120.CrossRefGoogle Scholar
Wong, T., Hughes, A., Jürgen, O.et al. (2011). The Magellanic Mopra assessment (MAGMA). I. The molecular cloud population of the Large Magellanic Cloud. The Astrophysical Journal Supplement, 197, 16.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×