Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-07-07T21:00:25.281Z Has data issue: false hasContentIssue false

6 - Quantitative interpretation of chemotaxonomic pigment data

Published online by Cambridge University Press:  05 March 2012

Suzanne Roy
Affiliation:
Université du Québec à Rimouski, Canada
Carole A. Llewellyn
Affiliation:
Plymouth Marine Laboratory
Einar Skarstad Egeland
Affiliation:
University of Nordland, Norway
Geir Johnsen
Affiliation:
Norwegian University of Science and Technology, Trondheim
Get access

Summary

Introduction

The use of pigments for the quantitative chemotaxonomic analysis of phytoplankton populations began in the 1970s when thin layer chromatography revealed a large diversity of pigments in the phytoplankton (Jeffrey, 1974), many of which appeared to be restricted to certain algal taxa and could be sensitively detected even in the presence of protozoa, bacteria and detritus, in which they are absent. Since that time, developments in phytoplankton systematics, particularly through DNA analysis (e.g. Karlson et al., 2010), have revealed a much greater taxonomic diversity in phytoplankton than previously imagined, while simultaneous improvements in chromatography have led to the identification of >70 pigments in 45 pigment patterns (tabulated in Jeffrey et al., Chapter 1, this volume). This provides substantial additional power in pigment analysis but also hugely complicates interpretation of pigment data. Relatively few pigments are now regarded as unambiguous markers – most are distributed across several taxa.

The pigment composition of microalgae is strongly influenced by several environmental factors that complicate interpretation of field data. A full synopsis is beyond the scope of this chapter, but known influences and key references include: irradiance (Johnsen et al., 1994; Goericke and Montoya, 1998; Schlüter et al., 2000; Rodríguez et al., 2006a), spectral distribution of light (Wood, 1985), ultraviolet (Gerber and Häder, 1994); day length (Sakshaug and Andresen, 1986), diurnal cycle (Tukaj et al., 2003), nutrient status (Goericke and Montoya, 1998; Henriksen et al., 2002; Stæhr et al., 2004; Hou et al., 2007), iron concentration (van Leeuwe and Stefels, 1998; DiTullio et al., 2007; Hopkinson et al., 2007), mixing regime (Brunet et al., 2003; Thompson et al., 2007) and growth phase (Wilhelm and Manns, 1991; Henriksen et al., 2002; Redalje et al., 2008). The pigment content can vary qualitatively between members of a genus, or even between strains of single species (Stolte et al., 2000; Zapata et al., 2004; Laza-Martinez et al., 2007). Thus the pigment content of a field population cannot be accurately predicted even if one knows the species present.

Type
Chapter
Information
Phytoplankton Pigments
Characterization, Chemotaxonomy and Applications in Oceanography
, pp. 257 - 313
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolf, J. E.Yeager, C. L.Miller, W. D.Mallonee, M. E.Harding, L. W. 2006 Environmental forcing of phytoplankton floral composition, biomass, and primary productivity in Chesapeake Bay, USAEstuar. Coast. Shelf Sci 67 108CrossRefGoogle Scholar
Ansotegui, A.Trigueros, J. M.Orive, E. 2001 The use of pigment signatures to assess phytoplankton assemblage structure in estuarine watersEstuar. Coast. Shelf Sci 52 689CrossRefGoogle Scholar
Ansotegui, A.Sarobe, A.Trigueros, J. M.Urrutxurtu, I.Orive, E. 2003 Size distribution of algal pigments and phytoplankton assemblages in a coastal–estuarine environment: contribution of small eukaryotic algaeJ. Plankton Res 25 341CrossRefGoogle Scholar
Antajan, E.Chrétiennot-Dinet, M.-J.Leblanc, C.Daro, M. H.Lancelot, C. 2004 19′–hexanoyloxyfucoxanthin may not be the appropriate pigment to trace occurrence and fate of : the case of in Belgian coastal watersJ. Sea Res 52 165CrossRefGoogle Scholar
Banse, K. 1977 Determining the carbon-to-chlorophyll ratio of natural phytoplanktonMar. Biol 41 199CrossRefGoogle Scholar
Bel Hassen, M.Drira, Z.Hamza, A.Ayadi, H.Akrout, F.Issaoui, H. 2008 Summer phytoplankton pigments and community composition related to water mass properties in the Gulf of GabesEstuar. Coast. Shelf Sci 77 645CrossRefGoogle Scholar
Bel Hassen, M.Drira, Z.Hamza, A.Ayadi, H.Akrout, FMessaoudi, S.Issaoui, H.Aleya, L.Bouaïn, A. 2009 Phytoplankton dynamics related to water mass properties in the Gulf of Gabes: Ecological implicationsJ. Mar. Syst 75 216CrossRefGoogle Scholar
Berger, S. A. 2005 Environmental variables and plankton communities in the pelagic of lakes: enclosure experiment and comparative lake surveyDissertation zur Erlangung des Doktorgrades, der Ludwig-Maximilians-Universität MunichGermanyGoogle Scholar
Bidigare, R. R.Ondrusek, M. E. 1996 Spatial and temporal variability of phytoplankton pigment distributions in the central equatorial Pacific OceanDeep-Sea Res. II 43 809CrossRefGoogle Scholar
Bjørnland, T.Haxo, F. T.Liaaen-Jensen, S. 2003 Carotenoids of the Florida red tide dinoflagellate Biochem. Syst. Ecol 31 1147CrossRefGoogle Scholar
Breton, E.Brunet, C.Sautour, , B.Brylinski, J -M. 2000 Annual variations of phytoplankton biomass in the Eastern English Channel: comparison by pigment signatures and microscopic countsJ. Plankton Res 22 1423CrossRefGoogle Scholar
Bricaud, A.Claustre, H.Ras, J.Oubelkheir, K. 2004 Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populationsJ. Geophys. Res 109 C11010CrossRefGoogle Scholar
Brotas, V.Plante-Cuny, M -R. 2003 The use of HPLC pigment analysis to study microphytobenthos communitiesActa Oecol 24 S109CrossRefGoogle Scholar
Brunet, C.Casotti, R.Aronne, B.Vantrepotte, V. 2003 Measured photophysiological parameters used as tools to estimate vertical water movements in the coastal MediterraneanJ. Plankton Res 25 1413CrossRefGoogle Scholar
Buchaca, T.Felip, M.Catalan, J. 2005 A comparison of HPLC pigment analyses and biovolume estimates of phytoplankton groups in an oligotrophic lakeJ. Plankton Res 27 91CrossRefGoogle Scholar
Carreto, J. I.Seguel, M.Montoya, N. G.Clément, A.Carignan, M. O. 2001 Pigment profile of the ichthyotoxic dinoflagellate sp. from a massive bloom in southern ChileJ. Plankton Res 23 1171CrossRefGoogle Scholar
Carreto, J. I.Montoya, N. G.Benavides, H. R.Guerrero, R.Carignan, M. O. 2003 Characterization of spring phytoplankton communities in the Río de La Plata maritime front using pigment signatures and cell microscopyMar. Biol 143 1013CrossRefGoogle Scholar
Carreto, J. I.Montoya, N. G.Akselman, R.Carignan, M. O.Silva, R. I.Colleoni, D. A. C. 2008 Algal pigment patterns and phytoplankton assemblages in different water masses of the Río de la Plata maritime frontCont. Shelf Res 28 1589CrossRefGoogle Scholar
Cartaxana, P.Mendes, C. R.Brotas, V. 2009 Phytoplankton and ecological assessment of brackish and freshwater coastal lagoons in the Algarve, PortugalLakes & Reservoirs: Research & Management 14 221CrossRefGoogle Scholar
Cassell, E. A. 1965 Rapid graphical method for estimating the precision of direct microscopic counting dataAppl. Microbiol 13 293Google ScholarPubMed
Claustre, H. 1994 The trophic status of various oceanic provinces as revealed by phytoplankton pigment signaturesLimnol. Oceanogr 39 1206CrossRefGoogle Scholar
Claustre, H.Poulet, S. A.Williams, R.Marty, J. -C.Coombs, S.Ben Mlih, F.Hapette, A. M.Martin-Jezéquel, V. 1990 A biochemical investigation of a sp. bloom in the Irish SeaJ. Mar. Biol. Assoc. UK 70 197CrossRefGoogle Scholar
Corno, G.Letelier, R. M.Abbott, M. R.Karl, D. M. 2005 Assessing primary production variability in the North Pacific Subtropical Gyre: a comparison of Fast Repetition Rate Fluorometry and 14C measurementsJ. Phycol 42 51CrossRefGoogle Scholar
Dandonneau, Y.Montel, Y.Blanchot, J.Giraudeau, J.Neveux, J. 2006 Temporal variability in phytoplankton pigments, picoplankton and coccolithophores along a transect through the North Atlantic and tropical southwestern PacificDeep-Sea Res. I 53 689CrossRefGoogle Scholar
Dandonneau, Y.Niang, A. 2007 Assemblages of phytoplankton pigments along a shipping line through the North Atlantic and tropical PacificProg. Oceanogr 73 127CrossRefGoogle Scholar
Demers, S.Roy, S.Gagnon, R.Vignault, C. 1991 Rapid light-induced changes in cell fluorescence and in xanthophyll-cycle pigments of (Dinophyceae) and (Bacillariophyceae): A photo-protection mechanismMar. Ecol. Prog. Ser 76 185CrossRefGoogle Scholar
De Salas, M. F.Bolch, C. J. S.Botes, L.Nash, G.Wright, S. W.Hallegraeff, G. M. 2003 gen. nov. (Gymnodiniales, Dinophyceae), a new genus of unarmored dinoflagellates with sigmoid apical grooves, including the description of two new speciesJ. Phycol 39 1233CrossRefGoogle Scholar
De Salas, M. F.Bolch, C. J. S.Hallegraeff, G. M. 2004 sp. nov. (Gymnodiniales, Dinophyceae), a potentially ichthyotoxic dinoflagellate species from Tasmania, AustraliaPhycologia 43 166CrossRefGoogle Scholar
Descy, J-P.Higgins, H. W.Mackey, D. J.Hurley, J. P.Frost, T. M. 2000 Pigment ratios and phytoplankton assessment in northern Wisconsin lakesJ. Phycol 36 274CrossRefGoogle Scholar
Descy, J -P.Sarmento, H.Higgins, H. W. 2009 Variation of pigment ratios of phytoplankton across aquatic environments. J. Phycol 44 319CrossRefGoogle Scholar
Devilla, R. A.Brown, M. T.Donkin, M.Readman, J. W. 2005 The effects of a PSII inhibitor on phytoplankton community structure as assessed by HPLC pigment analyses, microscopy and flow cytometryAquat. Toxicol 71 25CrossRefGoogle ScholarPubMed
Díez, B.Pedrós-Alió, C.Massana, R. 2001 Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencingAppl. Environ. Microbiol 67 2932CrossRefGoogle ScholarPubMed
Dijkman, N. A.Boschker, H. T. S.Stal, L. J.Kromkamp, J. C. 2010 Composition and heterogeneity of the microbial community in a coastal microbial mat as revealed by the analysis of pigments and phospholipid-derived fatty acidsJ. Sea Res 63 62CrossRefGoogle Scholar
DiTullio, G. R.Geesey, M. E.Maucher, J. M.Alm, M. B.Riseman, S. F.Bruland, K. W. 2005 Influence of iron on algal community composition and physiological status in the Peru upwelling systemLimnol. Oceanogr 50 1887CrossRefGoogle Scholar
DiTullio, G. R.Garcia, N.Riseman, S. F.Sedwick, P. N. 2007 Effects of iron concentration on pigment composition in grown at low irradianceBiogeochemistry 83 71CrossRefGoogle Scholar
Dusenberry, J. A.Olson, R. J.Chisholm, S. W. 2001 Photoacclimation kinetics of single-cell fluorescence in laboratory and field populations of Deep-Sea Res. I 48 1443CrossRefGoogle Scholar
Egeland, E. S.Guillard, R. R. L.Liaaen-Jensen, S. 1997 Additional carotenoid prototype representatives and a general chemosystematic evaluation of carotenoids in Prasinophyceae (Chlorophyta)Phytochemistry 44 1087CrossRefGoogle Scholar
Eker-Develi, E.Berthon, J.-F.van der Linde, D. 2008 Phytoplankton class determination by microscopic and HPLC-CHEMTAX analyses in the southern Baltic SeaMar. Ecol. Prog. Ser 359 69CrossRefGoogle Scholar
Eppley, R. W.Peterson, B. J. 1979 Particulate organic flux and planktonic new production in the deep oceanNature 282 677CrossRefGoogle Scholar
Everitt, D. A.Wright, S. W.Volkman, J. K.Thomas, D. P.Lindstrom, E. 1990 Phytoplankton community compositions in the western equatorial Pacific determined from chlorophyll and carotenoid pigment distributionsDeep-Sea Res 37 975CrossRefGoogle Scholar
Falkowski, P. G.Raven, J 1997 Aquatic PhotosynthesisOxfordBlackwell
Fietz, S.Nicklisch, A. 2002 Acclimation of the diatom and the cyanobacterium to simulated natural light fluctuationsPhotosynth. Res 72 95CrossRefGoogle ScholarPubMed
Fietz, S.Bleiß, W.Hepperle, D.Koppitz, H.Krienitz, L.Nicklisch, A. 2005 First record of (Eustigmatophyceae) in the autotrophic picoplankton from Lake BaikalJ. Phycol 41 780CrossRefGoogle Scholar
Fujiki, T.Matsumoto, K.Honda, M. C.Kawakami, H.Watanabe, S. 2009 Phytoplankton composition in the subarctic North Pacific during autumn 2005J. Plankton Res 31 179CrossRefGoogle Scholar
Furuya, K.Hayashi, MYabushita, Y.Ishikawa, A. 2003 Phytoplankton dynamics in the East China Sea in spring and summer as revealed by HPLC-derived pigment signaturesDeep-Sea Res. II 50 367CrossRefGoogle Scholar
Gall, M. P.Boyd, P. W.Hall, J.Sa, K. A.Chang, H. 2001 Phytoplankton processes. Part 1: Community structure during the Southern Ocean Iron RElease Experiment (SOIREE)Deep-Sea Res. II 48 2551CrossRefGoogle Scholar
Gameiro, C.Cartaxana, P.Brotas, V. 2007 Environmental drivers of phytoplankton distribution and composition in Tagus Estuary, PortugalEstuar. Coast. Shelf Sci 75 21CrossRefGoogle Scholar
Garde, K.Cailliau, C. 2000 The impact of UV-B radiation and different PAR intensities on growth, uptake of 14C, excretion of DOC, cell volume, and pigmentation in the marine prymnesiophyte, J. Exp. Mar. Biol. Ecol 147 99CrossRefGoogle Scholar
Garibotti, I. A.Vernet, M.Kozlowski, W. A.Ferrario, M. E. 2003 Composition and biomass of phytoplankton assemblages in coastal Antarctic waters: a comparison of chemotaxonomic and microscopic analysesMar. Ecol. Prog. Ser 247 27CrossRefGoogle Scholar
Gerber, S.Häder, D.-P. 1994 Effects of enhanced UV-B irradiation on the red coloured freshwater flagellate FEMS Microbiol. Ecol 13 177CrossRefGoogle Scholar
Ghadouani, A.Smith, R. E. H. 2005 Phytoplankton distribution in Lake Erie as assessed by a new spectrofluorometric techniqueJ. Great Lakes Res 31 154CrossRefGoogle Scholar
Gibb, S. W.Cummings, D. G.Irigoien, X.Barlow, R. G.Mantoura, R. F. C. 2001 Phytoplankton pigment chemotaxonomy of the northeastern AtlanticDeep-Sea Res. II 48 795CrossRefGoogle Scholar
Gieskes, W. W. C.Kraay, G. W. 1983 Dominance of Cryptophyceae during the phytoplankton spring bloom in the central North Sea detected by HPLC analysis of pigmentsMar. Biol 75 179CrossRefGoogle Scholar
Goericke, R. 1998 Response of phytoplankton community structure and taxon-specific growth rates to seasonally varying physical forcing in the Sargasso Sea off BermudaLimnol. Oceanogr 43 921CrossRefGoogle Scholar
Goericke, R.Montoya, J. P. 1998 Estimating the contribution of microalgal taxa to chlorophyll in the field – variations of pigments ratios under nutrient – and light-limited growthMar. Ecol. Prog. Ser 169 97CrossRefGoogle Scholar
Goericke, R.Olson, R. J.Shalapyonok, A. 2000 A novel niche for sp. in low-light suboxic environments in the Arabian Sea and the Eastern Tropical North PacificDeep-Sea Res. I 47 1183CrossRefGoogle Scholar
Greisberger, S.Teubner, K. 2007 Does pigment composition reflect phytoplankton community structure in differing temperature and light conditions in a deep alpine lake? An approach using HPLC and delayed fluorescence techniquesJ. Phycol 43 1108CrossRefGoogle Scholar
Guisande, C.Maneiro, I.Riveiro, I.Barreiro, A.Pazos, Y. 2002 Estimation of copepod trophic niche in the field using amino acids and marker pigmentsMar. Ecol. Prog. Ser 239 147CrossRefGoogle Scholar
Guisande, C.Barreiro, A.Acuña, A.Marciales, L. J.Hernández, E.Torres, A. M.Aranguren, N.López, W.Duque, S. R.Gallo, L. J.Aguirre, N.Mogollón, M.Palacio, J.Rueda-Delgado, G. 2008 Testing of the CHEMTAX program in contrasting neotropical lakes, lagoons, and swampsLimnol. Oceanogr. Methods 6 643CrossRefGoogle Scholar
Hackett, J. D.Maranda, L.Su Yoon, H.Bhattacharya, D. 2003 Phylogenetic evidence for the cryptophyte origin of the plastid of (Dinophysiales, Dinophyceae)J. Phycol 39 440CrossRefGoogle Scholar
Hallegraeff, G. M.Jeffrey, S. W. 1984 Tropical phytoplankton species and pigments of continental shelf waters of north and north-west AustraliaMar. Ecol. Prog. Ser 20 59CrossRefGoogle Scholar
Hashihama, F.Hirawake, T.Kudoh, S.Kanda, J.Furuya, K.Yamaguchi, Y.Ishimaru, T. 2008 Size fraction and class composition of phytoplankton in the Antarctic marginal ice zone along the 140°E meridian during February–March 2003Polar Sci 2 109CrossRefGoogle Scholar
Hashihama, F.Horimoto, N.Kanda, J.Furuya, K.Ishimaru, T.Saino, T. 2008 Temporal variation in phytoplankton composition related to water mass properties in the central part of Sagami BayJ. Oceanogr 64 23CrossRefGoogle Scholar
Havskum, H.Schlüter, L.Scharek, R.Berdalet, E.Jacquet, S. 2004 Routine quantification of phytoplankton groups – microscopy or pigment analyses?Mar. Ecol. Prog. Ser 273 31CrossRefGoogle Scholar
Henriksen, P.Riemann, B.Kaas, H.Sørensen, H. M.Sørensen, H. L. 2002 Effects of nutrient-limitation and irradiance on marine phytoplankton pigmentsJ. Plankton Res 24 835CrossRefGoogle Scholar
Hibberd, D. J. 1977 Observations on the ultrastructure of the cryptomonad endosymbiont of the red-water ciliate J. Mar. Biol. Assoc. UK 57 45CrossRefGoogle Scholar
Higgins, H. W.Mackey, D. J. 2000 Algal class abundances, estimated from chlorophyll and carotenoid pigments, in the western Equatorial Pacific under El Niño and non-El Niño conditionsDeep-Sea Res. I 47 1461CrossRefGoogle Scholar
Hillebrand, H.Durselen, C.-D.Kirschtel, D.Pollinger, U.Zohary, T. 1999 Biovolume calculation for pelagic and benthic microalgaeJ. Phycol 35 403CrossRefGoogle Scholar
Hooker, S. B.Van Heukelem, L.Thomas, C. S.Claustre, H.Ras, J.Barlow, R.Sessions, H.Schlüter, L.Perl, J.Trees, C.Stuart, V.Head, E.Clementson, L.Fishwick, J.Llewellyn, C.Aiken, J. 2005 The Second SeaWiFS HPLC Analysis Round-Robin Experiment (SeaHARRE-2). NASA Technical Memorandum 2005–212785GreenbeltNASA Goddard Space Flight CenterGoogle Scholar
Hopkinson, B. M.Mitchell, B. G.Reynolds, R. A.Wang, H.Selph, K. E.Measures, C. I.Hewes, C. D.Holm-Hansen, O.Barbeau, K. A. 2007 Iron limitation across chlorophyll gradients in the southern Drake Passage: phytoplankton responses to iron addition and photosynthetic indicators of iron stressLimnol. Oceanogr 52 2540CrossRefGoogle Scholar
Hou, J.-J.Huang, B.-Q.Cao, Z.-R.Chen, J.-X.Hong, H.-S. 2007 Effects of nutrient limitation on pigments in and J. Integr. Plant Biol 49 686CrossRefGoogle Scholar
Irigoien, X.Meyer, B.Harris, R.Harbour, D. 2004 Using HPLC pigment analysis to investigate phytoplankton taxonomy: the importance of knowing your speciesHelgoland Mar. Res 58 77CrossRefGoogle Scholar
Ishikawa, A.Wright, S. W.van den Enden, R. L.Davidson, A. T.Marchant, H. J. 2002 Abundance, size structure and community composition of phytoplankton in the Southern Ocean in the austral summer 1999–2000Polar Biosci 15 11Google Scholar
Ives, A. R.Carpenter, S. R. 2007 Stability and diversity of ecosystemsScience 317 58CrossRefGoogle ScholarPubMed
Jeffrey, S. W. 1974 Profiles of photosynthetic pigments in the ocean using thin-layer chromatographyMar. Biol 26 101CrossRefGoogle Scholar
Jeffrey, S. W.Wright, S. W. 1994 Photosynthetic pigments in the HaptophytaThe Haptophyte AlgaeGreen, J. C.Leadbeater, B. S. C.OxfordClarendon Press111Google Scholar
Johnsen, G.Sakshaug, E. 1993 Bio-optical characteristics and photoadaptive responses in the toxic and bloom-forming dinoflagellates , , and two strains of J. Phycol 29 627CrossRefGoogle Scholar
Johnsen, G.Samset, O.Granskog, L.Sakshaug, E. 1994 o absorption characteristics in 10 classes of bloom-forming phytoplankton: taxonomic characteristics and responses to photoadaptation by means of discriminant and HPLC analysisMar. Ecol. Prog. Ser 105 149CrossRefGoogle Scholar
Karl, D. M. 1998 The changing sea: Long-term biogeochemical variability in the subtropical north pacificUS JGOFS Newslett 9 7Google Scholar
Karlson, BCusak, C.Bresnan, E. 2010 Microscopic and Molecular Methods for Quantitative Phytoplankton AnalysisParisUnesco PublishingGoogle Scholar
Katano, T.Hirose, M.Nakano, S. 2004 Discrimination of two phycoerythrin-pigment types of and their seasonal succession in the Uwa SeaMicrobes Environ 19 7CrossRefGoogle Scholar
Lassen, M. K.Nielsen, K. D.Richardson, K.Garde, K.Schlüter, L. 2010 The effects of temperature increases on a temperate phytoplankton community – A mesocosm climate change scenarioJ. Exp. Mar. Biol. Ecol 383 79CrossRefGoogle Scholar
Latasa, M. 2007 Improving estimations of phytoplankton class abundances using CHEMTAXMar. Ecol. Prog. Ser 329 13CrossRefGoogle Scholar
Latasa, M.Berdalet, E. 1994 Effect of nitrogen or phosphorus starvation on pigment composition of cultured spJ. Plankton Res 16 83CrossRefGoogle Scholar
Latasa, M.Scharek, R.Le Gall, F.Guillou, L. 2004 Pigment suites and taxonomic groups in PrasinophyceaeJ. Phycol 40 1149CrossRefGoogle Scholar
Laza-Martinez, A.Seoane, S.Zapata, M.Orive, E. 2007 Phytoplankton pigment patterns in a temperate estuary: from unialgal cultures to natural assemblagesJ. Plankton Res 29 913CrossRefGoogle Scholar
Lee, Y.-W.Lee, J.-M.Kim, G. 2009 Identifying sharp hydrographical changes in phytoplankton community structure using HPLC pigment signatures in coastal waters along Jeju Island, KoreaOcean Sci. J 44 1CrossRefGoogle Scholar
Le Gall, F.Rigaut-Jalabert, F.Marie, D.Garczarek, L.Viprey, M.Gobet, A.Vaulot, D. 2008 Picoplankton diversity in the South-East Pacific Ocean from culturesBiogeosciences 5 203CrossRefGoogle Scholar
Leonardos, N.Geider, R. J. 2004 Responses of elemental and biochemical composition of to growth under varying light and nitrate:phosphate supply ratios and their influence on critical N:PLimnol. Oceanogr 49 2105CrossRefGoogle Scholar
Leonardos, N.Harris, G. N. 2006 Comparative effects of light on pigments of two strains of (Haptophyta)J. Phycol 42 1217CrossRefGoogle Scholar
Letelier, R. M.Bidigare, R. R.Hebel, D. V.Ondrusek, M.Winn, C. D.Carl, D. M. 1993 Temporal variability of phytoplankton community structure based on pigment analysisLimnol. Oceanogr 38 1420CrossRefGoogle Scholar
Le Quéré, C.Harrison, S. P.Prentice, I. C.Buitenhuis, E. T.Aumont, O.Bopp, L.Claustre, H.Da Cunha, L. C.Geider, R.Giraud, X.Klaas, C.Kohfeld, K. E.Legendre, L.Manizza, M.Platt, T.Rivkin, R. B.Sathyendranath, S.Uitz, J.Watson, A. J.Wolf-Gladrow, D. 2005 Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry modelsGlobal Change Biol 11 2016Google Scholar
Lewitus, A. J.White, D. L.Tymowski, R. G.Geesey, M. E.Hymel, S. N.Noble, P. A. 2005 Adapting the CHEMTAX method for assessing phytoplankton taxonomic composition in southeastern U.S. estuariesEstuaries 28 160CrossRefGoogle Scholar
Lionard, M.Muylaert, K.Tackx, M.Vyverman, M. 2008 Evaluation of the performance of HPLC–CHEMTAX analysis for determining phytoplankton biomass and composition in a turbid estuary (Schelde, Belgium)Estuar. Coast. Shelf Sci 76 809CrossRefGoogle Scholar
Liu, H.Probert, I.Uitz, J.Claustre, H.Aris-Brosou, S.Frada, M.Not, F.de Vargas, C. 2009 Extreme diversity in noncalcifying haptophytes explains a major pigment paradox in open oceansProc. Natl Acad. Sci. USA 106 12803CrossRefGoogle Scholar
Llewellyn, C. A.Gibb, S. W. 2000 Intra-class variability in the carbon, pigment and biomineral content of prymnesiophytes and diatomsMar. Ecol. Prog. Ser 193 33CrossRefGoogle Scholar
Llewellyn, C. A.Fishwick, J. R.Blackford, J. C. 2005 Phytoplankton community assemblage in the English Channel: a comparison using chlorophyll derived from HPLC-CHEMTAX and carbon derived from microscopy cell countsJ. Plankton Res 27 103CrossRefGoogle Scholar
Lohrenz, S. E.Carroll, C. L.Weidemann, A. D.Tuel, M. 2003 Variations in phytoplankton pigments, size structure and community composition related to wind forcing and water mass properties on the North Carolina inner shelfCont. Shelf Res 23 1447CrossRefGoogle Scholar
Lovejoy, C.Vincent, W. F.Bonilla, S.Roy, S.Martineau, M.-J.Terrado, R.Potvin, M.Massana, R.Pedrós-Alió, C. 2007 Distribution, phylogeny, and growth of cold-adapted picoprasinophytes in Arctic seasJ. Phycol 43 78CrossRefGoogle Scholar
Mackey, M. D.Mackey, D. J.Higgins, H. W.Wright, S. W. 1996 CHEMTAX – a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplanktonMar. Ecol. Prog. Ser 144 265CrossRefGoogle Scholar
Mackey, D. J.Parslow, J. S.Griffiths, F. B.Higgins, H. W.Tilbrook, B. 1997 Phytoplankton productivity and the carbon cycle in the western Equatorial Pacific under El Niño and non-El Niño conditionsDeep-Sea Res. II 44 1951CrossRefGoogle Scholar
Mackey, D. J.Higgins, H. W.Mackey, M. D.Holdsworth, D. 1998 Algal class abundances in the western equatorial Pacific: estimation from HPLC measurements of chloroplast pigments using CHEMTAXDeep-Sea Res. I 45 1441CrossRefGoogle Scholar
Mackey, D. J.Blanchot, J.Higgins, H. W.Neveux, J. 2002 Phytoplankton abundances and community structure in the equatorial PacificDeep-Sea Res. II 49 2561CrossRefGoogle Scholar
Marie, D.Simon, N.Vaulot, D. 2005 Phytoplankton cell counting by flow cytometry, Chapter 17Algal Culturing TechniquesAndersen, R. A.BurlingtonElsevier Academic Press253Google Scholar
Marinho, M. M.Rodrigues, S. V. 2003 Phytoplankton of an eutrophic tropical reservoir: comparison of biomass estimated from counts with chlorophyll- biomass from HPLC measurementsHydrobiologia 505 77CrossRefGoogle Scholar
Marty, J-C.Garcia, N.Raimbault, P. 2008 Phytoplankton dynamics and primary production under late summer conditions in the NW Mediterranean SeaDeep-Sea Res. I 55 1131CrossRefGoogle Scholar
Massana, R.Castresana, J.Balague, V.Guillou, L.Romari, K.Groisillier, A.Valentin, K.Pedrós-Alió, C. 2004 Phylogenetic and ecological analysis of novel marine stramenopilesAppl. Environ. Microbiol 70 3528CrossRefGoogle ScholarPubMed
Menden-Deuer, S.Lessard, E. J. 2000 Carbon to volume relationships for dinoflagellates, diatoms and other protist planktonLimnol. Oceanogr 45 569CrossRefGoogle Scholar
Meyer, B.Irigoien, X.Graeve, M.Head, R. N.Harris, R. P. 2002 Feeding rates and selectivity among nauplii, copepodites and adult females of and Helgol. Mar. Res 56 169Google Scholar
Meyer-Harms, B.Pollehne, F. 1998 Alloxanthin in (Dinophysiales, Dinophyceae) from the Baltic SeaJ. Phycol 34 280CrossRefGoogle Scholar
Meyer-Harms, B.Irigoien, X.Head, R.Harris, R. 1999 Selective feeding on natural phytoplankton by before, during, and after the 1997 spring bloom in the Norwegian SeaLimnol. Oceanogr 44 154CrossRefGoogle Scholar
Miki, M.Ramaiah, NTakeda, S.Furuya, K. 2008 Phytoplankton dynamics associated with the Monsoon in the Sulu Sea as revealed by pigment signatureJ. Oceanogr 64 663CrossRefGoogle Scholar
Millie, D. F.Schofield, O. M.Kirkpatrick, G. J.Johnsen, G.Tester, P. A.Vinyard, B. T. 1997 Detection of harmful algal blooms using photopigments and absorption signatures: A case study of the Florida red tide dinoflagellate, Limnol. Oceanogr 42 1240CrossRefGoogle Scholar
Montagnes, D. J. S.Berges, J. A.Harrison, P. J.Taylor, F. J. R. 1994 Estimating carbon, nitrogen, protein, and chlorophyll from cell volume in marine phytoplanktonLimnol. Oceanogr 39 1044CrossRefGoogle Scholar
Moon-van der Staay, S. Y.De Wachter, R.Vaulot, D. 2001 Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversityNature 409 607CrossRefGoogle ScholarPubMed
Moore, L. R.Rocap, G.Chisholm, S. W. 1998 Physiology and molecular phylogeny of coexisting ecotypesNature 393 464CrossRefGoogle ScholarPubMed
Moore, L. R.Chisholm, S. W. 1999 Photophysiology of the marine cyanobacterium : Ecotypic differences among cultured isolatesLimnol. Oceanogr 44 628CrossRefGoogle Scholar
Moore, L. R.Post, A. F.Rocap, G.Chisholm, S. W. 2002 Utilization of different nitrogen sources by the marine cyanobacteria and Limnol. Oceanogr 47 989CrossRefGoogle Scholar
Muylaert, K.Gonzales, R.Franck, M.Lionard, M.van der Zee, C.Cattrijsse, A.Sabbe, K.Chou, L.Vyverman, W. 2006 Spatial variation in phytoplankton dynamics in the Belgian coastal zone of the North Sea studied by microscopy, HPLC-CHEMTAX and underway fluorescence recordingsJ. Sea Res 55 253CrossRefGoogle Scholar
Nair, A. 2007 Bio-optical properties of some phytoplankton functional typesDalhousie University, Halifax, Nova ScotiaCanadaGoogle Scholar
Nicklisch, A.Woitke, P. 1999 Pigment content of selected planktonic algae in response to simulated natural light fluctuations and a short photoperiodInt. Rev. Hydrobiol 84 479Google Scholar
Not, F.Latasa, M.Scharek, R.Viprey, M.Karleskind, P.Balague, V.Ontoria-Oviedo, I.Cumino, A.Goetze, E.Vaulot, D.Massana, R. 2008 Protistan assemblages across the Indian Ocean, with a specific emphasis on the picoeukaryotesDeep-Sea Res. I 55 1456CrossRefGoogle Scholar
Örnólfsdóttir, E. B.Pinckney, J. L.Tester, P. A. 2003 Quantification of the relative abundance of the toxic dinoflagellate, (Dinophyta), using unique photopigmentsJ. Phycol 39 449CrossRefGoogle Scholar
Pemberton, K. L.Smith, R. E. H.Silsbe, G. M.Howell, T.Watson, S. B. 2007 Controls on phytoplankton physiology in Lake Ontario during the late summer: Evidence from new fluorescence methodsCan. J. Fish. Aquat. Sci 64 58CrossRefGoogle Scholar
Pinckney, J. L.Wee, J. LHou, A.Walker, N. D. 2009 Phytoplankton community structure responses to urban effluent inputs following Hurricanes Katrina and RitaMar. Ecol. Prog. Ser 387 137CrossRefGoogle Scholar
Redalje, D. G.Lohrenz, S. E.Natter, M. J.Tuel, M. D.Kirkpatrick, G. J.Millie, D. F.Fahnenstield, G. L.Van Dolah, F. M. 2008 The growth dynamics of within discrete blooms on the West Florida ShelfCont. Shelf Res 28 24CrossRefGoogle Scholar
Riegman, R.Kraay, G. W. 2001 Phytoplankton community structure derived from HPLC analysis of pigments in the Faroe-Shetland Channel during summer 1999: the distribution of taxonomic groups in relation to physical/chemical conditions in the photic zoneJ. Plankton Res 23 191CrossRefGoogle Scholar
Rocap, G.Distel, D. L.Waterbury, J. B.Chisholm, S. W. 2002 Resolution of and ecotypes by using 16S–23S ribosomal DNA internal transcribed spacer sequencesAppl. Environ. Microbiol 68 1180CrossRefGoogle ScholarPubMed
Rodríguez, F.Varela, M.Zapata, M. 2002 Phytoplankton assemblages in the Gerlache and Bransfield Straits (Antarctica Peninsula) determined by light microscopy and CHEMTAX analysis of HPLC pigment dataDeep-Sea Res. II 49 723CrossRefGoogle Scholar
Rodríguez, F.Pazos, Y.Maneiro, J.Zapata, M. 2003 Temporal variation in phytoplankton assemblages and pigment composition in a fixed station of the Ría of Pontevedra (NW Spain)Estuar. Coast. Shelf Sci 58 499CrossRefGoogle Scholar
Rodríguez, F.Varela, M.Fernández, E.Zapata, M. 2003 Phytoplankton and pigment distributions in an anticyclonic Slope Water Oceanic eDDY (SWODDY) in the southern Bay of BiscayMar. Biol 143 995CrossRefGoogle Scholar
Rodríguez, F.Chauton, M.Johnsen, G.Andresen, K.Olsen, L. M.Zapata, M. 2006 Photoacclimation in phytoplankton: implications for biomass estimates, pigment functionality and chemotaxonomyMar. Biol 148 963CrossRefGoogle Scholar
Rodríguez, F.Garrido, J. L.Crespo, B. G.Arbones, B.Figueiras, F. G. 2006 Size-fractionated phytoplankton pigment groups in the NW Iberian upwelling system: impact of the Iberian Poleward CurrentMar. Ecol. Prog. Ser 323 59CrossRefGoogle Scholar
Roy, S.Chanut, J.-P.Gosselin, M.Sime-Ngando, T. 1996 Characterization of phytoplankton communities in the lower St. Lawrence Estuary using HPLC-detected pigments and cell microscopyMar. Ecol. Prog. Ser 142 55CrossRefGoogle Scholar
Sakshaug, E.Andresen, K. 1986 Effect of light regime upon growth rate and chemical composition of a clone of from the Trondheimsfjord, NorwayJ. Plankton Res 8 619CrossRefGoogle Scholar
Sato, M.Yoshikawa, T.Takeda, S.Furuya, K. 2007 Application of the size-fractionation method to simultaneous estimation of clearance rates by heterotrophic flagellates and ciliates of pico- and nanophytoplanktonJ. Exp. Mar. Biol. Ecol 349 334CrossRefGoogle Scholar
Schlüter, L.Møhlenberg, F.Havskum, H.Larsen, S. 2000 The use of phytoplankton pigments for identifying and quantifying phytoplankton groups in coastal areas: testing the influence of light and nutrients on pigment/chlorophyll ratiosMar. Ecol. Prog. Ser 192 49CrossRefGoogle Scholar
Schlüter, L.Møhlenberg, F. 2003 Detecting presence of phytoplankton groups with non-specific pigment signaturesJ. Appl. Phycol 15 465CrossRefGoogle Scholar
Schlüter, L.Garde, K.Kaas, H. 2004 A 4-keto-myxoxanthophyll-like pigment is a diagnostic pigment for the toxic cyanobacteria in the Baltic SeaMar. Ecol. Prog. Ser 275 69CrossRefGoogle Scholar
Schlüter, L.Lauridsen, T. L.Krogh, G.Jørgensen, T. 2006 Identification and quantification of phytoplankton groups in lakes using new pigment ratios – a comparison between pigment analysis by HPLC and microscopyFreshwat. Biol 51 1474CrossRefGoogle Scholar
Schlüter, L.Lutnæs, B. F.Liaaen-Jensen, S.Garde, K.Kaas, H.Jameson, I.Blackburn, S. 2008 Correlation of the content of hepatotoxin nodularin and glycosidic carotenoids, 4-ketomyxol-2′-fucoside and novel 1′--methyl-4-ketomyxol-2′-fucoside, in 20 strains of the cyanobacteriumNodularia spumigena. Biochem. System. Ecol 36 749CrossRefGoogle Scholar
See, J. H.Campbell, L.Richardson, T. L.Pinckney, J. L.Shen, R. 2005 Combining new technologies for determination of phytoplankton community structure in the northern Gulf of MexicoJ. Phycol 41 305CrossRefGoogle Scholar
Seoane, S.Laza, A.Orive, E. 2006 Monitoring phytoplankton assemblages in estuarine waters: The application of pigment analysis and microscopy to size-fractionated samplesEstuar. Coast. Shelf Sci 67 343CrossRefGoogle Scholar
Seoane, S.Zapata, M.Orive, E. 2009 Growth rates and pigment patterns of haptophytes isolated from estuarine watersJ. Sea Res 62 286CrossRefGoogle Scholar
Sherrard, N. J.Nimmo, M.Llewellyn, C. A. 2006 Combining HPLC pigment markers and ecological similarity indices to assess phytoplankton community structure: an environmental tool for eutrophication?Sci. Total Environ 361 97CrossRefGoogle ScholarPubMed
Simon, N.Barlow, R. G.Marie, D.Partensky, F.Vaulot, D. 1994 Characterization of oceanic photosynthetic picoeucaryotes by flow cytometryJ. Phycol 30 922CrossRefGoogle Scholar
Smith, R. E. H.Parrish, C. C.Depew, D. C.Ghadouani, A. 2007 Spatial patterns of seston concentration and biochemical composition between nearshore and offshore waters of a Great LakeFreshwater Biol 52 2196CrossRefGoogle Scholar
Stæhr, P. A.Henriksen, P.Markager, S. 2002 Photoacclimation of four marine phytoplankton species to irradiance and nutrient availabilityMar. Ecol. Prog. Ser 238 47CrossRefGoogle Scholar
Stæhr, P. A.Markager, S.Sand-Jensen, K. 2004 Pigment specific light absorption of phytoplankton from estuarine, coastal and oceanic watersMar. Ecol. Prog. Ser 275 115CrossRefGoogle Scholar
Stolte, W.Kraay, G. W.Noordeloos, A. A. M.Riegman, R. 2000 Genetic and physiological variation in pigment composition of (Prymnesiophyceae) and the potential use of its pigment ratios as a quantitative physiological markerJ. Phycol 36 529CrossRefGoogle ScholarPubMed
Suzuki, K.Minami, C.Liu, H.Saino, T. 2002 Temporal and spatial patterns of chemotaxonomic algal pigments in the subarctic Pacific and the Bering Sea during the early summer of 1999Deep-Sea Res. II 49 5685CrossRefGoogle Scholar
Takano, Y.Hansen, G.Fujita, D.Horiguchi, T. 2008 Serial replacement of diatom endosymbionts in two freshwater dinoflagellates, spp. (Peridiniales, Dinophyceae)Phycologia 47 41CrossRefGoogle Scholar
Thompson, P. A.Pesant, S.Waite, A. M. 2007 Contrasting the vertical differences in the phytoplankton biology of a dipole pair of eddies in the south-eastern Indian OceanDeep-Sea Res. II 54 1003CrossRefGoogle Scholar
Trottet, A.Roy, S.Tamigneaux, E.Lovejoy, C. 2007 Importance of heterotrophic planktonic communities in a mussel culture environment: the Grande Entrée lagoon, Magdalen Islands (Québec, Canada)Mar. Biol 151 377CrossRefGoogle Scholar
Tukaj, Z.Matusiak-Mikulin, K.Lewandowska, J.Szurkowski, J. 2003 Changes in the pigment patterns and the photosynthetic activity during a light-induced cell cycle of the green alga Plant Physiol. Biochem 41 337CrossRefGoogle Scholar
Uitz, J.Claustre, H.Morel, A.Hooker, S. B. 2006 Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyllJ. Geophys. Res 111 C08005CrossRefGoogle Scholar
Uitz, J.Claustre, H.Griffiths, F. B.Ras, J.Garcia, N.Sandroni, V. 2009 A phytoplankton class-specific primary production model applied to the Kerguelen Islands region (Southern Ocean)Deep-Sea Res. I 56 541CrossRefGoogle Scholar
Van den Meersche, K.Soetaert, K.Middelburg, J. J. 2008 A Bayesian compositional estimator for microbial taxonomy based on biomarkersLimnol. Oceanogr. Methods 6 190CrossRefGoogle Scholar
van Leeuwe, M. A.Stefels, J. 1998 Effects of iron and light stress on the biochemical composition of Antarctic sp. (Prymnesiophyceae). II. Pigment compositionJ. Phycol 34 496CrossRefGoogle Scholar
Van Lenning, K.Latasa, M.Estrada, M.Sáez, A. G.Medlin, L.Probert, I.Véron, B.Young, B. 2003 Pigment signatures and phylogenetic relationships of the Pavlovophyceae (Haptophyta)J. Phycol 39 379CrossRefGoogle Scholar
Vaulot, D.Eikrem, W.Viprey, M.Moreau, H. 2008 The diversity of small eukaryotic phytoplankton (≤3 μm) in marine ecosystemsFEMS Microbiol. Rev 32 795CrossRefGoogle Scholar
Veldhuis, M. J. W.Kraay, G. W. 2004 Phytoplankton in the subtropical Atlantic Ocean: towards a better assessment of biomass and compositionDeep-Sea Res. I 51 507CrossRefGoogle Scholar
Vidussi, F.Marty, J.-C.Chiavérini, J. 2000 Phytoplankton pigment variations during the transition from spring bloom to oligotrophy in the northwestern Mediterranean seaDeep-Sea Res. I 47 423CrossRefGoogle Scholar
Vidussi, F.Claustre, H.Manca, B. B.Luchetta, A.Marty, J.-C. 2001 Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winterJ. Geophys. Res 106 19939CrossRefGoogle Scholar
Vidussi, F.Roy, S.Lovejoy, C.Gammelgaard, M.Thomsen, H.Booth, B.Tremblay, J. E.Mostajir, B. 2004 Spatial and temporal variability of the phytoplankton community structure in the North Water Polynya, investigated using pigment biomarkersCan. J. Fish. Aquat. Sci 61 2038CrossRefGoogle Scholar
Welschmeyer, A.Hoepffner, N. 1986 Rapid xanthophyll cycling: An tracer for mixing in the upper oceanEOS Trans. AGU 67 969Google Scholar
Wilhelm, C.Manns, L. 1991 Changes in pigmentation of phytoplankton species during growth and stationary phases – consequences for the reliability of pigment based methods of biomass determinationJ. Appl. Phycol 3 305CrossRefGoogle Scholar
Wood, M. A. 1985 Adaptation of photosynthetic apparatus of marine ultraplankton to natural light fieldsNature 316 253CrossRefGoogle Scholar
Worden, A. Z.Not, F. 2008 Ecology and diversity of picoeukaryotesMicrobial Ecology of the OceansKirchman, D.HobokenJohn Wiley and SonsGoogle Scholar
Wright, S. W.Jeffrey, S. W. 1997 High resolution HPLC system for chlorophylls and carotenoids of marine phytoplanktonPhytoplankton Pigments in Oceanography: Guidelines to Modern MethodsJeffrey, S. W.Mantoura, R. F. C.Wright, S. W.ParisUNESCO Publishing327Google Scholar
Wright, S. W.Jeffrey, S. W. 2006 Pigment markers for phytoplankton productionMarine Organic Matter: Biomarkers, Isotopes and DNAVolkman, J. K.BerlinSpringer71CrossRefGoogle Scholar
Wright, S. W.van den Enden, R. L. 2000 Phytoplankton populations off east Antarctica in relation to stratification/mixing regimes: CHEMTAX analysis of HPLC pigment profiles (BROKE survey, Jan–Mar 1996)Deep-Sea Res. II 47 2363CrossRefGoogle Scholar
Wright, S. W.Thomas, D. P.Marchant, H. J.Higgins, H. W.Mackey, M. D.Mackey, D. J. 1996 Analysis of phytoplankton in the Australian sector of the Southern Ocean: comparisons of microscopy and size frequency data with interpretations of pigment HPLC data using the ‘CHEMTAX’ matrix factorisation programMar. Ecol. Prog. Ser 144 285CrossRefGoogle Scholar
Wright, S. W.Ishikawa, A.Marchant, H. J.Davidson, A. T.van den Enden, R. L.Nash, G. 2009 Composition and significance of picophytoplankton in Antarctic watersPolar Biol 32 797CrossRefGoogle Scholar
Wright, S. W.van den Enden, R. L.Pearce, I.Davidson, A. T.Scott, F. J.Westwood, K. J. 2010 Phytoplankton community structure and stocks in the Southern Ocean (30–80°E) determined by CHEMTAX analysis of HPLC pigment signaturesDeep-Sea Res. II 57 758CrossRefGoogle Scholar
Wu, J.Sunda, W.Boyle, E. A.Karl, D. M. 2006 Phosphate depletion in the Western North Atlantic OceanScience 289 759CrossRefGoogle Scholar
Yao, P.Yu, Z-G.Deng, C-M. 2006 Pigment signatures of some diatoms isolated from China SeasActa Oceanol. Sinica 23 108Google Scholar
Zapata, M. 2005 Recent advances in pigment analysis as applied to picoplanktonVie et Milieu 55 233Google Scholar
Zapata, M.Rodríguez, F.Garrido, J. L. 2000 Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phasesMar. Ecol. Prog. Ser 195 29CrossRefGoogle Scholar
Zapata, M.Jeffrey, S. W.Rodríguez, F.Clementson, L.Garrido, J. L.Wright, S. W. 2004 Pigment variability in 37 species (65 strains) of Haptophyta: implications for phylogeny and oceanographyMar. Ecol. Prog. Ser 270 83CrossRefGoogle Scholar
Zhu, Z.-Y.Ng, W.-M.Liu, S.-M.Zhang, J.Chen, J.-C.Wu, Y. 2009 Estuarine phytoplankton dynamics and shift of limiting factors: A study in the Changjiang (Yangtze River) Estuary and adjacent areaEstuar. Coast. Shelf Sci 84 393CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×