Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-19T15:30:53.709Z Has data issue: false hasContentIssue false

19 - Polymerase chain reaction: A blessing and a curse for ancient deoxyribonucleic acid research

Published online by Cambridge University Press:  25 January 2011

Stephen A. Bustin
Affiliation:
Queen Mary University of London
Get access

Summary

The analysis and use of ancient deoxyribonucleic acid (DNA) is intimately linked with the polymerase chain reaction (PCR). Although the first ancient DNA sequences were uncovered before the invention of PCR, ancient DNA research, like many other fields in molecular biology, only began to develop after this technique became established. From initial short fragments that could be amplified via PCR, ancient DNA research has evolved into a field in which complete mitochondrial genomes and genomic shotgun sequences of several megabases can be amplified and analyzed using modern variations of PCR, such as multiplex or emulsion PCR. These achievements became possible by PCR's extraordinary sensitivity, which allows amplification from as little as a single target molecule. However, this sensitivity has a dark side, because PCR also frequently amplifies contaminating DNA. Consequently, spectacular errors, such as the presumed amplification of several-million-year-old dinosaur DNA from bone or insect DNA from amber fossils, have plagued the field almost from its beginnings. In this chapter, we explore how PCR has been a blessing for the advancement of ancient DNA research, while also addressing its limitations, which seem much like a curse.

HISTORY OF ANCIENT DNA AND PCR

Ancient DNA research started more than twenty years ago, with the sequencing of two short mitochondrial DNA (mtDNA) fragments from the extinct quagga. This sequencing was achieved even in the absence of PCR; the first article to describe PCR was published almost exactly one year later.

Type
Chapter
Information
The PCR Revolution
Basic Technologies and Applications
, pp. 284 - 300
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Higuchi, R, Bowman, B, Freiberger, M, Ryder, OA, Wilson, AC (1984) DNA sequences from the quagga, an extinct member of the horse family. Nature 312: 282–284.CrossRefGoogle ScholarPubMed
Saiki, RK, Scharf, S, Faloona, F, Mullis, KB, Horn, GT, Erlich, HA, et al. (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230: 1350–1354.CrossRefGoogle ScholarPubMed
Pääbo, S, Wilson, AC (1988) Polymerase chain reaction reveals cloning artefacts. Nature 334: 387–388.CrossRefGoogle ScholarPubMed
Pääbo, S, Gifford, J, Wilson, A (1988) Mitochondrial DNA sequences from a 7000-year-old brain. Nucleic Acids Research 16: 9775–9787.CrossRefGoogle ScholarPubMed
Rollo, F, Amici, A, Salvi, R, Garbuglia, A (1988) Short but faithful pieces of ancient DNA. Nature 335: 774.CrossRefGoogle ScholarPubMed
Hofreiter, M, Jaenicke, V, Serre, D, Haeseler, Av A, Pääbo, S (2001) DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Research 29: 4793–4799.CrossRefGoogle ScholarPubMed
Saiki, RK, Gelfand, DH, Stoffel, S, Scharf, SJ, Higuchi, R, Horn, GT, et al. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491.CrossRefGoogle ScholarPubMed
Pääbo, S, Poinar, H, Serre, D, Jaenicke-Despres, V, Hebler, J, Rohland, N, et al. (2004) Genetic analyses from ancient DNA. Annual Review of Genetics 38: 645–679.CrossRefGoogle ScholarPubMed
Willerslev, E, Cooper, A (2005) Ancient DNA. Proceedings. Biological Sciences 272: 3–16.CrossRefGoogle ScholarPubMed
Pääbo, S (1985) Molecular cloning of ancient Egyptian mummy DNA. Nature 314: 644–645.CrossRefGoogle ScholarPubMed
Del Pozzo, G, Guardiola, J (1989) Mummy DNA fragment identified. Nature 339: 431–432.CrossRefGoogle ScholarPubMed
Thomas, RH, Schaffner, W, Wilson, AC, Pääbo, S (1989) DNA phylogeny of the extinct marsupial wolf. Nature 340: 465–467.CrossRefGoogle ScholarPubMed
Golenberg, EM, Giannasi, , Clegg, MT, Smiley, CJ, Durbin, M, Henderson, D, et al. (1990) Chloroplast DNA sequence from a miocene Magnolia species. Nature 344: 656–658.CrossRefGoogle ScholarPubMed
Cano, RJ, Poinar, HN, Pieniazek, NJ, Acra, A, Poinar, GO (1993) Amplification and sequencing of DNA from a 120–135-million-year-old weevil. Nature 363: 536–538.CrossRefGoogle ScholarPubMed
Woodward, SR, Weyand, NJ, Bunnell, M (1994) DNA sequence from Cretaceous period bone fragments. Science 266: 1229–1232.CrossRefGoogle ScholarPubMed
Lindahl, T (1993) Instability and decay of the primary structure of DNA. Nature 362: 709–715.CrossRefGoogle ScholarPubMed
Fish, SA, Shepherd, TJ, Mcgenity, TJ, Grant, WD (2002) Recovery of 16S ribosomal RNA gene fragments from ancient halite. Nature 417: 432–436.CrossRefGoogle ScholarPubMed
Hebsgaard, MB, Phillips, MJ, Willerslev, E (2005) Geologically ancient DNA: fact or artefact?Trends in Microbiology 13: 212–220.CrossRefGoogle ScholarPubMed
Pääbo, S, Wilson, AC (1991) Miocene DNA sequences – a dream come true?Current Biology 1: 45–46.CrossRefGoogle Scholar
Cooper, A, Poinar, HN (2000) Ancient DNA: do it right or not at all. Science 289: 1139.CrossRefGoogle ScholarPubMed
Gilbert, MTP, Bandelt, HJ, Hofreiter, M, Barnes, I (2005) Assessing ancient DNA studies. Trends in Ecology & Evolution 20: 541–544.CrossRefGoogle ScholarPubMed
Hofreiter, M, Serre, D, Poinar, HN, Kuch, M, Pääbo, S (2001) Ancient DNA. Nature Reviews. Genetics 2: 353–359.CrossRefGoogle ScholarPubMed
Smith, CI, Chamberlain, AT, Riley, MS, Stringer, C, Collins, MJ (2003) The thermal history of human fossils and the likelihood of successful DNA amplification. Journal of Human Evolution 45: 203–217.CrossRefGoogle ScholarPubMed
Willerslev, E, Cappellini, E, Boomsma, W, Nielsen, R, Hebsgaard, MB, Brand, TB, et al. (2007) Ancient biomolecules from deep ice cores reveal a forested southern Greenland. Science 317: 111–114.CrossRefGoogle ScholarPubMed
Willerslev, E, Hansen, AJ, Binladen, J, Brand, TB, Gilbert, MTP, Shapiro, B, et al. (2003) Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300: 791–795.CrossRefGoogle ScholarPubMed
Römpler, H, Dear, PH, Krause, J, Meyer, M, Rohland, N, Schöneberg, T, et al. (2006) Multiplex amplification of ancient DNA. Nature Protocols 1: 720–728.CrossRefGoogle ScholarPubMed
Krause, J, Dear, PH, Pollack, JL, Slatkin, M, Spriggs, H, Barnes, I, et al. (2006) Multiplex amplification of the mammoth mitochondrial genome and the evolution of Elephantidae. Nature 439: 724–727.CrossRefGoogle ScholarPubMed
Römpler, H, Rohland, N, Lalueza-Fox, C, Willerslev, E, Kuznetsova, T, Rabeder, G, et al. (2006) Nuclear gene indicates coat-color polymorphism in mammoths. Science 313: 62.CrossRefGoogle ScholarPubMed
Margulies, M, Egholm, M, Altman, WE, Attiya, S, Bader, JS, Bemben, , et al. (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: 376–380.CrossRefGoogle ScholarPubMed
Poinar, HN, Schwarz, C, Qi, J, Shapiro, B, Macphee, RDE, Buigues, B, et al. (2006) Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science 311: 392–394.CrossRefGoogle ScholarPubMed
Green, RE, Krause, J, Ptak, SE, Briggs, AW, Ronan, MT, Simons, JF, et al. (2006) Analysis of one million base pairs of Neanderthal DNA. Nature 444: 330–336.CrossRefGoogle ScholarPubMed
Serre, D, Langaney, A, Chech, M, Teschler-Nicola, M, Paunovic, M, Mennecier, P, et al. (2004) No evidence of Neandertal mtDNA contribution to early modern humans. PLoS Biology 2: 313–317.CrossRefGoogle ScholarPubMed
Wandeler, P, Smith, S, Morin, PA, Pettifor, RA, Funk, SM (2003) Patterns of nuclear DNA degeneration over time – a case study in historic teeth samples. Molecular Ecology 12: 1087–1093.CrossRefGoogle ScholarPubMed
Haak, W, Forster, P, Bramanti, B, Matsumura, S, Brandt, G, Tanzer, M, et al. (2005) Ancient DNA from the first European farmers in 7500-year-old Neolithic sites. Science 310: 1016–1018.Google ScholarPubMed
Leonard, JA, Shanks, O, Hofreiter, M, Kreuz, E, Hodges, L, Ream, W, et al. (2007) Animal DNA in PCR reagents plagues ancient DNA research. Journal of Archaeological Science 34: 1361–1366.CrossRefGoogle Scholar
Schmidt, T, Hummel, S, Herrmann, B (1995) Evidence of contamination in PCR laboratory disposables. Naturwissenschaften 82: 423–431.CrossRefGoogle ScholarPubMed
Soltis, PS, Soltis, , Smiley, CJ (1992) An Rbcl sequence from a Miocene Taxodium (Bald Cypress). Proceedings of the National Academy of Sciences of the United States of America 89: 449–451.CrossRefGoogle Scholar
Sidow, A, Wilson, AC, Pääbo, S (1991) Bacterial DNA in Clarkia fossils. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 333: 429–432; discussion 432–433.CrossRefGoogle ScholarPubMed
Gutierrez, G, Marin, A (1998) The most ancient DNA recovered from an amber-preserved specimen may not be as ancient as it seems. Molecular Biology and Evolution 15: 926–929.CrossRefGoogle Scholar
Zischler, H, Höss, M, Handt, O, Haeseler, A, Kuyl, AC, Goudsmit, J (1995) Detecting dinosaur DNA. Science 268: 1192–1193; discussion 1194.CrossRefGoogle ScholarPubMed
Vreeland, RH, Rosenzweig, WD, Powers, DW (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407: 897–900.CrossRefGoogle ScholarPubMed
Graur, D, Pupko, T (2001) The Permian bacterium that isn't. Molecular Biology and Evolution 18: 1143–1146.CrossRefGoogle ScholarPubMed
Nickle, DC, Learn, GH, Rain, MW, Mullins, JI, Mittler, JE (2002) Curiously modern DNA for a “250 million-year-old” bacterium. Journal of Molecular Evolution 54: 134–137.CrossRefGoogle ScholarPubMed
Handt, O, Höss, M, Krings, M, Pääbo, S (1994) Ancient DNA: methodological challenges. Experientia 50: 524–529.CrossRefGoogle ScholarPubMed
Pääbo, S (1989) Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification. Proceedings of the National Academy of Sciences of the United States of America 86: 1939–1943.CrossRefGoogle ScholarPubMed
Burger, J, Kirchner, M, Bramanti, B, Haak, W, Thomas, MG (2007) Absence of the lactase-persistence-associated allele in early Neolithic Europeans. Proceedings of the National Academy of Sciences of the United States of America 104: 3736–3741.CrossRefGoogle ScholarPubMed
Thomas, WK, Pääbo, S, Villablanca, FX, Wilson, AC (1990) Spatial and temporal continuity of kangaroo rat populations shown by sequencing mitochondrial DNA from museum specimens. Journal of Molecular Evolution 31: 101–112.CrossRefGoogle ScholarPubMed
Shapiro, B, Drummond, AJ, Rambaut, A, Wilson, MC, Matheus, PE, Sher, AV, et al. (2004) Rise and fall of the Beringian steppe bison. Science 306: 1561–1565.CrossRefGoogle ScholarPubMed
Cooper, A, Mourer-Chauvire, C, Chambers, GK, Haeseler, A, Wilson, AC, Pääbo, S (1992) Independent origins of New Zealand moas and kiwis. Proceedings of the National Academy of Sciences of the United States of America 89: 8741–8744.CrossRefGoogle ScholarPubMed
Höss, M, Dilling, A, Currant, A, Pääbo, S (1996) Molecular phylogeny of the extinct ground sloth Mylodon darwinii. Proceedings of the National Academy of Sciences of the United States of America 93: 181–185.CrossRefGoogle ScholarPubMed
Noro, M, Masuda, R, Dubrovo, IA, Yoshida, MC, Kato, M (1998) Molecular phylogenetic inference of the woolly mammoth Mammuthus primigenius, based on complete sequences of mitochondrial cytochrome b and 12S ribosomal RNA genes. Journal of Molecular Evolution 46: 314–326.CrossRefGoogle ScholarPubMed
Ozawa, T, Hayashi, S, Mikhelson, VM (1997) Phylogenetic position of mammoth and Steller's sea cow within Tethytheria demonstrated by mitochondrial DNA sequences. Journal of Molecular Evolution 44: 406–413.CrossRefGoogle ScholarPubMed
Cooper, A, Lalueza-Fox, C, Anderson, S, Rambaut, A, Austin, J, Ward, R (2001) Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature 409: 704–707.CrossRefGoogle ScholarPubMed
Haddrath, O, Baker, AJ (2001) Complete mitochondrial DNA genome sequences of extinct birds: ratite phylogenetics and the vicariance biogeography hypothesis. Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character. Royal Society (Great Britain) 268: 939–945.CrossRefGoogle ScholarPubMed
Holdaway, RN, Jacomb, C (2000) Rapid extinction of the moas (Aves: Dinornithiformes): model, test, and implications. Science 287: 2250–2254.CrossRefGoogle ScholarPubMed
Chamberlain, JS, Gibbs, RA, Ranier, JE, Nguyen, PN, Caskey, CT (1988) Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Research 16: 11141–11156.CrossRefGoogle ScholarPubMed
Noonan, JP, Coop, G, Kudaravalli, S, Smith, D, Krause, J, Alessi, J, et al. (2006) Sequencing and analysis of Neanderthal genomic DNA. Science 314: 1113–1118.CrossRefGoogle ScholarPubMed
Lambert, DM, Ritchie, PA, Millar, CD, Holland, B, Drummond, AJ, Baroni, C (2002) Rates of evolution in ancient DNA from Adelie penguins. Science 295: 2270–2273.CrossRefGoogle ScholarPubMed
Hagelberg, E, Thomas, MG, Cook, CE Jr, Sher, AV, Baryshnikov, GF, Lister, AM (1994) DNA from ancient mammoth bones. Nature 370: 333–334.CrossRefGoogle ScholarPubMed
Höss, M, Pääbo, S, Vereshchagin, NK (1994) Mammoth DNA sequences. Nature 370: 333.CrossRefGoogle ScholarPubMed
Rogaev, EI, Moliaka, YK, Malyarchuk, BA, Kondrashov, FA, Derenko, MV, Chumakov, I, et al. (2006) Complete mitochondrial genome and phylogeny of Pleistocene mammoth Mammuthus primigenius. PLoS Biology 4: e73.CrossRefGoogle ScholarPubMed
Bunce, M, Worthy, TH, Ford, T, Hoppitt, W, Willerslev, E, Drummond, A, et al. (2003) Extreme reversed sexual size dimorphism in the extinct New Zealand moa Dinornis. Nature 425: 172–175.CrossRefGoogle ScholarPubMed
Huynen, L, Millar, CD, Scofield, RP, Lambert, DM (2003) Nuclear DNA sequences detect species limits in ancient moa. Nature 425: 175–178.CrossRefGoogle ScholarPubMed
Baker, AJ, Huynen, LJ, Haddrath, O, Millar, CD, Lambert, DM (2005) Reconstructing the tempo and mode of evolution in an extinct clade of birds with ancient DNA: the giant moas of New Zealand. Proceedings of the National Academy of Sciences of the United States of America 102: 8257–8262.CrossRefGoogle Scholar
Hofreiter, M, Rabeder, G, Jaenicke-Despres, V, Withalm, G, Nagel, D, Paunovic, M, et al. (2004) Evidence for reproductive isolation between cave bear populations. Current Biology 14: 40–43.CrossRefGoogle ScholarPubMed
Rabeder, G, Hofreiter, M, Nagel, D, Withalm, G (2003) New taxa of Alpine cave bears (Ursidae, Carnivora). In: M Philippe, A, Argant, and J Argant (eds), 9th Cave Bear Symposium. Entremont-le-Vieux (Savoie, France), Museum Lyon.
Hofreiter, M, Münzel, S, Conard, NJ, Pollack, J, Slatkin, M, Weiss, G, et al. (2007) Sudden replacement of cave bear mitochondrial DNA in the late Pleistocene. Current Biology 17: R122–R123.CrossRefGoogle ScholarPubMed
Hofreiter, M, Serre, D, Rohland, N, Rabeder, G, Nagel, D, Conard, N, et al. (2004) Lack of phylogeography in European mammals before the last glaciation. Proceedings of the National Academy of Sciences of the United States of America 101: 12963–12968.CrossRefGoogle ScholarPubMed
Rohland, N, Pollack, JL, Nagel, D, Beauval, C, Airvaux, J, Pääbo, S, et al. (2005) The population history of extant and extinct hyenas. Molecular Biology and Evolution 22: 2435–2443.CrossRefGoogle ScholarPubMed
Poinar, HN, Hofreiter, M, Spaulding, WG, Martin, PS, Stankiewicz, BA, Bland, H, et al. (1998) Molecular coproscopy: dung and diet of the extinct ground sloth Nothrotheriops shastensis. Science 281: 402–406.CrossRefGoogle ScholarPubMed
Hofreiter, M, Poinar, HN, Spaulding, WG, Bauer, K, Martin, PS, Possnert, G, et al. (2000) A molecular analysis of ground sloth diet through the last glaciation. Molecular Ecology 9: 1975–1984.CrossRefGoogle ScholarPubMed
Hofreiter, M, Mead, JI, Martin, P, Poinar, HN (2003) Molecular caving. Current Biology 13: R693–R695.CrossRefGoogle ScholarPubMed
Noonan, JP, Hofreiter, M, Smith, D, Priest, JR, Rohland, N, Rabeder, G, et al. (2005) Genomic sequencing of Pleistocene cave bears. Science 309: 597–599.CrossRefGoogle ScholarPubMed
Stiller, M, Green, RE, Ronan, M, Simons, JF, Du, L, He, W, et al. (2006) Patterns of nucleotide misincorporations during enzymatic amplification and direct large-scale sequencing of ancient DNA. Proceedings of the National Academy of Sciences of the United States of America 103: 13578–13584.CrossRefGoogle ScholarPubMed
Hagelberg, E, Sykes, B, Hedges, R (1989) Ancient bone DNA amplified. Nature 342: 485.CrossRefGoogle ScholarPubMed
Caramelli, D, Lalueza-Fox, C, Vernesi, C, Lari, M, Casoli, A, Mallegni, F, et al. (2003) Evidence for a genetic discontinuity between Neandertals and 24,000-year-old anatomically modern Europeans. Proceedings of the National Academy of Sciences of the United States of America 100: 6593–6597.CrossRefGoogle ScholarPubMed
Abbott, A (2003) Anthropologists cast doubt on human DNA evidence. Nature 423: 468.CrossRefGoogle ScholarPubMed
Barbujani, G, Bertorelle, G (2003) Were Cro-Magnons too like us for DNA to tell?Nature 424: 127.CrossRefGoogle ScholarPubMed
Endicott, P, Gilbert, MTP, Stringer, C, Lalueza-Fox, C, Willerslev, E, Hansen, AJ, et al. (2003) The genetic origins of the Andaman Islanders. American Journal of Human Genetics 72: 178–184.CrossRefGoogle Scholar
Thangaraj, K, Singh, L, Reddy, AG, Rao, VR, Sehgal, SC, Underhill, PA, et al. (2003) Genetic affinities of the Andaman Islanders, a vanishing human population. Current Biology 13: 86–93.CrossRefGoogle ScholarPubMed
Kaestle, FA, Smith, DG (2001) Ancient mitochondrial DNA evidence for prehistoric population movement: the Numic expansion. American Journal of Physical Anthropology 115: 1–12.CrossRefGoogle ScholarPubMed
Lalueza-Fox, C, Gilbert, MTP, Martinez-Fuentes, AJ, Calafell, F, Bertranpetit, J (2003) Mitochondrial DNA from pre-Columbian Ciboneys from Cuba and the prehistoric colonization of the Caribbean. American Journal of Physical Anthropology 121: 97–108.CrossRefGoogle ScholarPubMed
Poinar, HN, Kuch, M, Sobolik, KD, Barnes, I, Stankiewicz, AB, Kuder, T, et al. (2001) A molecular analysis of dietary diversity for three archaic Native Americans. Proceedings of the National Academy of Sciences of the United States of America 98: 4317–4322.CrossRefGoogle ScholarPubMed
Stone, AC, Stoneking, M (1998) mtDNA analysis of a prehistoric Oneota population: implications for the peopling of the new world. American Journal of Human Genetics 62: 1153–1170.CrossRefGoogle ScholarPubMed
Rohland, N, Siedel, H, Hofreiter, M (2004) Nondestructive DNA extraction method for mitochondrial DNA analyses of museum specimens. BioTechniques 36: 814–816, 818–821.Google ScholarPubMed
Boesch, C (1994) Cooperative hunting in wild chimpanzees. Animal Behaviour 48: 653–667.CrossRefGoogle Scholar
Höss, M, Pääbo, S (1993) DNA extraction from Pleistocene bones by a silica-based purification method. Nucleic Acids Research 21: 3913–3914.CrossRefGoogle ScholarPubMed
Hänni, C, Laudet, V, Stehelin, D, Taberlet, P (1994) Tracking the origins of the cave bear (Ursus spelaeus) by mitochondrial DNA sequencing. Proceedings of the National Academy of Sciences of the United States of America 91: 12336–12340.CrossRefGoogle ScholarPubMed
Loreille, O, Orlando, L, Patou-Mathis, M, Philippe, M, Taberlet, P, Hanni, C (2001) Ancient DNA analysis reveals divergence of the cave bear, Ursus spelaeus, and brown bear, Ursus arctos, lineages. Current Biology 11: 200–203.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×