Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-11T02:55:29.075Z Has data issue: false hasContentIssue false

Chapter 15 - Neuromonitoring after Cardiac Arrest

from Part IV - Practice of Neuromonitoring: Cardiac Intensive Care Unit

Published online by Cambridge University Press:  08 September 2022

Cecil D. Hahn
Affiliation:
The Hospital for Sick Children, University of Toronto
Courtney J. Wusthoff
Affiliation:
Lucile Packard Children’s Hospital, Stanford University
Get access

Summary

The period following resuscitation after cardiac arrest is a critical time during which the identification and management of neurological injury may lead to increased survival and improved long-term functional outcomes. Neuromonitoring can guide patient management and aid in prognostication following cardiac arrest. EEG background patterns may be useful in outcome prognostication for some patients within 24 hours of cardiac arrest. Similarly, EEG monitoring is often employed for detection of seizures after pediatric cardiac arrest; seizures are common and are most often subclinical. Hypothermia may impact the interpretation and optimal timing of neuromonitoring data used for prognostication. Experts recommend a multimodal approach to prognostication. In this chapter, we discuss cEEG monitoring, quantitative EEG methods for seizure identification, and EEG background interpretation. We discuss SSEPs and NIRS and their respective roles in neurological management and prognostication. We also address how therapeutic hypothermia (TH) and medication exposure can change the reliability of some of these neuromonitoring tools.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abend, NS, Mani, R, Tschuda, TN, et al. EEG monitoring during therapeutic hypothermia in neonates, children, and adults. Am J Electroneurodiagnostic Technol. 2011;51(3):141–64.CrossRefGoogle ScholarPubMed
Girotra, S, Spertus, JA, Li, Y, et al. Survival trends in pediatric in-hospital cardiac arrests: an analysis from Get With the Guidelines-Resuscitation. Circ Cardiovasc Qual Outcomes. 2013;6(1):42–9.CrossRefGoogle ScholarPubMed
Topjian, AA, Berg, RA, Nadkarni, VM. Pediatric cardiopulmonary resuscitation: advances in science, techniques, and outcomes. Pediatrics. 2008;122(5):1086–98.CrossRefGoogle ScholarPubMed
Meert, KL, Donaldson, A, Nadkarni, V, et al. Multicenter cohort study of in-hospital pediatric cardiac arrest. Pediatr Crit Care Med. 2009;10(5):544–53.CrossRefGoogle ScholarPubMed
Berg, RA, Nadkarni, VM, Clark, AE, et al. Incidence and outcomes of cardiopulmonary resuscitation in PICUs. Crit Care Med. 2016;44(4):798808.CrossRefGoogle ScholarPubMed
Topjian, AA, Nadkarni, VM, Berg, RA. Cardiopulmonary resuscitation in children. Curr Opin Crit Care. 2009;15(3):203–8.CrossRefGoogle ScholarPubMed
Donoghue, AJ, Nadkarni, V, Berg, RA, et al. Out-of-hospital pediatric cardiac arrest: an epidemiologic review and assessment of current knowledge. Ann Emerg Med. 2005;46(6):512–22.CrossRefGoogle ScholarPubMed
Atkins, DL, Everson-Stewart, S, Sears, GK, et al. Epidemiology and outcomes from out-of-hospital cardiac arrest in children: the Resuscitation Outcomes Consortium Epistry-Cardiac Arrest. Circulation. 2009;119(11):1484–91.Google Scholar
Moler, FW, Donaldson, AE, Meert, K, et al. Multicenter cohort study of out-of-hospital pediatric cardiac arrest. Crit Care Med. 2011;39(1):141–9.Google ScholarPubMed
Slomine, BS, Silverstein, FS, Christensen, JR, et al. Neurobehavioral outcomes in children after out-of-hospital cardiac arrest. Pediatrics. 2016;137(4):e20153412.Google Scholar
van Zellem, L, Buysse, C, Madderom, M, et al. Long-term neuropsychological outcomes in children and adolescents after cardiac arrest. Intensive Care Med. 2015;41(6):1057–66.CrossRefGoogle ScholarPubMed
van Zellem, L, Utens, EM, Legerstee, JS, et al. Cardiac arrest in children: long-term health status and health-related quality of life. Pediatr Crit Care Med. 2015;16(8):693702.Google Scholar
Neumar, RW, Nolan, JP, Adrie, C, et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A consensus statement from the International Liaison Committee on Resuscitation (American Heart Association, Australian and New Zealand Council on Resuscitation, European Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Asia, and the Resuscitation Council of Southern Africa); the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; and the Stroke Council. Circulation 2008;118(23):2452–83.CrossRefGoogle Scholar
Topjian, AA, Raymond, TT, Atkins, D, et al. Part 4: pediatric basic and advanced life support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2020;142(16 Suppl 2):S469S523.CrossRefGoogle ScholarPubMed
Bembea, MM, Nadkarni, VM, Diener-West, M, et al. American Heart Association National Registry of Cardiopulmonary Resuscitation I: temperature patterns in the early postresuscitation period after pediatric inhospital cardiac arrest. Pediatr Crit Care Med. 2010;11(6):723–30.CrossRefGoogle Scholar
Topjian, AA, de Caen, A, Wainwright, MS, et al. Pediatric post-cardiac arrest care: a scientific statement from the American Heart Association. Circulation. 2019;140(6):e194e233.Google Scholar
Topjian, AA, Sanchez, SM, Shults, J, et al. Early electroencephalographic background features predict outcomes in children resuscitated from cardiac arrest. Pediatr Crit Care Med. 2016;17(6):547–57.CrossRefGoogle ScholarPubMed
Williams, K, Jarrar, R, Buchhalter, J. Continuous video-EEG monitoring in pediatric intensive care units. Epilepsia. 2011;52(6):1130–6.CrossRefGoogle ScholarPubMed
Herman, ST, Abend, NS, Bleck, TP, et al. Consensus statement on continuous EEG in critically ill adults and children, part I: indications. J Clin Neurophysiol. 2015;32(2):8795.CrossRefGoogle ScholarPubMed
Jette, N, Claassen, J, Emerson, RG, Hirsch, LJ. Frequency and predictors of nonconvulsive seizures during continuous electroencephalographic monitoring in critically ill children. Arch Neurol. 2006;63(12):1750–5.CrossRefGoogle ScholarPubMed
Abend, NS, Marsh, E. Convulsive and nonconvulsive status epilepticus in children. Curr Treat Options Neurol. 2009;11(4):262–72.CrossRefGoogle ScholarPubMed
Abend, NS, Topjian, A, Ichord, R, et al. Electroencephalographic monitoring during hypothermia after pediatric cardiac arrest. Neurology. 2009;72(22):1931–40.CrossRefGoogle ScholarPubMed
Abend, NS, Gutierrez-Colina, AM, Topjian, AA, et al. Non-convulsive seizures are common in critically ill children. Neurology. 2011;76(12):1071–7.CrossRefGoogle Scholar
Mani, R, Schmitt, SE, Mazer, M, Putt, ME, Gaieski, DF. The frequency and timing of epileptiform activity on continuous electroencephalogram in comatose post-cardiac arrest syndrome patients treated with therapeutic hypothermia. Resuscitation. 2012;83(7):840–7.CrossRefGoogle ScholarPubMed
Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346(8):549–56.Google Scholar
Bernard, SA, Gray, TW, Buist, MD, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346(8):557–63.CrossRefGoogle ScholarPubMed
Nielsen, N, Wetterslev, J, Cronberg, T, et al. Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest. N Engl J Med. 2013;369(23):2197–206.CrossRefGoogle Scholar
Brophy, GM, Bell, R, Claassen, J, et al. Guidelines for the evaluation and management of status epilepticus. Neurocrit Care. 2012;17(1):323.CrossRefGoogle ScholarPubMed
Abend, NS, Dlugos, DJ, Hahn, CD, Hirsch, LJ, Herman, ST. Use of EEG monitoring and management of non-convulsive seizures in critically ill patients: a survey of neurologists. Neurocrit Care. 2010;12(3):382–9.CrossRefGoogle ScholarPubMed
Sanchez, SM, Carpenter, J, Chapman, KE, et al. Pediatric ICU EEG monitoring: current resources and practice in the United States and Canada. J Clin Neurophysiol. 2013;30(2):156–60.CrossRefGoogle ScholarPubMed
Scheuer, ML, Wilson, SB. Data analysis for continuous EEG monitoring in the ICU: seeing the forest and the trees. J Clin Neurophysiol. 2004;21(5):353–78.Google ScholarPubMed
Shah, NA, Wusthoff, CJ. How to use: amplitude-integrated EEG (aEEG). Arch Dis Child Educ Pract Ed. 2015;100(2):7581.Google Scholar
Mathur, AM, Morris, LD, Teteh, F, Inder, TE, Zempel, J. Utility of prolonged bedside amplitude-integrated encephalogram in encephalopathic infants. Am J Perinatol. 2008;25(10):611–15.CrossRefGoogle ScholarPubMed
Topjian, AA, Fry, M, Jawad, AF, et al. Detection of electrographic seizures by critical care providers using color density spectral array after cardiac arrest is feasible. Pediatr Crit Care Med. 2015;16(5):461–7.Google Scholar
Stewart, CP, Otsubo, H, Ochi, A, et al. Seizure identification in the ICU using quantitative EEG displays. Neurology. 2010;75(17):1501–18.CrossRefGoogle ScholarPubMed
Pensirikul, AD, Beslow, LA, Kessler, SK, et al. Density spectral array for seizure identification in critically ill children. J Clin Neurophysiol. 2013;30(4):371–5.CrossRefGoogle ScholarPubMed
Akman, CI, Micic, V, Thompson, A, Riviello, JJ, Jr. Seizure detection using digital trend analysis: Factors affecting utility. Epilepsy Res. 2011;93(1):6672.CrossRefGoogle ScholarPubMed
Williamson, CA, Wahlster, S, Shafi, MM, Westover, MB. Sensitivity of compressed spectral arrays for detecting seizures in acutely ill adults. Neurocrit Care. 2014;20(1):32–9.CrossRefGoogle ScholarPubMed
Moura, LM, Shafi, MM, Ng, M, et al. Spectrogram screening of adult EEGs is sensitive and efficient. Neurology 2014;83(1):5664.CrossRefGoogle ScholarPubMed
Haider, HA, Esteller, R, Hahn, CD, et al. Sensitivity of quantitative EEG for seizure identification in the intensive care unit. Neurology 2016;87(9):935–44.CrossRefGoogle ScholarPubMed
Swisher, CB, White, CR, Mace, BE, et al. Diagnostic accuracy of electrographic seizure detection by neurophysiologists and non-neurophysiologists in the adult ICU using a panel of quantitative EEG trends. J Clin Neurophysiol. 2015;32(4):324–30.CrossRefGoogle ScholarPubMed
Dericioglu, N, Yetim, E, Bas, DF, et al. Non-expert use of quantitative EEG displays for seizure identification in the adult neuro-intensive care unit. Epilepsy Res. 2015;109 :48–56.CrossRefGoogle ScholarPubMed
Evans, E, Koh, S, Lerner, J, Sankar, R, Garg, M. Accuracy of amplitude integrated EEG in a neonatal cohort. Arch Dis Child Fetal Neonatal Ed. 2010;95(3):F169-73.Google Scholar
Shah, DK, Mackay, MT, Lavery, S, et al. Accuracy of bedside electroencephalographic monitoring in comparison with simultaneous continuous conventional electroencephalography for seizure detection in term infants. Pediatrics. 2008;121(6):1146–54.CrossRefGoogle ScholarPubMed
Tao, JD, Mathur, AM. Using amplitude-integrated EEG in neonatal intensive care. J Perinatol. 2010;30 Suppl:S7381.CrossRefGoogle ScholarPubMed
Toet, MC, van der Meij, W, de Vries, LS, Uiterwaal, CS, van Huffelen, KC. Comparison between simultaneously recorded amplitude integrated electroencephalogram (cerebral function monitor) and standard electroencephalogram in neonates. Pediatrics. 2002;109(5):772–9.CrossRefGoogle ScholarPubMed
Glass, HC, Kan, J, Bonifacio, SL, Ferriero, DM. Neonatal seizures: treatment practices among term and preterm infants. Pediatr. Neurol. 2012;46(2):111–15.CrossRefGoogle ScholarPubMed
Shah, NA, Van Meurs, KP, Davis, AS. Amplitude-integrated electroencephalography: a survey of practices in the United States. Am J Perinatol. 2015;32(8):755–60.Google ScholarPubMed
Shellhaas, RA, Soaita, AI, Clancy, RR. Sensitivity of amplitude-integrated electroencephalography for neonatal seizure detection. Pediatrics. 2007;120(4):770–7.Google Scholar
Fujikawa, DG. Prolonged seizures and cellular injury: understanding the connection. Epilepsy Behav. 2005;7(Suppl 3):S311.CrossRefGoogle ScholarPubMed
Abend, NS, Dlugos, DJ, Clancy, RR. A review of long-term EEG monitoring in critically ill children with hypoxic-ischemic encephalopathy, congenital heart disease, ECMO, and stroke. J Clin Neurophysiol. 2013;30(2):134–42.Google Scholar
Hovland, A, Nielsen, EW, Kluver, J, Salvesen, R. EEG should be performed during induced hypothermia. Resuscitation. 2006;68(1):143–6.CrossRefGoogle ScholarPubMed
Westhall, E, Rundgren, M, Lilja, G, Friberg, H, Cronberg, T. Postanoxic status epilepticus can be identified and treatment guided successfully by continuous electroencephalography. Ther Hypothermia Temp Manag. 2013;3(2):84–7.Google Scholar
Rossetti, AO, Oddo, M, Liaudet, L, Kaplan, PW. Predictors of awakening from postanoxic status epilepticus after therapeutic hypothermia. Neurology. 2009;72(8):744–9.CrossRefGoogle ScholarPubMed
Rossetti, AO, Oddo, M, Logroscino, G, Kaplan, PW. Prognostication after cardiac arrest and hypothermia: a prospective study. Ann Neurol. 2010;67(3):301–7.CrossRefGoogle ScholarPubMed
Rossetti, AO, Urbano, LA, Delodder, F, Kaplan, PW, Oddo, M. Prognostic value of continuous EEG monitoring during therapeutic hypothermia after cardiac arrest. Critical Care. 2010;14(5):R173.CrossRefGoogle ScholarPubMed
Rundgren, M, Westhall, E, Cronberg, T, Rosen, I, Friberg, H. Continuous amplitude-integrated electroencephalogram predicts outcome in hypothermia-treated cardiac arrest patients. Crit Care Med. 2010;38(9):1838–44.CrossRefGoogle ScholarPubMed
Young, GB, Jordan, KG, Doig, GS. An assessment of nonconvulsive seizures in the intensive care unit using continuous EEG monitoring: an investigation of variables associated with mortality. Neurology. 1996;47(1):83–9.Google Scholar
Lewena, S, Young, S. When benzodiazepines fail: how effective is second line therapy for status epilepticus in children? Emerg Med Australas. 2006;18(1):4550.Google Scholar
Hayashi, K, Osawa, M, Aihara, M, et al. Efficacy of intravenous midazolam for status epilepticus in childhood. Pediatr Neurol. 2007;36(6):366–72.Google Scholar
van Rooij, LG, Toet, MC, van Huffelen, AC, et al. Effect of treatment of subclinical neonatal seizures detected with aEEG: randomized, controlled trial. Pediatrics. 2010;125(2):e358–66.Google Scholar
Crepeau, AZ, Fugate, JE, Mandrekar, J, et al. Value analysis of continuous EEG in patients during therapeutic hypothermia after cardiac arrest. Resuscitation. 2014;85(6):785–9.Google Scholar
Kaplan, PW. No, some types of nonconvulsive status epilepticus cause little permanent neurologic sequelae (or: “the cure may be worse than the disease”). Neurophysiol Clin. 2000;30(6):377–82.Google Scholar
Freeman, JM. Beware: the misuse of technology and the law of unintended consequences. Neurotherapeutics. 2007;4(3):549–54.CrossRefGoogle ScholarPubMed
Abend, NS, Dlugos, DJ: Treatment of refractory status epilepticus: literature review and a proposed protocol. Pediatric neurology 2008, 38(6):377390.CrossRefGoogle Scholar
Rundgren, M, Rosen, I, Friberg, H. Amplitude-integrated EEG (aEEG) predicts outcome after cardiac arrest and induced hypothermia. Intensive Care Med. 2006;32(6):836–42.Google Scholar
Oh, SH, Park, KN, Shon, YM, et al. Continuous amplitude-integrated electroencephalographic monitoring is a useful prognostic tool for hypothermia-treated cardiac arrest patients. Circulation. 2015;132(12):10941103.CrossRefGoogle ScholarPubMed
Knight, WA, Hart, KW, Adeoye, OM, et al. The incidence of seizures in patients undergoing therapeutic hypothermia after resuscitation from cardiac arrest. Epilepsy Res. 2013;106(3):396402.Google Scholar
Wagenman, KL, Blake, TP, Sanchez, SM, et al. Electrographic status epilepticus and long-term outcome in critically ill children. Neurology. 2014;82(5):396404.CrossRefGoogle ScholarPubMed
Ostendorf, AP, Hartman, ME, Friess, SH. Early electroencephalographic findings correlate with neurologic outcome in children following cardiac arrest. Pediatr Crit Care Med. 2016;17(7):667–76.Google Scholar
Lamartine Monteiro, M, Taccone, FS, Depondt, C, et al. The prognostic value of 48-h continuous EEG during therapeutic hypothermia after cardiac arrest. Neurocrit Care. 2015;24(2):153–62.Google Scholar
Bouwes, A, van Poppelen, D, Koelman, JH, et al. Acute posthypoxic myoclonus after cardiopulmonary resuscitation. BMC Neurol. 2012;12: 63.CrossRefGoogle ScholarPubMed
Newey, CR, Hornik, A, Guerch, M, et al. The benefit of neuromuscular blockade in patients with postanoxic myoclonus otherwise obscuring continuous electroencephalography (CEEG). Crit Care Res Pract. 2017;2017:2504058.Google ScholarPubMed
Wijdicks, EF, Hijdra, A, Young, GB, Bassetti, CL, Wiebe, S. Practice parameter: prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2006;67(2):203–10.CrossRefGoogle Scholar
Wijdicks, EF, Parisi, JE, Sharbrough, FW. Prognostic value of myoclonus status in comatose survivors of cardiac arrest. Ann Neurol. 1994;35(2):239–43.CrossRefGoogle ScholarPubMed
Mikhaeil-Demo, Y, Gavvala, JR, Bellinski, II, et al. Clinical classification of post anoxic myoclonic status. Resuscitation. 2017;119 :76–80.Google Scholar
Lucas, JM, Cocchi, MN, Salciccioli, J, et al. Neurologic recovery after therapeutic hypothermia in patients with post-cardiac arrest myoclonus. Resuscitation. 2012;83(2):265–9.CrossRefGoogle ScholarPubMed
Elmer, J, Rittenberger, JC, Faro, J, et al.; Pittsburgh Post-Cardiac Arrest S.Clinically distinct electroencephalographic phenotypes of early myoclonus after cardiac arrest. Ann Neurol. 2016;80(2):175–84.Google Scholar
Seder, DB, Sunde, K, Rubertsson, S, et al. Neurologic outcomes and postresuscitation care of patients with myoclonus following cardiac arrest. Crit Care Med. 2015;43(5):965–72.CrossRefGoogle ScholarPubMed
Pampiglione, G. Electroencephalographic studies after cardiorespiratory resuscitation. Proc R Soc Med. 1962;55 :653–7.Google Scholar
Nishisaki, A, Sullivan, J, 3rd, Steger, B, et al. Retrospective analysis of the prognostic value of electroencephalography patterns obtained in pediatric in-hospital cardiac arrest survivors during three years. Pediatr Crit Care Med. 2007;8(1):1017.CrossRefGoogle ScholarPubMed
Synek, VM. Value of a revised EEG coma scale for prognosis after cerebral anoxia and diffuse head injury. Clin Electroencephalogr. 1990;21(1):2530.CrossRefGoogle ScholarPubMed
Hockaday, JM, Potts, F, Epstein, E, Bonazzi, A, Schwab, RS. Electroencephalographic changes in acute cerebral anoxia from cardiac or respiratory arrest. Electroencephalogr Clin Neurophysiol. 1965;18 :575–86.CrossRefGoogle ScholarPubMed
Young, GB, Doig, G, Ragazzoni, A. Anoxic-ischemic encephalopathy: clinical and electrophysiological associations with outcome. Neurocrit Care. 2005;2(2):159–64.Google Scholar
Westhall, E, Rossetti, AO, van Rootselaar, AF, et al. Standardized EEG interpretation accurately predicts prognosis after cardiac arrest. Neurology. 2016;86(16):1482–90.CrossRefGoogle ScholarPubMed
Mandel, R, Martinot, A, Delepoulle, F, et al. Prediction of outcome after hypoxic-ischemic encephalopathy: a prospective clinical and electrophysiologic study. J Pediatr. 2002;141(1):4550.CrossRefGoogle ScholarPubMed
Ramachandrannair, R, Sharma, R, Weiss, SK, Cortez, MA. Reactive EEG patterns in pediatric coma. Pediatr Neurol. 2005;33(5):345–9.Google Scholar
Tasker, RC, Boyd, S, Harden, A, Matthew, DJ. Monitoring in non-traumatic coma. Part II: electroencephalography. Arch Dis Child. 1988;63(8):895–9.Google Scholar
Pampiglione, G, Harden, A. Resuscitation after cardiocirculatory arrest. Prognostic evaluation of early electroencephalographic findings. Lancet. 1968;1(7555):1261–5.Google ScholarPubMed
Cheliout-Heraut, F, Sale-Franque, F, Hubert, P, Bataille, J. [Cerebral anoxia in near-drowning of children. The prognostic value of EEG] In French. Neurophysiol Clin. 1991;21(2):121–32.Google Scholar
Ducharme-Crevier, L, Press, CA, Kurz, JE, et al. Early presence of sleep spindles on electroencephalography is associated with good outcome after pediatric cardiac arrest. Pediatr Crit Care Med. 2017;18(5):452–60.Google Scholar
Pampiglione, G, Chaloner, J, Harden, A, O’Brien, J. Transitory ischemia/anoxia in young children and the prediction of quality of survival. Ann N Y Acad Sci. 1978;315 :281–92.CrossRefGoogle ScholarPubMed
Abend, NS, Massey, SL, Fitzgerald, M, et al. Interrater agreement of EEG interpretation after pediatric cardiac arrest using standardized critical care EEG terminology. J Clin Neurophysiol. 2017;34(6):534–41.Google Scholar
Ostendorf, AP, Hartman, ME, Friess, SH. Early electroencephalographic findings correlate with neurologic outcome in children following cardiac arrest. Pediatr Crit Care Med. 2016;17(7):667–76.CrossRefGoogle ScholarPubMed
Fung, FW, Topjian, AA, Xiao, R, Abend, NS. Early EEG features for outcome prediction after cardiac arrest in children. J Clin Neurophysiol. 2019;36(5):349–57.CrossRefGoogle ScholarPubMed
Toet, MC, Hellstrom-Westas, L, Groenendaal, F, Eken, P, de Vries, LS. Amplitude integrated EEG 3 and 6 hours after birth in full term neonates with hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed. 1999;81(1):F1923.Google Scholar
Cloostermans, MC, van Meulen, FB, Eertman, CJ, Hom, HW, van Putten, MJ. Continuous electroencephalography monitoring for early prediction of neurological outcome in postanoxic patients after cardiac arrest: a prospective cohort study. Crit Care Med. 2012;40(10):2867–75.Google Scholar
Synek, VM, Shaw, NA. Epileptiform discharges in presence of continuous background activity in anoxic coma. Clin Electroencephalogr. 1989;20(2):141–6.Google Scholar
Rossetti, AO, Carrera, E, Oddo, M. Early EEG correlates of neuronal injury after brain anoxia. Neurology. 2012;78(11):796802.CrossRefGoogle ScholarPubMed
Synek, VM. Revised EEG coma scale in diffuse acute head injuries in adults. Clin Exp Neurol. 1990;27 :99–111.Google Scholar
Abend, NS, Gutierrez-Colina, A, Zhao, H, et al. Interobserver reproducibility of electroencephalogram interpretation in critically ill children. J Clin Neurophysiol. 2011;28(1):1519.Google Scholar
Husain, AM. Electroencephalographic assessment of coma. J Clin Neurophysiol. 2006;23(3):208–20.Google Scholar
Gerber, PA, Chapman, KE, Chung, SS, et al. Interobserver agreement in the interpretation of EEG patterns in critically ill adults. J Clin Neurophysiol. 2008;25(5):241–9.Google Scholar
Hirsch, LJ, Brenner, RP, Drislane, FW, et al. The ACNS subcommittee on research terminology for continuous EEG monitoring: proposed standardized terminology for rhythmic and periodic EEG patterns encountered in critically ill patients. J Clin Neurophysiol. 2005;22(2):128–35.Google Scholar
Ronner, HE, Ponten, SC, Stam, CJ, Uitdehaag, BM. Inter-observer variability of the EEG diagnosis of seizures in comatose patients. Seizure. 2009;18(4):257–63.Google Scholar
Bourgoin, P, Barrault, V, Joram, N, et al. The prognostic value of early amplitude-integrated electroencephalography monitoring after pediatric cardiac arrest. Pediatr Crit Care Med. 2020;21(3):248–55.Google Scholar
Lee, S, Zhao, X, Davis, KA, et al. Quantitative EEG predicts outcomes in children after cardiac arrest. Neurology. 2019;92(20):e2329–e2338.CrossRefGoogle ScholarPubMed
Stecker, MM, Cheung, AT, Pochettino, A, et al. Deep hypothermic circulatory arrest: I. Effects of cooling on electroencephalogram and evoked potentials. Ann Thorac Surg. 2001;71(1):1421.CrossRefGoogle ScholarPubMed
Levy, WJ. Quantitative analysis of EEG changes during hypothermia. Anesthesiology. 1984;60(4):291–7.CrossRefGoogle ScholarPubMed
Horan, M, Azzopardi, D, Edwards, AD, Firmin, RK, Field, D. Lack of influence of mild hypothermia on amplitude integrated-electroencephalography in neonates receiving extracorporeal membrane oxygenation. Early Hum Dev. 2007;83(2):6975.Google Scholar
Kochs, E. Electrophysiological monitoring and mild hypothermia. J Neurosurg Anesthesiol. 1995;7(3):222–8.CrossRefGoogle ScholarPubMed
Kessler, SK, Topjian, AA, Gutierrez-Colina, AM, et al. Short-term outcome prediction by electroencephalographic features in children treated with therapeutic hypothermia after cardiac arrest. Neurocrit Care. 2011;14(1):3743.CrossRefGoogle ScholarPubMed
Veselis, RA, Reinsel, R, Marino, P, Sommer, S, Carlon, GC. The effects of midazolam on the EEG during sedation of critically ill patients. Anaesthesia. 1993;48(6):463–70.CrossRefGoogle ScholarPubMed
Tortorici, MA, Kochanek, PM, Poloyac, SM. Effects of hypothermia on drug disposition, metabolism, and response: a focus of hypothermia-mediated alterations on the cytochrome P450 enzyme system. Crit Care Med. 2007;35(9):21962204.CrossRefGoogle ScholarPubMed
Sessler, DI. Complications and treatment of mild hypothermia. Anesthesiology. 2001;95(2):531–43.CrossRefGoogle ScholarPubMed
Arpino, PA, Greer, DM. Practical pharmacologic aspects of therapeutic hypothermia after cardiac arrest. Pharmacotherapy. 2008;28(1):102–11.Google Scholar
Fritz, HG, Holzmayr, M, Walter, B, et al. The effect of mild hypothermia on plasma fentanyl concentration and biotransformation in juvenile pigs. Anesth Analg. 2005;100(4):9961002.CrossRefGoogle ScholarPubMed
Samaniego, EA, Mlynash, M, Caulfield, AF, Eyngorn, I, Wijman, CA. Sedation confounds outcome prediction in cardiac arrest survivors treated with hypothermia. Neurocrit Care. 2011;15(1):113–19.Google Scholar
Callaway, CW, Soar, J, Aibiki, M, et al. Part 4: Advanced Life Support: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Circulation. 2015;132(16 Suppl 1):S84145.Google Scholar
Kane, N, Oware, A. Somatosensory evoked potentials aid prediction after hypoxic-ischaemic brain injury. Pract Neurol. 2015;15(5):352–60.Google Scholar
Goldie, WD, Chiappa, KH, Young, RR, Brooks, EB. Brainstem auditory and short-latency somatosensory evoked responses in brain death. Neurology. 1981;31(3):248–56.Google Scholar
Trojaborg, W, Jorgensen, EO. Evoked cortical potentials in patients with “isoelectric” EEGs. Electroencephalogr Clin Neurophysiol. 1973;35(3):301–9.Google Scholar
Zegers de Beyl, D, Brunko, E. Prediction of chronic vegetative state with somatosensory evoked potentials. Neurology. 1986;36(1):134.CrossRefGoogle ScholarPubMed
Rothstein, TL. The role of evoked potentials in anoxic-ischemic coma and severe brain trauma. J Clin Neurophysiol. 2000;17(5):486–97.Google Scholar
Tiainen, M, Kovala, TT, Takkunen, OS, Roine, RO. Somatosensory and brainstem auditory evoked potentials in cardiac arrest patients treated with hypothermia. Crit Care Med. 2005;33(8):1736–40.Google Scholar
Zandbergen, EG, de Haan, RJ, Stoutenbeek, CP, Koelman, JH, Hijdra, A. Systematic review of early prediction of poor outcome in anoxic-ischaemic coma. Lancet. 1998;352(9143):1808–12.CrossRefGoogle ScholarPubMed
Zandbergen, EG, Hijdra, A, Koelman, JH, et al. Prediction of poor outcome within the first 3 days of postanoxic coma. Neurology. 2006;66(1):62–8.CrossRefGoogle ScholarPubMed
Howell, K, Grill, E, Klein, AM, Straube, A, Bender, A. Rehabilitation outcome of anoxic-ischaemic encephalopathy survivors with prolonged disorders of consciousness. Resuscitation. 2013;84(10):1409–15.Google Scholar
Leithner, C, Ploner, CJ, Hasper, D, Storm, C. Does hypothermia influence the predictive value of bilateral absent N20 after cardiac arrest? Neurology. 2010;74(12):965–9.CrossRefGoogle ScholarPubMed
Bender, A, Howell, K, Frey, M, et al. Bilateral loss of cortical SSEP responses is compatible with good outcome after cardiac arrest. J Neurol. 2012;259(11):2481–3.Google Scholar
Pfeiffer, G, Pfeifer, R, Isenmann, S. Cerebral hypoxia, missing cortical somatosensory evoked potentials and recovery of consciousness. BMC Neurol. 2014;14:82.Google Scholar
Arch, AE, Chiappa, K, Greer, DM. False positive absent somatosensory evoked potentials in cardiac arrest with therapeutic hypothermia. Resuscitation. 2014;85(6):e9798.Google Scholar
Bouwes, A, Binnekade, JM, Zandstra, DF, et al. Somatosensory evoked potentials during mild hypothermia after cardiopulmonary resuscitation. Neurology. 2009;73(18):1457–61.CrossRefGoogle ScholarPubMed
Carter, BG, Butt, W. Review of the use of somatosensory evoked potentials in the prediction of outcome after severe brain injury. Crit Care Med. 2001;29(1):178–86.CrossRefGoogle ScholarPubMed
Robinson, LR, Micklesen, PJ, Tirschwell, DL, Lew, HL. Predictive value of somatosensory evoked potentials for awakening from coma. Crit Care Med. 2003;31(3):960–7.CrossRefGoogle ScholarPubMed
Kamps, MJ, Horn, J, Oddo, M, et al. Prognostication of neurologic outcome in cardiac arrest patients after mild therapeutic hypothermia: a meta-analysis of the current literature. Intensive Care Med. 2013;39(10):1671–82.Google Scholar
Golan, E, Barrett, K, Alali, AS, et al. Predicting neurologic outcome after targeted temperature management for cardiac arrest: systematic review and meta-analysis. Crit Care Med. 2014;42(8):1919–30.CrossRefGoogle ScholarPubMed
Sandroni, C, Cavallaro, F, Callaway, CW, et al. Predictors of poor neurological outcome in adult comatose survivors of cardiac arrest: a systematic review and meta-analysis. Part 2: patients treated with therapeutic hypothermia. Resuscitation. 2013;84(10):1324–38.Google ScholarPubMed
Bouwes, A, Binnekade, JM, Kuiper, MA, et al. Prognosis of coma after therapeutic hypothermia: a prospective cohort study. Ann Neurol. 2012;71(2):206–12.CrossRefGoogle ScholarPubMed
Pfeifer, R, Weitzel, S, Gunther, A, et al. Investigation of the inter-observer variability effect on the prognostic value of somatosensory evoked potentials of the median nerve (SSEP) in cardiac arrest survivors using an SSEP classification. Resuscitation. 2013;84(10):1375–81.Google Scholar
Zandbergen, EG, Hijdra, A, de Haan, RJ, et al. Interobserver variation in the interpretation of SSEPs in anoxic-ischaemic coma. Clin Neurophysiol. 2006;117(7):1529–35.CrossRefGoogle ScholarPubMed
Jobsis, FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science. 1977;198(4323):1264–7.Google Scholar
Scheeren, TW, Schober, P, Schwarte, LA. Monitoring tissue oxygenation by near infrared spectroscopy (NIRS): background and current applications. J Clin Monit Comput. 2012;26(4):279–87.Google Scholar
Tobias, JD. Cerebral oxygenation monitoring: near-infrared spectroscopy. Expert Rev Med Devices. 2006;3(2):235–43.CrossRefGoogle ScholarPubMed
Watzman, HM, Kurth, CD, Montenegro, LM, et al. Arterial and venous contributions to near-infrared cerebral oximetry. Anesthesiology. 2000;93(4):947–53.CrossRefGoogle ScholarPubMed
Abdul-Khaliq, H, Troitzsch, D, Berger, F, Lange, PE. [Regional transcranial oximetry with near infrared spectroscopy (NIRS) in comparison with measuring oxygen saturation in the jugular bulb in infants and children for monitoring cerebral oxygenation]. Biomed Tech (Berl). 2000;45(11):328–32.Google Scholar
Nagdyman, N, Ewert, P, Peters, B, et al. Comparison of different near-infrared spectroscopic cerebral oxygenation indices with central venous and jugular venous oxygenation saturation in children. Paediatr Anaesth. 2008;18(2):160–6.CrossRefGoogle ScholarPubMed
Nagdyman, N, Fleck, T, Schubert, S, et al. Comparison between cerebral tissue oxygenation index measured by near-infrared spectroscopy and venous jugular bulb saturation in children. Intensive Care Med. 2005;31(6):846–50.Google Scholar
Bhutta, AT, Ford, JW, Parker, JG, et al. Noninvasive cerebral oximeter as a surrogate for mixed venous saturation in children. Pediatr Cardiol. 2007;28(1):3441.CrossRefGoogle ScholarPubMed
Ranucci, M, Isgro, G, De la Torre, T, et al. Near-infrared spectroscopy correlates with continuous superior vena cava oxygen saturation in pediatric cardiac surgery patients. Paediatr Anaesth. 2008;18(12):1163–9.Google Scholar
Sanfilippo, F, Serena, G, Corredor, C, et al. Cerebral oximetry and return of spontaneous circulation after cardiac arrest: a systematic review and meta-analysis. Resuscitation. 2015;94 :67–72.Google Scholar
Parnia, S, Nasir, A, Ahn, A, et al. A feasibility study of cerebral oximetry during in-hospital mechanical and manual cardiopulmonary resuscitation. Crit Care Med. 2014;42(4):930–3.Google Scholar
Genbrugge, C, Dens, J, Meex, I, et al. Regional cerebral oximetry during cardiopulmonary resuscitation: useful or useless? J Emerg Med. 2015;50(1):198207.Google Scholar
Newman, DH, Callaway, CW, Greenwald, IB, Freed, J. Cerebral oximetry in out-of-hospital cardiac arrest: standard CPR rarely provides detectable hemoglobin-oxygen saturation to the frontal cortex. Resuscitation. 2004;63(2):189–94.CrossRefGoogle ScholarPubMed
Singer, AJ, Ahn, A, Inigo-Santiago, LA, et al. Cerebral oximetry levels during CPR are associated with return of spontaneous circulation following cardiac arrest: an observational study. Emerg Med J. 2015;32(5):353–6.Google Scholar
Parnia, S, Nasir, A, Shah, C, et al. A feasibility study evaluating the role of cerebral oximetry in predicting return of spontaneous circulation in cardiac arrest. Resuscitation. 2012;83(8):982–5.CrossRefGoogle ScholarPubMed
Meex, I, De Deyne, C, Dens, J, et al. Feasibility of absolute cerebral tissue oxygen saturation during cardiopulmonary resuscitation. Crit Care. 2013;17(2):R36.Google Scholar
Ahn, A, Nasir, A, Malik, H, D’Orazi, F, Parnia, S. A pilot study examining the role of regional cerebral oxygen saturation monitoring as a marker of return of spontaneous circulation in shockable (VF/VT) and non-shockable (PEA/Asystole) causes of cardiac arrest. Resuscitation. 2013;84(12):1713–16.Google Scholar
Parnia, S, Yang, J, Nguyen, R, et al. Cerebral oximetry during cardiac arrest: a multicenter study of neurologic outcomes and survival. Crit Care Med. 2016;44(9):1663–74.Google Scholar
Ito, N, Nishiyama, K, Callaway, CW, et al. Noninvasive regional cerebral oxygen saturation for neurological prognostication of patients with out-of-hospital cardiac arrest: a prospective multicenter observational study. Resuscitation. 2014;85(6):778–84.Google Scholar
Paradis, NA, Martin, GB, Rivers, EP, et al. Coronary perfusion pressure and the return of spontaneous circulation in human cardiopulmonary resuscitation. JAMA. 1990;263(8):1106–13.Google Scholar
Yannopoulos, D, McKnite, S, Aufderheide, TP, et al. Effects of incomplete chest wall decompression during cardiopulmonary resuscitation on coronary and cerebral perfusion pressures in a porcine model of cardiac arrest. Resuscitation. 2005;64(3):363–72.CrossRefGoogle Scholar
Koyama, Y, Wada, T, Lohman, BD, et al. A new method to detect cerebral blood flow waveform in synchrony with chest compression by near-infrared spectroscopy during CPR. Am J Emerg Med. 2013;31(10):1504–8.Google Scholar
Kamarainen, A, Sainio, M, Olkkola, KT, et al. Quality controlled manual chest compressions and cerebral oxygenation during in-hospital cardiac arrest. Resuscitation. 2012;83(1):138–42.Google Scholar
Paarmann, H, Heringlake, M, Sier, H, Schon, J. The association of non-invasive cerebral and mixed venous oxygen saturation during cardiopulmonary resuscitation. Interact Cardiovasc Thorac Surg. 2010;11(3):371–3.Google Scholar
Mayr, NP, Martin, K, Kurz, J, Tassani, P. Monitoring of cerebral oxygen saturation during closed-chest and open-chest CPR. Resuscitation. 2011;82(5):635–6.Google Scholar
Martens, PR, Dhaese, HL, Van den Brande, FG, Van Laecke, SM. External cardiac massage improved cerebral tissue oxygenation shown by near-infrared spectroscopy during transcatheter aortic valve implantation. Resuscitation. 2010;81(11):1590–1.Google Scholar
Pilkington, SN, Hett, DA, Pierce, JM, Smith, DC. Auditory evoked responses and near infrared spectroscopy during cardiac arrest. Br J Anaesth. 1995;74(6):717–19.Google Scholar
Storm, C, Leithner, C, Krannich, A, et al. Regional cerebral oxygen saturation after cardiac arrest in 60 patients – a prospective outcome study. Resuscitation. 2014;85(8):1037–41.Google Scholar
Meex, I, Dens, J, Jans, F, et al. Cerebral tissue oxygen saturation during therapeutic hypothermia in post-cardiac arrest patients. Resuscitation. 2013;84(6):788–93.Google Scholar
Shum-Tim, D, Nagashima, M, Shinoka, T, et al. Postischemic hyperthermia exacerbates neurologic injury after deep hypothermic circulatory arrest. J Thorac Cardiovasc Surg. 1998;116(5):780–92.Google Scholar
Pynnonen, L, Falkenbach, P, Kamarainen, A, et al. Therapeutic hypothermia after cardiac arrest – cerebral perfusion and metabolism during upper and lower threshold normocapnia. Resuscitation. 2011;82(9):1174–9.Google Scholar
Mayr, NP, Martin, K, Hausleiter, J, Tassani, P. Measuring cerebral oxygenation helps optimizing post-resuscitation therapy. Resuscitation. 2011;82(8):1110–11.Google Scholar
Hoffman, GM, Brosig, CL, Mussatto, KA, Tweddell, JS, Ghanayem, NS. Perioperative cerebral oxygen saturation in neonates with hypoplastic left heart syndrome and childhood neurodevelopmental outcome. J Thorac Cardiovasc Surg. 2013;146(5):1153–64.Google Scholar
Deschamps, A, Lambert, J, Couture, P, et al. Reversal of decreases in cerebral saturation in high-risk cardiac surgery. J Cardiothorac Vasc Anesth. 2013;27(6):1260–16.Google Scholar
Massey, SL, Abend, NS, Gaynor, JW, et al. Electroencephalographic patterns preceding cardiac arrest in neonates following cardiac surgery. Resuscitation. 2019;144 :67–74.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×