Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T04:31:10.264Z Has data issue: false hasContentIssue false

Part III - Practice of Neuromonitoring: Pediatric Intensive Care Unit

Published online by Cambridge University Press:  08 September 2022

Cecil D. Hahn
Affiliation:
The Hospital for Sick Children, University of Toronto
Courtney J. Wusthoff
Affiliation:
Lucile Packard Children’s Hospital, Stanford University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Abend, NS, Chapman, KE, Gallentine, WB, et al. Electroencephalographic monitoring in the pediatric intensive care unit. Curr Neurol Neurosci Rep. 2013;13(3):330.CrossRefGoogle ScholarPubMed
Lothman, E. The biochemical basis and pathophysiology of status epilepticus. Neurology. 1990;40(5 Suppl 2):1323.Google Scholar
Meldrum, BS, Horton, RW. Physiology of status epilepticus in primates. Arch Neurol. 1973;28(1):19.Google Scholar
Lowenstein, DH, Bleck, T, Macdonald, RL. It’s time to revise the definition of status epilepticus. Epilepsia. 1999;40(1):120–2.CrossRefGoogle ScholarPubMed
Tsuchida, TN, Wusthoff, CJ, Shellhaas, RA, et al. American clinical neurophysiology society standardized EEG terminology and categorization for the description of continuous EEG monitoring in neonates: report of the American Clinical Neurophysiology Society critical care monitoring committee. J Clin Neurophysiol. 2013;30(2):161–73.CrossRefGoogle ScholarPubMed
Sanchez, SM, Carpenter, J, Chapman, KE, et al. Pediatric ICU EEG monitoring: current resources and practice in the United States and Canada. J Clin Neurophysiol. 2013;30(2):156–60.CrossRefGoogle ScholarPubMed
Loddenkemper, T, Goodkin, HP. Treatment of pediatric status epilepticus. Curr Treat Options Neurol. 2011;13(6):560–73.CrossRefGoogle ScholarPubMed
Chin, RF, Neville, BG, Scott, RC. A systematic review of the epidemiology of status epilepticus. Eur J Neurol. 2004;11(12):800–10.Google Scholar
DeLorenzo, RJ, Hauser, WA, Towne, AR, et al. A prospective, population-based epidemiologic study of status epilepticus in Richmond, Virginia. Neurology. 1996;46(4):1029–35.CrossRefGoogle ScholarPubMed
Hesdorffer, DC, Logroscino, G, Cascino, G, Annegers, JF, Hauser, WA. Incidence of status epilepticus in Rochester, Minnesota, 1965–1984. Neurology. 1998;50(3):735–41.CrossRefGoogle ScholarPubMed
Abend, NS, Gutierrez-Colina, AM, Topjian, AA, et al. Nonconvulsive seizures are common in critically ill children. Neurology. 2011;76(12):1071–7.Google Scholar
Hosain, SA, Solomon, GE, Kobylarz, EJ. Electroencephalographic patterns in unresponsive pediatric patients. Pediatr Neurol. 2005;32(3):162–5.CrossRefGoogle ScholarPubMed
Jette, N, Claassen, J, Emerson, RG, Hirsch, LJ. Frequency and predictors of nonconvulsive seizures during continuous electroencephalographic monitoring in critically ill children. Arch Neurol. 2006;63(12):1750–5.CrossRefGoogle ScholarPubMed
Abend, NS, Dlugos, DJ. Nonconvulsive status epilepticus in a pediatric intensive care unit. Pediatr Neurol. 2007;37(3):165–70.Google Scholar
Alehan, FK, Morton, LD, Pellock, JM. Utility of electroencephalography in the pediatric emergency department. J Child Neurol. 2001;16(7):484–7.CrossRefGoogle ScholarPubMed
Shahwan, A, Bailey, C, Shekerdemian, L, Harvey, AS. The prevalence of seizures in comatose children in the pediatric intensive care unit: a prospective video-EEG study. Epilepsia. 2010;51(7):1198–204.Google Scholar
Williams, K, Jarrar, R, Buchhalter, J. Continuous video-EEG monitoring in pediatric intensive care units. Epilepsia. 2011;52(6):1130–6.CrossRefGoogle ScholarPubMed
Kirkham, FJ, Wade, AM, McElduff, F, et al. Seizures in 204 comatose children: incidence and outcome. Intensive Care Med. 2012;38(5):853–62.CrossRefGoogle ScholarPubMed
Abend, NS, Topjian, A, Ichord, R, et al. Electroencephalographic monitoring during hypothermia after pediatric cardiac arrest. Neurology. 2009;72(22):1931–40.CrossRefGoogle ScholarPubMed
Tay, SK, Hirsch, LJ, Leary, L, et al. Nonconvulsive status epilepticus in children: clinical and EEG characteristics. Epilepsia. 2006;47(9):1504–9.Google Scholar
Greiner, HM, Holland, K, Leach, JL, et al. Nonconvulsive status epilepticus: the encephalopathic pediatric patient. Pediatrics. 2012;129(3):e748–55.Google Scholar
Saengpattrachai, M, Sharma, R, Hunjan, A, et al. Nonconvulsive seizures in the pediatric intensive care unit: etiology, EEG, and brain imaging findings. Epilepsia. 2006;47(9):1510–18.CrossRefGoogle ScholarPubMed
Topjian, AA, Gutierrez-Colina, AM, Sanchez, SM, et al. Electrographic status epilepticus is associated with mortality and worse short-term outcome in critically ill children. Crit Care Med. 2013;41(1):215–23.Google Scholar
Abend, NS. Electrographic status epilepticus in children with critical illness: epidemiology and outcome. Epilepsy Behav. 2015;49:223–7.Google Scholar
Abend, NS, Arndt, DH, Carpenter, JL, et al. Electrographic seizures in pediatric ICU patients: cohort study of risk factors and mortality. Neurology. 2013;81(4):383–91.CrossRefGoogle ScholarPubMed
Claassen, J, Mayer, SA, Kowalski, RG, Emerson, RG, Hirsch, LJ. Detection of electrographic seizures with continuous EEG monitoring in critically ill patients. Neurology. 2004;62(10):1743–8.Google Scholar
Towne, AR, Waterhouse, EJ, Boggs, JG, et al. Prevalence of nonconvulsive status epilepticus in comatose patients. Neurology. 2000;54(2):340–5.CrossRefGoogle ScholarPubMed
Sanchez Fernandez, I, Abend, NS, Arndt, DH, et al. Electrographic seizures after convulsive status epilepticus in children and young adults: a retrospective multicenter study. J Pediatr. 2014;164(2):339–46 e1-2.Google Scholar
Loddenkemper, T, Syed, TU, Ramgopal, S, et al. Risk factors associated with death in in-hospital pediatric convulsive status epilepticus. PLoS ONE. 2012;7(10):e47474.Google Scholar
Maytal, J, Shinnar, S, Moshe, SL, Alvarez, LA. Low morbidity and mortality of status epilepticus in children. Pediatrics. 1989;83(3):323–31.Google Scholar
Sanchez Fernandez, I, Abend, NS, Agadi, S, et al. Time from convulsive status epilepticus onset to anticonvulsant administration in children. Neurology. 2015;84(23):2304–11.Google Scholar
Coeytaux, A, Jallon, P, Galobardes, B, Morabia, A. Incidence of status epilepticus in French-speaking Switzerland: (EPISTAR). Neurology. 2000;55(5):693–7.CrossRefGoogle ScholarPubMed
Knake, S, Rosenow, F, Vescovi, M, et al. Incidence of status epilepticus in adults in Germany: a prospective, population-based study. Epilepsia. 2001;42(6):714–18.Google Scholar
Martinos, MM, Yoong, M, Patil, S, et al. Early developmental outcomes in children following convulsive status epilepticus: a longitudinal study. Epilepsia. 2013;54(6):1012–19.Google Scholar
Raspall-Chaure, M, Chin, RF, Neville, BG, Scott, RC. Outcome of paediatric convulsive status epilepticus: a systematic review. Lancet Neurol. 2006;5(9):769–79.CrossRefGoogle ScholarPubMed
Sahin, M, Menache, CC, Holmes, GL, Riviello, JJ. Outcome of severe refractory status epilepticus in children. Epilepsia. 2001;42(11):1461–7.CrossRefGoogle ScholarPubMed
Payne, ET, Zhao, XY, Frndova, H, et al. Seizure burden is independently associated with short term outcome in critically ill children. Brain. 2014;137(Pt 5):1429–38.Google Scholar
Schreiber, JM, Zelleke, T, Gaillard, WD, et al. Continuous video EEG for patients with acute encephalopathy in a pediatric intensive care unit. Neurocrit Care. 2012;17(1):31–8.Google Scholar
Abend, NS, Topjian, AA, Williams, S. How much does it cost to identify a critically ill child experiencing electrographic seizures? J Clin Neurophysiol. 2015;32(3):257–64.Google Scholar
Abend, NS, Dlugos, DJ, Hahn, CD, Hirsch, LJ, Herman, ST. Use of EEG monitoring and management of non-convulsive seizures in critically ill patients: a survey of neurologists. Neurocrit Care. 2010;12(3):382–9.Google Scholar
Payne, ET, Hahn, CD. Continuous electroencephalography for seizures and status epilepticus. Curr Opin Pediatr. 2014;26(6):675–81.Google Scholar
Gutierrez-Colina, AM, Topjian, AA, Dlugos, DJ, Abend, NS. Electroencephalogram monitoring in critically ill children: indications and strategies. Pediatr Neurol. 2012;46(3):158–61.Google Scholar
Brophy, GM, Bell, R, Claassen, J, et al. Guidelines for the evaluation and management of status epilepticus. Neurocrit Care. 2012;17(1):323.CrossRefGoogle ScholarPubMed
Herman, ST, Abend, NS, Bleck, TP, et al. Consensus statement on continuous EEG in critically ill adults and children, part II: personnel, technical specifications, and clinical practice. J Clin Neurophysiol. 2015;32(2):96108.Google Scholar
Pensirikul, AD, Beslow, LA, Kessler, SK, et al. Density spectral array for seizure identification in critically ill children. J Clin Neurophysiol. 2013;30(4):371–5.Google Scholar
Stewart, CP, Otsubo, H, Ochi, A, et al. Seizure identification in the ICU using quantitative EEG displays. Neurology. 2010;75(17):1501–8.CrossRefGoogle ScholarPubMed
Shah, DK, Mackay, MT, Lavery, S, et al. Accuracy of bedside electroencephalographic monitoring in comparison with simultaneous continuous conventional electroencephalography for seizure detection in term infants. Pediatrics. 2008;121(6):1146–54.Google Scholar
Shellhaas, RA, Chang, T, Tsuchida, T, et al. The American Clinical Neurophysiology Society’s Guideline on Continuous Electroencephalography Monitoring in Neonates. J Clin Neurophysiol. 2011;28(6):611–17.Google Scholar
Hirsch, LJ, LaRoche, SM, Gaspard, N, et al. American Clinical Neurophysiology Society’s Standardized Critical Care EEG Terminology: 2012 version. J Clin Neurophysiol. 2013;30(1):127.Google Scholar
Chong, DJ, Hirsch, LJ. Which EEG patterns warrant treatment in the critically ill? Reviewing the evidence for treatment of periodic epileptiform discharges and related patterns. J Clin Neurophysiol. 2005;22(2):7991.CrossRefGoogle ScholarPubMed
Ronner, HE, Ponten, SC, Stam, CJ, Uitdehaag, BM. Inter-observer variability of the EEG diagnosis of seizures in comatose patients. Seizure. 2009;18(4):257–63.Google Scholar
Brenner, RP, Schaul, N. Periodic EEG patterns: classification, clinical correlation, and pathophysiology. J Clin Neurophysiol. 1990;7(2):249–67.Google Scholar
Garzon, E, Fernandes, RM, Sakamoto, AC. Serial EEG during human status epilepticus: evidence for PLED as an ictal pattern. Neurology. 2001;57(7):1175–83.Google Scholar
Treiman, DM, Walton, NY, Kendrick, C. A progressive sequence of electroencephalographic changes during generalized convulsive status epilepticus. Epilepsy Res. 1990;5(1):4960.Google Scholar
Yemisci, M, Gurer, G, Saygi, S, Ciger, A. Generalised periodic epileptiform discharges: clinical features, neuroradiological evaluation and prognosis in 37 adult patients. Seizure. 2003;12(7):465–72.Google Scholar
Garcia-Morales, I, Garcia, MT, Galan-Davila, L, et al. Periodic lateralized epileptiform discharges: etiology, clinical aspects, seizures, and evolution in 130 patients. J Clin Neurophysiol. 2002;19(2):172–7.Google Scholar
Brenner, RP. Is it status? Epilepsia. 2002;43 (Suppl 3):103–13.Google Scholar
Fushimi, M, Matsubuchi, N, Sekine, A, Shimizu, T. Benign bilateral independent periodic lateralized epileptiform discharges. Acta Neurol Scand. 2003;108(1):55–9.CrossRefGoogle ScholarPubMed
Koren, JP, Herta, J, Pirker, S, et al. Rhythmic and periodic EEG patterns of “ictal-interictal uncertainty” in critically ill neurological patients. Clin Neurophysiol. 2016;127(2):1176–81.Google Scholar
Claassen, J. How, I treat patients with EEG patterns on the ictal-interictal continuum in the neuro ICU. Neurocrit Care. 2009;11(3):437–44.CrossRefGoogle ScholarPubMed
Wilkes, R, Tasker, RC. Pediatric intensive care treatment of uncontrolled status epilepticus. Crit Care Clin. 2013;29(2):239–57.Google Scholar
Glauser, T, Shinnar, S, Gloss, D, et al. Evidence-based guideline: treatment of convulsive status epilepticus in children and adults: report of the Guideline Committee of the American Epilepsy Society. Epilepsy Curr. 2016;16(1):4861.Google Scholar
Abend, NS, Loddenkemper, T. Pediatric status epilepticus management. Curr Opin Pediatr. 2014;26(6):668–74.CrossRefGoogle ScholarPubMed
Chin, RF, Neville, BG, Peckham, C, et al. Wade, A, Bedford, H, Scott, RC. Treatment of community-onset, childhood convulsive status epilepticus: a prospective, population-based study. Lancet Neurol. 2008;7(8):696703.Google Scholar
Alldredge, BK, Gelb, AM, Isaacs, SM, et al. A comparison of lorazepam, diazepam, and placebo for the treatment of out-of-hospital status epilepticus. N Engl J Med. 2001;345(9):631–7.CrossRefGoogle ScholarPubMed
Appleton, R, Macleod, S, Martland, T. Drug management for acute tonic-clonic convulsions including convulsive status epilepticus in children. Cochrane Database Syst Rev. 2008(3):CD001905.Google ScholarPubMed
Sathe, AG, Tillman, H, Coles, LD, et al. Underdosing of benzodiazepines in patients with status epilepticus enrolled in established status epilepticus treatment trial. Acad Emerg Med. 2019;26(8):940–3.Google Scholar
Chin, RF, Verhulst, L, Neville, BG, Peters, MJ, Scott, RC. Inappropriate emergency management of status epilepticus in children contributes to need for intensive care. J Neurol Neurosurg Psychiatry. 2004;75(11):1584–8.Google Scholar
Chamberlain, JM, Kapur, J, Shinnar, S, et al. Efficacy of levetiracetam, fosphenytoin, and valproate for established status epilepticus by age group (ESETT): a double-blind, responsive-adaptive, randomised controlled trial. Lancet. 2020;395(10231):1217–24.Google Scholar
Dalziel, SR, Borland, ML, Furyk, J, et al. Levetiracetam versus phenytoin for second-line treatment of convulsive status epilepticus in children (ConSEPT): an open-label, multicentre, randomised controlled trial. Lancet. 2019;393(10186):2125–34.Google Scholar
Lyttle, MD, Rainford, NEA, Gamble, C, et al. Levetiracetam versus phenytoin for second-line treatment of paediatric convulsive status epilepticus (EcLiPSE): a multicentre, open-label, randomised trial. Lancet. 2019; 393(10186):2135–45.Google Scholar
Agarwal, P, Kumar, N, Chandra, R, et al. Randomized study of intravenous valproate and phenytoin in status epilepticus. Seizure. 2007;16(6):527–32.Google Scholar
Malamiri, RA, Ghaempanah, M, Khosroshahi, N, et al. Efficacy and safety of intravenous sodium valproate versus phenobarbital in controlling convulsive status epilepticus and acute prolonged convulsive seizures in children: a randomised trial. Eur J Paediatr Neurol. 2012;16(5):536–41.Google Scholar
Alvarez, V, Januel, JM, Burnand, B, Rossetti, AO. Second-line status epilepticus treatment: comparison of phenytoin, valproate, and levetiracetam. Epilepsia. 2011;52(7):1292–6.Google Scholar
Misra, UK, Kalita, J, Patel, R. Sodium valproate vs phenytoin in status epilepticus: a pilot study. Neurology. 2006;67(2):340–2.Google Scholar
Goodkin, HP, Yeh, JL, Kapur, J. Status epilepticus increases the intracellular accumulation of GABAA receptors. J Neurosci. 2005;25(23):5511–20.Google Scholar
Naylor, DE, Liu, H, Wasterlain, CG. Trafficking of GABA(A) receptors, loss of inhibition, and a mechanism for pharmacoresistance in status epilepticus. J Neurosci. 2005;25(34):7724–33.CrossRefGoogle Scholar
Naylor, DE, Liu, H, Niquet, J, Wasterlain, CG. Rapid surface accumulation of NMDA receptors increases glutamatergic excitation during status epilepticus. Neurobiol Dis. 2013;54:225–38.Google Scholar
Mazarati, AM, Baldwin, RA, Sankar, R, Wasterlain, CG. Time-dependent decrease in the effectiveness of antiepileptic drugs during the course of self-sustaining status epilepticus. Brain Res. 1998;814(1–2):179–85.Google Scholar
Goodkin, HP, Liu, X, Holmes, GL. Diazepam terminates brief but not prolonged seizures in young, naive rats. Epilepsia. 2003;44(8):1109–12.Google Scholar
Eriksson, K, Kalviainen, R. Pharmacologic management of convulsive status epilepticus in childhood. Expert Rev Neurother. 2005;5(6):777–83.CrossRefGoogle ScholarPubMed
DeLorenzo, RJ, Garnett, LK, Towne, AR, et al. Comparison of status epilepticus with prolonged seizure episodes lasting from 10 to 29 minutes. Epilepsia. 1999;40(2):164–9.Google Scholar
Logroscino, G, Hesdorffer, DC, Cascino, GD, et al. Long-term mortality after a first episode of status epilepticus. Neurology. 2002;58(4):537–41.CrossRefGoogle ScholarPubMed
Sanchez Fernandez, I, Gainza-Lein, M, Abend, NS, et al. Factors associated with treatment delays in pediatric refractory convulsive status epilepticus. Neurology. 2018;90(19):e1692-e701.CrossRefGoogle ScholarPubMed
Lowenstein, DH, Alldredge, BK. Status epilepticus at an urban public hospital in the 1980s. Neurology. 1993; 43 (3 Pt 1): 483–8.Google Scholar
Sutter, R, Kaplan, PW, Ruegg, S. Outcome predictors for status epilepticus–what really counts. Nat Rev Neurol. 2013;9(9):525–34.Google Scholar
Sanchez Fernandez, I, Abend, NS, Agadi, S, et al. Gaps and opportunities in refractory status epilepticus research in children: a multi-center approach by the Pediatric Status Epilepticus Research Group (pSERG). Seizure. 2014;23(2):8797.Google Scholar
Rossetti, AO, Lowenstein, DH. Management of refractory status epilepticus in adults: still more questions than answers. Lancet Neurol. 2011;10(10):922–30.Google Scholar
Koul, R, Chacko, A, Javed, H, Al Riyami, K. Eight-year study of childhood status epilepticus: midazolam infusion in management and outcome. J Child Neurol. 2002;17(12):908–10.Google Scholar
Lambrechtsen, FA, Buchhalter, JR. Aborted and refractory status epilepticus in children: a comparative analysis. Epilepsia. 2008;49(4):615–25.Google Scholar
Lewena, S, Pennington, V, Acworth, J, et al. Emergency management of pediatric convulsive status epilepticus: a multicenter study of 542 patients. Pediatr Emerg Care. 2009;25(2):83–7.Google Scholar
Zaw, W, Knoppert, DC, da Silva, O. Flumazenil’s reversal of myoclonic-like movements associated with midazolam in term newborns. Pharmacotherapy. 2001;21(5):642–6.CrossRefGoogle ScholarPubMed
Meierkord, H, Boon, P, Engelsen, B, et al. EFNS guideline on the management of status epilepticus in adults. Eur J Neurol. 2010;17(3):348–55.Google Scholar
Krishnamurthy, KB, Drislane, FW. Depth of EEG suppression and outcome in barbiturate anesthetic treatment for refractory status epilepticus. Epilepsia. 1999;40(6):759–62.Google Scholar
Claassen, J, Hirsch, LJ, Emerson, RG, Mayer, SA. Treatment of refractory status epilepticus with pentobarbital, propofol, or midazolam: a systematic review. Epilepsia. 2002;43(2):146–53.Google Scholar
Kang, BS, Jung, KH, Shin, JW, et al. Induction of burst suppression or coma using intravenous anesthetics in refractory status epilepticus. J Clin Neurosci. 2015;22(5):854–8.Google Scholar
Hocker, SE, Britton, JW, Mandrekar, JN, Wijdicks, EF, Rabinstein, AA. Predictors of outcome in refractory status epilepticus. JAMA Neurol. 2013;70(1):72–7.Google Scholar
Friedman, D, Claassen, J, Hirsch, LJ. Continuous electroencephalogram monitoring in the intensive care unit. Anesth Analg. 2009;109(2):506–23.Google Scholar
Ferlisi, M, Shorvon, S. The outcome of therapies in refractory and super-refractory convulsive status epilepticus and recommendations for therapy. Brain. 2012;135(Pt 8):2314–28.Google Scholar
Gaspard, N, Foreman, B, Judd, LM, et al. Intravenous ketamine for the treatment of refractory status epilepticus: a retrospective multicenter study. Epilepsia. 2013;54(8):1498–503.Google Scholar
Nabbout, R, Mazzuca, M, Hubert, P, et al. Efficacy of ketogenic diet in severe refractory status epilepticus initiating fever induced refractory epileptic encephalopathy in school age children (FIRES). Epilepsia. 2010;51(10):2033–7.CrossRefGoogle ScholarPubMed
Fung, EL, Chang, SK, Yam, KK, Yau, PY. Ketogenic diet as a therapeutic option in super-refractory status epilepticus. Pediatrics and Neonatol. 2015;56(6):429–31.Google Scholar
Corry, JJ, Dhar, R, Murphy, T, Diringer, MN. Hypothermia for refractory status epilepticus. Neurocrit Care. 2008;9(2):189–97.Google Scholar
Lin, JJ, Lin, KL, Hsia, SH, Wang, HS. Therapeutic hypothermia for febrile infection-related epilepsy syndrome in two patients. Pediatr Neurol. 2012;47(6):448–50.CrossRefGoogle ScholarPubMed
Vendrame, M, Loddenkemper, T. Surgical treatment of refractory status epilepticus in children: candidate selection and outcome. Semin Pediatr Neurol. 2010;17(3):182–9.Google Scholar
Greiner, HM, Tillema, JM, Hallinan, BE, et al. Corpus callosotomy for treatment of pediatric refractory status epilepticus. Seizure. 2012;21(4):307–9.Google Scholar
Petit-Pedrol, M, Armangue, T, Peng, X, et al. Encephalitis with refractory seizures, status epilepticus, and antibodies to the GABAA receptor: a case series, characterisation of the antigen, and analysis of the effects of antibodies. Lancet Neurol. 2014;13(3):276–86.Google Scholar
Suleiman, J, Brilot, F, Lang, B, Vincent, A, Dale, RC. Autoimmune epilepsy in children: case series and proposed guidelines for identification. Epilepsia. 2013;54(6):1036–45.Google Scholar
Abend, NS, Wusthoff, CJ, Goldberg, EM, Dlugos, DJ. Electrographic seizures and status epilepticus in critically ill children and neonates with encephalopathy. Lancet Neurol. 2013;12(12):1170–9.Google Scholar

References

Bell, MJ, Carpenter, J, Au, AK, et al. Development of a pediatric neurocritical care service. Neurocriti Care. 2009;10(1):410.Google Scholar
Jette, N, Claassen, J, Emerson, RG, Hirsch, LJ. Frequency and predictors of nonconvulsive seizures during continuous electroencephalographic monitoring in critically ill children. Arch Neurol. 2006;63(12):1750–5.Google Scholar
Abend, NS, Gutierrez-Colina, AM, Topjian, AA, et al. Nonconvulsive seizures are common in critically ill children. Neurology. 2011;76(12):1071–7.Google Scholar
Schreiber, JM, Zelleke, T, Gaillard, WD, et al. Continuous video EEG for patients with acute encephalopathy in a pediatric intensive care unit. Neurocrit Care, 2012;17(1):31–8.Google Scholar
Abend, NS, Arndt, DH, Carpenter, JL, et al. Electrographic seizures in pediatric ICU patients: cohort study of risk factors and mortality. Neurology. 2013;81(4):383–91.CrossRefGoogle ScholarPubMed
Payne, ET, Zhao, XY, Frndova, H, et al. Seizure burden is independently associated with short term outcome in critically ill children. Brain. 2014;137(Pt 5):1429–38.Google Scholar
Shahwan, A, Bailey, C, Shekerdemian, L, Harvey, AS. The prevalence of seizures in comatose children in the pediatric intensive care unit: a prospective video-EEG study. Epilepsia 2010;51(7):11981204.Google Scholar
Kirkham, FJ, Wade, AM, McElduff, F, et al. Seizures in 204 comatose children: incidence and outcome. Intensive Care Med. 2012;38(5):853–62.Google Scholar
McCoy, B, Sharma, R, Ochi, A, et al. Predictors of nonconvulsive seizures among critically ill children. Epilepsia. 2011;52(11):1973–8.Google Scholar
Williams, K, Jarrar, R, Buchhalter, J. Continuous video-EEG monitoring in pediatric intensive care units. Epilepsia. 2011;52(6):1130–6.Google Scholar
Payne, ET, Hahn, CD. Continuous electroencephalography for seizures and status epilepticus. Current Opin Pediatr. 2014;26(6):675–81.Google Scholar
Bellinger, DC, Wypij, D, Rivkin, MJ, et al. Adolescents with d-transposition of the great arteries corrected with the arterial switch procedure: neuropsychological assessment and structural brain imaging. Circulation. 2011;124(12):1361–9.Google Scholar
Gaynor, JW, Jarvik, GP, Gerdes, M, et al. Postoperative electroencephalographic seizures are associated with deficits in executive function and social behaviors at 4 years of age following cardiac surgery in infancy. J Thorac Cardiovasc Surg. 2013;146(1):132–7.Google Scholar
Topjian, AA, Gutierrez-Colina, AM, Sanchez, SM, et al. Electrographic status epilepticus is associated with mortality and worse short-term outcome in critically ill children. Crit Care Med. 2013;41(1):215–23.Google Scholar
Wagenman, KL, Blake, TP, Sanchez, SM, et al. Electrographic status epilepticus and long-term outcome in critically ill children. Neurology. 2014;82(5):396404.CrossRefGoogle ScholarPubMed
Srinivasakumar, P, Zempel, J, Trivedi, S, et al. Treating EEG seizures in hypoxic ischemic encephalopathy: a randomized controlled trial. Pediatrics. 2015;136(5):e1302–9.Google Scholar
Malone, A, Ryan, CA, Fitzgerald, A, et al. Interobserver agreement in neonatal seizure identification. Epilepsia. 2009;50(9):20972101.CrossRefGoogle ScholarPubMed
Payne, ET, McBain, K, Sharma, R, et al. Ability of ICU bedside caregivers to predict seizures among children who undergo continuous EEG monitoring. Ann Neurol. 2016;80(suppl 20):s316.Google Scholar
Dang, LT, Shellhaas, RA. Diagnostic yield of continuous video electroencephalography for paroxysmal vital sign changes in pediatric patients. Epilepsia. 2016;57(2):272–8.Google Scholar
Barberio, M, Reiter, PD, Kaufman, J, Knupp, K, Dobyns, EL. Continuous infusion pentobarbital for refractory status epilepticus in children. J Child Neurol.2012;27(6):721–6.CrossRefGoogle ScholarPubMed
Greiner, HM, Holland, K, Leach, JL, et al. Nonconvulsive status epilepticus: the encephalopathic pediatric patient. Pediatrics. 2012;129(3):e748–55.Google Scholar
Holmes, GL. The long-term effects of neonatal seizures. Clin Perinatol. 2009;36(4):901–14, vii–viii.CrossRefGoogle ScholarPubMed
Payne, E, McBain, K, Hutchison, JS, et al. Detecting seizures among comatose children: interim results. J Clin Neurophysiol. 2013;226.Google Scholar
Westover, MB, Shafi, MM, Bianchi, MT, et al. The probability of seizures during EEG monitoring in critically ill adults. Clin Neurophysiol. 2015;126(3):463–71.Google Scholar
Shafi, MM, Westover, MB, Cole, AJ, et al. Absence of early epileptiform abnormalities predicts lack of seizures on continuous EEG. Neurology. 2012;79(17):17961801.Google Scholar
Sanchez, SM, Arndt, DH, Carpenter, JL, et al. Electroencephalography monitoring in critically ill children: current practice and implications for future study design. Epilepsia. 2013;54(8):1419–27.Google Scholar
DeLorenzo, RJ, Waterhouse, EJ, Towne, AR, et al. Persistent nonconvulsive status epilepticus after the control of convulsive status epilepticus. Epilepsia. 1998;39(8):833–40.Google Scholar
Sanchez Fernandez, I, Abend, NS, Arndt, DH, et al. Electrographic seizures after convulsive status epilepticus in children and young adults: a retrospective multicenter study. J Pediatr. 2014;164(2):339–46 e331–2.CrossRefGoogle Scholar
Arndt, DH, Lerner, JT, Matsumoto, JH, et al. Subclinical early posttraumatic seizures detected by continuous EEG monitoring in a consecutive pediatric cohort. Epilepsia. 2013;54(10):1780–8.Google Scholar
O’Neill, BR, Handler, MH, Tong, S, Chapman, KE. Incidence of seizures on continuous EEG monitoring following traumatic brain injury in children. J Neurosurg. Pediatrics. 2015;16(2):167–76.Google Scholar
Moreau, JF, Fink, EL, Hartman, ME, et al. Hospitalizations of children with neurologic disorders in the United States. Pediatr Crit Care Med. 2013;14(8):801–10.CrossRefGoogle ScholarPubMed
Chiaretti, A, De Benedictis, R, Polidori, G, et al. Early post-traumatic seizures in children with head injury. Childs Nerv Syst. 2000;16(12):862–6.Google Scholar
Hahn, YS, Fuchs, S, Flannery, AM, Barthel, MJ, McLone, DG. Factors influencing posttraumatic seizures in children. Neurosurgery. 1988;22(5):864–7.Google Scholar
Arango, JI, Deibert, CP, Brown, D, et al. Posttraumatic seizures in children with severe traumatic brain injury. Childs Nerv Syst. 2012;28(11):1925–9.Google Scholar
Liesemer, K, Bratton, SL, Zebrack, CM, Brockmeyer, D, Statler, KD. Early post-traumatic seizures in moderate to severe pediatric traumatic brain injury: rates, risk factors, and clinical features. J Neurotrauma. 2011;28(5):755–62.Google Scholar
Hasbani, DM, Topjian, AA, Friess, SH, et al. Nonconvulsive electrographic seizures are common in children with abusive head trauma. Pediatr Crit Care Med. 2013;14(7):709–15.Google Scholar
Vespa, PM, Miller, C, McArthur, D, et al. Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis. Crit Care Med. 2007;35(12):2830–6.Google Scholar
Gallentine, WB. Utility of continuous EEG in children with acute traumatic brain injury. J Clin. Neurophysiol. 2013 30(2):126–33.Google Scholar
Abend, NS, Beslow, LA, Smith, SE, et al. Seizures as a presenting symptom of acute arterial ischemic stroke in childhood. J Pediatr. 2011;159(3):479–83.Google Scholar
Singh, RK, Zecavati, N, Singh, J, et al. Seizures in acute childhood stroke. J Pediatr. 2012;160(2):291–6.CrossRefGoogle ScholarPubMed
Payne, E, Yau, I, Frndova, H, et al. Prevalence of acute seizures and subsequent epilepsy among critically-ill children with acute ischemic stroke. Ann Neurol. 2016;S337.Google Scholar
Beslow, LA, Abend, NS, Gindville, MC, et al. Pediatric intracerebral hemorrhage: acute symptomatic seizures and epilepsy. JAMA Neurol. 2013;70(4):448–54.Google Scholar
Yang, JS, Park, YD, Hartlage, PL. Seizures associated with stroke in childhood. Pediatr Neurol.1995;12(2):136–8.Google Scholar
Lee, JC, Lin, KL, Wang, HS, et al. Seizures in childhood ischemic stroke in Taiwan. Brain Dev. 2009;31(4):294–9.Google Scholar
Zimmer, JA, Garg, BP, Williams, LS, Golomb, MR. Age-related variation in presenting signs of childhood arterial ischemic stroke. Pediatr Neurol. 2007;37(3):171–5.Google Scholar
Chang, CJ, Chang, HW, Chang, WN, et al. Seizures complicating infantile and childhood bacterial meningitis. Pediatr Neurol. 2004;31(3):165–71.Google Scholar
Gold, JJ, Crawford, JR, Glaser, C, et al. The role of continuous electroencephalography in childhood encephalitis. Pediatr Neurol. 2014;50(4):318–23.CrossRefGoogle ScholarPubMed
Carrera, E, Claassen, J, Oddo, M, et al. Continuous electroencephalographic monitoring in critically ill patients with central nervous system infections. Arch Neurol. 2008;65(12):1612–18.Google Scholar
Fujita, K, Nagase, H, Nakagawa, T, et al. Non-convulsive seizures in children with infection-related altered mental status. Pediatr Int. 2015;57(4):659–64.CrossRefGoogle ScholarPubMed
Florance, NR, Davis, RL, Lam, C, et al. Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis in children and adolescents. Ann Neurol.2009;66(1):1118.Google Scholar
Sands, TT, Nash, K, Tong, S, Sullivan, J. Focal seizures in children with anti-NMDA receptor antibody encephalitis. Epilepsy Res. 2015;112 :31–6.Google Scholar
Schmitt, SE, Pargeon, K, Frechette, ES, et al. Extreme delta brush: a unique EEG pattern in adults with anti-NMDA receptor encephalitis. Neurology. 2012;79(11):10941100.Google Scholar
Tenembaum, S, Chamoles, N, Fejerman, N. Acute disseminated encephalomyelitis: a long-term follow-up study of 84 pediatric patients. Neurology. 2002;59(8):1224–31.Google Scholar
Fridinger, SE, Alper, G. Defining encephalopathy in acute disseminated encephalomyelitis. J Child Neurol. 2014;29(6):751–5.Google Scholar
Payne, ET, Rutka, JT, Ho, TK, Halliday, WC, Banwell, BL. Treatment leading to dramatic recovery in acute hemorrhagic leukoencephalitis. J Child Neurol. 2007;22(1):109–13.Google Scholar
Bellinger, DC, Jonas, RA, Rappaport, LA, et al. Developmental and neurologic status of children after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. N Eng J Med. 1995;332(9):549–55.Google Scholar
Clancy, RR, Sharif, U, Ichord, R, et al. Electrographic neonatal seizures after infant heart surgery. Epilepsia. 2005;46(1):8490.Google Scholar
Andropoulos, DB, Mizrahi, EM, Hrachovy, RA, et al. Electroencephalographic seizures after neonatal cardiac surgery with high-flow cardiopulmonary bypass. Anesth Analg. 2010;110(6):1680–5.Google Scholar
Latal, B, Wohlrab, G, Brotschi, B, et al. Postoperative amplitude-integrated electroencephalography predicts four-year neurodevelopmental outcome in children with complex congenital heart disease. J Pediatr. 2016;178:55–60 e51.Google Scholar
Piantino, JA, Wainwright, MS, Grimason, M, et al. Nonconvulsive seizures are common in children treated with extracorporeal cardiac life support. Pediatr Crit Care Med. 2013;14(6):601–9.Google Scholar
Abend, NS, Topjian, A, Ichord, R, et al. Electroencephalographic monitoring during hypothermia after pediatric cardiac arrest. Neurology. 2009;72(22):1931–40.Google Scholar
Abend, NS, Dlugos, DJ, Clancy, RR. A review of long-term EEG monitoring in critically ill children with hypoxic-ischemic encephalopathy, congenital heart disease, ECMO, and stroke. J Clin Neurophysiol. 2013;30(2):134–42.CrossRefGoogle ScholarPubMed
Chen, TH, Lin, WC, Tseng, YH, et al. Posterior reversible encephalopathy syndrome in children: case series and systematic review. J Child Neurol. 2013;28(11):1378–86.Google Scholar
Cordelli, DM, Masetti, R, Ricci, E, et al. Life-threatening complications of posterior reversible encephalopathy syndrome in children. Eur J Paediatri Neurol. 2014;18(5):632–40.Google ScholarPubMed
Oddo, M, Carrera, E, Claassen, J, Mayer, SA, Hirsch, LJ. Continuous electroencephalography in the medical intensive care unit. Crit Care Med. 2009;37(6):2051–6.Google Scholar
Press, C, Morgan, L, Mills, M, et al. Spectral electroencephalogram analysis for the evaluation of encephalopathy grade in children with acute liver failure. Pediatr Criti Care Med. 2017;18(1):6472.Google Scholar
Finkelstein, Y, Hutson, JR, Freedman, SB, Wax, P, Brent, J, Toxicology Investigators Consortium Case R. Drug-induced seizures in children and adolescents presenting for emergency care: current and emerging trends. Clin Toxicol. 2013;51(8):761–6.Google Scholar
Brophy, GM, Bell, R, Claassen, J, et al. Guidelines for the evaluation and management of status epilepticus. Neurocrit Care. 2012;17(1):323.Google Scholar
Sanchez, SM, Carpenter, J, Chapman, KE, et al. Pediatric ICU EEG monitoring: current resources and practice in the United States and Canada. J Clin Neurophysiol. 2013;30(2):156–60.Google Scholar

References

Bolay, H, Reuter, U, Dunn, AK, et al. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med. 2002 Feb;8(2):136–42.Google Scholar
Hofmeijer, J, van Putten, MJ. Ischemic cerebral damage: an appraisal of synaptic failure. Stroke. 2012 Feb;43(2):607–15.Google Scholar
Tjepkema-Cloostermans, MC, Hindriks, R, Hofmeijer, J, van Putten, MJ. Generalized periodic discharges after acute cerebral ischemia: reflection of selective synaptic failure? Clin Neurophysiol. 2014 Feb;125(2):255–62.Google Scholar
Paz, JT, Huguenard, JR. Microcircuits and their interactions in epilepsy: is the focus out of focus? Nat Neurosci. 2015 Mar;18(3):351–9.Google Scholar
van Putten, MJ, Tavy, DL. Continuous quantitative EEG monitoring in hemispheric stroke patients using the brain symmetry index. Stroke. 2004 Nov;35(11):2489–92.CrossRefGoogle ScholarPubMed
Berenyi, A, Belluscio, M, Mao, D, Buzsaki, G. Closed-loop control of epilepsy by transcranial electrical stimulation. Science. 2012 Aug 10;337(6095):735–7.Google Scholar
Astrup, J, Siesjo, BK, Symon, L. Thresholds in cerebral ischemia – the ischemic penumbra. Stroke. 1981 Nov-Dec;12(6):723–5.Google Scholar
Boysen, G, Ladegaard-Pedersen, HJ, Henriksen, H, et al. The effects of PaCO2 on regional cerebral blood flow and internal carotid arterial pressure during carotid clamping. Anesthesiology. 1971 Sep;35(3):286300.Google Scholar
Hossmann, KA. Viability thresholds and the penumbra of focal ischemia. Ann Neurol. 1994 Oct;36(4):557–65.CrossRefGoogle ScholarPubMed
Ingvar, DH, Sjolund, B, Ardo, A. Correlation between dominant EEG frequency, cerebral oxygen uptake and blood flow. Electroencephalogr Clin Neurophysiol. 1976 Sep;41(3):268–76.Google Scholar
Nagata, K. Topographic EEG mapping in cerebrovascular disease. Brain Topogr. 1989 Fall-Winter;2(1-2):119–28.Google Scholar
Sharbrough, FW, Messick, JM, Jr., Sundt, TM, Jr. Correlation of continuous electroencephalograms with cerebral blood flow measurements during carotid endarterectomy. Stroke. 1973 Jul-Aug;4(4):674–83.Google Scholar
Sundt, TM, Jr., Sharbrough, FW, Piepgras, DG, et al. Correlation of cerebral blood flow and electroencephalographic changes during carotid endarterectomy: with results of surgery and hemodynamics of cerebral ischemia. Mayo Clin Proc. 1981 Sep;56(9):533–43.Google Scholar
Trojaborg, W, Boysen, G. Relation between EEG, regional cerebral blood flow and internal carotid artery pressure during carotid endarterectomy. Electroencephalogr Clin Neurophysiol. 1973 Jan;34(1):61–9.Google Scholar
Labar, DR, Fisch, BJ, Pedley, TA, Fink, ME, Solomon, RA. Quantitative EEG monitoring for patients with subarachnoid hemorrhage. Electroencephalogr Clin Neurophysiol. 1991 May;78(5):325–32.Google Scholar
Vespa, PM, Nuwer, MR, Juhasz, C, et al. Early detection of vasospasm after acute subarachnoid hemorrhage using continuous EEG ICU monitoring. Electroencephalogr Clin Neurophysiol. 1997 Dec;103(6):607–15.Google Scholar
Miller, CM, Palestrant, D. Distribution of delayed ischemic neurological deficits after aneurysmal subarachnoid hemorrhage and implications for regional neuromonitoring. Clinical Neurol Neurosurg. 2012 Jul;114(6):545–9.Google Scholar
Kohno, K, Ohta, S, Kohno, K, et al. Early detection of cerebral ischemic lesion using diffusion-weighted MRI. J Comput Assist Tomogr. 1995 Nov-Dec;19(6):982–6.Google Scholar
Friedman, D, Claassen, J, Hirsch, LJ. Continuous electroencephalogram monitoring in the intensive care unit. Anesth Analg. 2009 Aug;109(2):506–23.Google Scholar
Schmidt, JM, Wartenberg, KE, Fernandez, A, et al. Frequency and clinical impact of asymptomatic cerebral infarction due to vasospasm after subarachnoid hemorrhage. J Neurosurg. 2008 Dec;109(6):1052–9.Google Scholar
Hopfengartner, R, Kerling, F, Bauer, V, Stefan, H. An efficient, robust and fast method for the offline detection of epileptic seizures in long-term scalp EEG recordings. Clin Neurophysiol. 2007 Nov;118(11):2332–43.Google Scholar
Claassen, J, Hirsch, LJ, Kreiter, KT, et al. Quantitative continuous EEG for detecting delayed cerebral ischemia in patients with poor-grade subarachnoid hemorrhage. Clin Neurophysiol. 2004 Dec;115(12):26992710.Google Scholar
Stuart, RM, Schmidt, M, Kurtz, P, et al. Intracranial multimodal monitoring for acute brain injury: a single institution review of current practices. Neurocrit Care. 2010 Apr;12(2):188–98.Google Scholar
Vespa, PM. Acute presentation and early intensive care of acute aneurysmal subarachnoid hemorrhage. J Stroke Cerebrovasc Dis. 1997 Apr-May;6(4):230–4.Google Scholar
Machado, C, Cuspineda, E, Valdes, P, et al. Assessing acute middle cerebral artery ischemic stroke by quantitative electric tomography. Clin EEG Neurosci. 2004 Jul;35(3):116–24.Google Scholar
Sheorajpanday, RV, Nagels, G, Weeren, AJ, van Putten, MJ, De Deyn, PP. Quantitative EEG in ischemic stroke: correlation with functional status after 6 months. Clin Neurophysiol. 2011 May;122(5):874–83.Google Scholar
Finnigan, SP, Rose, SE, Walsh, M, et al. Correlation of quantitative EEG in acute ischemic stroke with 30-day NIHSS score: comparison with diffusion and perfusion MRI. Stroke. 2004 Apr;35(4):899903.Google Scholar
Foreman, B, Claassen, J. Quantitative EEG for the detection of brain ischemia. Crit Care. 2012;16(2):216.Google Scholar
Rungta, RL, Choi, HB, Tyson, JR, et al. The cellular mechanisms of neuronal swelling underlying cytotoxic edema. Cell. 2015 Apr 23;161(3):610–21.Google Scholar
Stokum, JA, Gerzanich, V, Simard, JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab. 2016 Mar;36(3):513–38.Google Scholar
Zandt, BJ, ten Haken, B, van Dijk, JG, van Putten, MJ. Neural dynamics during anoxia and the “wave of death.PLoS ONE. 2011;6(7):e22127.Google Scholar
Young, GB, Campbell, VC. EEG monitoring in the intensive care unit: pitfalls and caveats. J Clin Neurophysiol. 1999 Jan;16(1):40–5.Google Scholar
MacKay, EC, Sleigh, JW, Voss, LJ, Barnard, JP. Episodic waveforms in the electroencephalogram during general anaesthesia: a study of patterns of response to noxious stimuli. Anaesth Intensive Care. 2010 Jan;38(1):102–12.Google Scholar
Leduc, ML, Atherley, R, Jinks, SL, Antognini, JF. Nitrous oxide depresses electroencephalographic responses to repetitive noxious stimulation in the rat. Br J Anaesth. 2006 Feb;96(2):216–21.Google Scholar
Antognini, JF, Carstens, E, Sudo, M, Sudo, S. Isoflurane depresses electroencephalographic and medial thalamic responses to noxious stimulation via an indirect spinal action. Anesth Analg. 2000 Nov;91(5):1282–8.Google Scholar
Sato, Y, Sato, K, Shamoto, H, Kato, M, Yoshimoto, T. Effect of nitrous oxide on spike activity during epilepsy surgery. Acta Neurochir (Wien). 2001 Dec;143(12):1213–15; discussion 1215–16.CrossRefGoogle ScholarPubMed
Endo, T, Sato, K, Shamoto, H, Yoshimoto, T. Effects of sevoflurane on electrocorticography in patients with intractable temporal lobe epilepsy. J Neurosurg Anesth. 2002 Jan;14(1):5962.Google Scholar
Asano, E, Benedek, K, Shah, A, et al. Is intraoperative electrocorticography reliable in children with intractable neocortical epilepsy? Epilepsia. 2004 Sep;45(9):1091–9.Google Scholar
Manninen, PH, Burke, SJ, Wennberg, R, Lozano, AM, El Beheiry, H. Intraoperative localization of an epileptogenic focus with alfentanil and fentanyl. Anesth Analg. 1999 May;88(5):1101–6.Google Scholar
Herrick, IA, Craen, RA, Gelb, AW, et al. Propofol sedation during awake craniotomy for seizures: electrocorticographic and epileptogenic effects. Anesth Analg. 1997 Jun;84(6):1280–4.Google Scholar
Kaste, M, Waltimo, O. Prognosis of patients with middle cerebral artery occlusion. Stroke. 1976 Sep-Oct;7(5):482–5.Google Scholar
de Vos, CC, van Maarseveen, SM, Brouwers, PJ, van Putten, MJ. Continuous EEG monitoring during thrombolysis in acute hemispheric stroke patients using the brain symmetry index. J ClinNeurophysiol. 2008 Apr;25(2):7782.Google Scholar
Dreier, JP, Major, S, Pannek, HW, et al. Spreading convulsions, spreading depolarization and epileptogenesis in human cerebral cortex. Brain. 2012 Jan;135(Pt 1):259–75.Google Scholar
Drenckhahn, C, Winkler, MK, Major, S, et al. Correlates of spreading depolarization in human scalp electroencephalography. Brain. 2012 Mar;135(Pt 3):853–68.Google Scholar
Dohmen, C, Sakowitz, OW, Fabricius, M, et al. Spreading depolarizations occur in human ischemic stroke with high incidence. Ann Neurol. 2008 Jun;63(6):720–8.Google Scholar
Dreier, JP, Woitzik, J, Fabricius, M, et al. Delayed ischaemic neurological deficits after subarachnoid haemorrhage are associated with clusters of spreading depolarizations. Brain. 2006 Dec;129(Pt 12):3224–37.Google Scholar
Jeffcote, T, Hinzman, JM, Jewell, SL, et al. Detection of spreading depolarization with intraparenchymal electrodes in the injured human brain. Neurocrit Care. 2014 Feb;20(1):2131.Google Scholar
Helbok, R, Madineni, RC, Schmidt, MJ, et al. Intracerebral monitoring of silent infarcts after subarachnoid hemorrhage. Neurocrit Care. 2011 Apr;14(2):162–7.Google Scholar
Scott, RM, Smith, ER. Moyamoya disease and moyamoya syndrome. N Engl J Med. 2009 Mar 19;360(12):1226–37.Google Scholar
Suzuki, J, Takaku, A. Cerebrovascular “moyamoya” disease. Disease showing abnormal net-like vessels in base of brain. Arch Neurol. 1969 Mar;20(3):288–99.Google Scholar
Hallemeier, CL, Rich, KM, Grubb, RL, Jr., et al. Clinical features and outcome in North American adults with moyamoya phenomenon. Stroke. 2006 Jun;37(6):1490–6.Google Scholar
Yilmaz, EY, Pritz, MB, Bruno, A, Lopez-Yunez, A, Biller, J. Moyamoya: Indiana University Medical Center experience. Arch Neurol. 2001 Aug;58(8):1274–8.Google Scholar
Smith, ER, Scott, RM. Surgical management of moyamoya syndrome. Skull Base. 2005 Feb;15(1):1526.Google Scholar
Vendrame, M, Kaleyias, J, Loddenkemper, T, et al. Electroencephalogram monitoring during intracranial surgery for moyamoya disease. Pediatr Neurol. 2011 Jun;44(6):427–32.Google Scholar
Cahill, J, Calvert, JW, Zhang, JH. Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2006 Nov;26(11):1341–53.Google Scholar
Komotar, RJ, Schmidt, JM, Starke, RM, et al. Resuscitation and critical care of poor-grade subarachnoid hemorrhage. Neurosurgery. 2009 Mar;64(3):397410; discussion 410–391.Google Scholar
Al-Tamimi, YZ, Orsi, NM, Quinn, AC, Homer-Vanniasinkam, S, Ross, SA. A review of delayed ischemic neurologic deficit following aneurysmal subarachnoid hemorrhage: historical overview, current treatment, and pathophysiology. World Neurosurg. 2010 Jun;73(6):654–67.Google Scholar
Suarez, JI. Treatment of ruptured cerebral aneurysms and vasospasm after subarachnoid hemorrhage. Neurosurg Clin N Am. 2006 Sep;17 Suppl 1:5769.Google Scholar
Roos, YB, de Haan, RJ, Beenen, LF, et al. Complications and outcome in patients with aneurysmal subarachnoid haemorrhage: a prospective hospital based cohort study in the Netherlands. J Neurol Neurosurg Psychiatry. 2000 Mar;68(3):337–41.Google Scholar
Vergouwen, MD, Fang, J, Casaubon, LK, et al. Higher incidence of in-hospital complications in patients with clipped versus coiled ruptured intracranial aneurysms. Stroke. 2011 Nov;42(11):3093–8.Google Scholar
O’Gorman, RL, Poil, SS, Brandeis, D, et al. Coupling between resting cerebral perfusion and EEG. Brain Topogr. 2013 Jul;26(3):442–57.Google Scholar
Sundt, TM, Jr., Sharbrough, FW, Anderson, RE, Michenfelder, JD. Cerebral blood flow measurements and electroencephalograms during carotid endarterectomy. J Neurosurg. 1974 Sep;41(3):310–20.Google Scholar
Diedler, J, Sykora, M, Juttler, E, Steiner, T, Hacke, W. Intensive care management of acute stroke: general management. Int J Stroke. 2009 Oct;4(5):365–78.Google Scholar
Rivierez, M, Landau-Ferey, J, Grob, R, Grosskopf, D, Philippon, J. Value of electroencephalogram in prediction and diagnosis of vasospasm after intracranial aneurysm rupture. Acta Neurochir (Wien). 1991;110(1-2): 1723.Google Scholar
Rathakrishnan, R, Gotman, J, Dubeau, F, Angle, M. Using continuous electroencephalography in the management of delayed cerebral ischemia following subarachnoid hemorrhage. Neurocrit Care. 2011 Apr;14(2):152–61.Google Scholar
Implantable tissue ischemia sensor. U.S. Patent US20100312081A1. www.google.ch/patents/US20100312081Google Scholar
Zeller, JS. EM innovations: new technologies you haven’t heard of yet. Medscape. 2013 Mar 19.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×