Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-16T10:48:27.564Z Has data issue: false hasContentIssue false

3 - Erythropoiesis, red cells, and the approach to anemia

Published online by Cambridge University Press:  10 August 2009

Pedro A. De Alarcón
Affiliation:
St Jude Children's Research Center, Memphis, TN, USA
M. Cris Johnson
Affiliation:
Children's Hospital Central California, Madera, CA, USA
Eric J. Werner
Affiliation:
Children's Hospital of the King's Daughters, Norfolk, VA, USA
Pedro A. de Alarcón
Affiliation:
University of Tennessee
Eric J. Werner
Affiliation:
Eastern Virginia Medical School
J. Lawrence Naiman
Affiliation:
Stanford University School of Medicine, California
Get access

Summary

Neonatal erythropoiesis

Neonatal erythropoiesis differs significantly from that in older children and adults. The birthing process with the rapid changes in oxygen concentration precipitates drastic changes in the newborn's erythroid system. To understand neonatal erythropoiesis, one needs to understand the ontogeny of erythropoiesis, from the embryo through the fetus to the newborn.

The current hypothesis of hematopoiesis is that there is a pleuripotent hematopoietic stem cell that gives rise to all hematopoietic lineages (Fig. 3.1). The ability of bone-marrow cells to reconstitute the hematopoietic system of lethally irradiated mice documented the existence of the stem cell [1]. In vitro clonogenic culture assays of bone-marrow cells documented the existence of a cascade of pluripotent and committed progenitor cells [2–6]. The commitment of the stem cell to differentiation may be a stochastic (random) or deterministic event, or a combination of both [7]. As stem cells differentiate, they lose their ability for self-renewal. Proliferation, differentiation, and survival of erythroid progenitors are dependent on the hormone erythropoietin [8]. The cascade of differentiation from the stem cell proceeds through a multipotent progenitor cell identified in vitro as colony-forming unit-granulocyte erythroid macrophage megakaryocyte (CFU-GEMM). The first recognizable pure erythroid progenitor is the burst-forming unit-erythroid (BFU-E), which then matures into the colony-forming unit-erythroid (CFU-E). The hormone erythropoietin is necessary for terminal maturation of the CFU-E. It also has an antiapoptotic effect on progenitor cells. Early progenitors depend on several cytokine mixtures for their proliferation and maturation. In utero hematopoiesis is primarily erythroid.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Till, J. E., McCulloch, E. A.A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 1961; 14: 213–222CrossRefGoogle ScholarPubMed
Bradley, J. R., Metcalf, D.The growth of mouse bone marrow cells in vitro. Aust J Exp Biol Med Sci 1966; 44: 287–300CrossRefGoogle ScholarPubMed
Moore, M. A., Williams, N., Metcalf, D.In vitro colony formation by normal and leukemic human hematopoietic cells: characterization of the colony-forming cells. J Natl Cancer Inst 1973; 50: 603–623CrossRefGoogle ScholarPubMed
Nakahata, T., Tsuji, K., Ishiguro, A., et al.Single-cell origin of human mixed hemopoietic colonies expressing various combinations of cell lineages. Blood 1985; 65: 1010–1016Google ScholarPubMed
Stephenson, J. R., Axelrad, A. A., McLeod, D. L., Shreeve, M. M.Induction of colonies of hemoglobin-synthesizing cells by erythropoietin in vitro. Proc Natl Acad Sci USA 1971; 68: 1542–1546CrossRefGoogle ScholarPubMed
Suda, T., Suda, J., Ogawa, M.Single-cell origin of mouse hemopoietic colonies expressing multiple lineages in variable combinations. Proc Natl Acad Sci USA 1983; 80: 6689–6693CrossRefGoogle ScholarPubMed
Metcalf, D.Stem cells, pre-progenitor cells and lineage-committed cells: are our dogmas correct?Ann N Y Acad Sci 1999; 872: 289–303, 303–304CrossRefGoogle ScholarPubMed
Fisher, J. W.Erythropoietin: physiology and pharmacology update. Exp Biol Med 2003; 228: 1–14CrossRefGoogle ScholarPubMed
Wyrsch, A., dalle Carbonare, V., Jansen, W., et al.Umbilical cord blood from preterm human fetuses is rich in committed and primitive hematopoietic progenitors with high proliferative and self-renewal capacity. Exp Hematol 1999; 27: 1338–1345CrossRefGoogle Scholar
Shannon, K. M., Naylor, G. S., Torkildson, J. C., et al.Circulating erythroid progenitors in the anemia of prematurity. N Engl J Med 1987; 317: 728–733CrossRefGoogle ScholarPubMed
Palis, J., Robertson, S., Kennedy, M., Wall, C., Keller, G.Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 1999; 126: 5073–5084Google ScholarPubMed
Keller, G., Lacaud, G., Robertson, S.Development of the hematopoietic system in the mouse. Exp Hematol 1999; 27: 777–787CrossRefGoogle ScholarPubMed
Palis, J., Yoder, M. C.Yolk-sac hematopoiesis: the first blood cells of mouse and man. Exp Hematol 2001; 29: 927–936CrossRefGoogle ScholarPubMed
Dieterlen-Lievre, F., Pardanaud, L., Bollerot, K., Jaffredo, T.Hemangioblasts and hemopoietic stem cells during ontogeny. C R Biol 2002; 325: 1013–1020CrossRefGoogle ScholarPubMed
Jaffredo, T., Gautier, R., Brajeul, V., Dieterlen-Lievre, F.Tracing the progeny of the aortic hemangioblast in the avian embryo. Dev Biol 2000; 224: 204–214CrossRefGoogle ScholarPubMed
Jaffredo, T., Gautier, R., Eichmann, A., Dieterlen-Lievre, F.Intraaortic hemopoietic cells are derived from endothelial cells during ontogeny. Development 1998; 125: 4575–4583Google ScholarPubMed
Dieterlen-Lievre, F., Godin, I., Pardanaud, L.Where do hematopoietic stem cells come from?Int Arch Allergy Immunol 1997; 112: 3–8CrossRefGoogle Scholar
, Kelemen E., Calvo, W., Fliedner, T. M.Atlas of Human Hematopoietic Development. Berlin, Springer-Verlag, 1979Google Scholar
Emura, I., Sekiya, M., Ohnishi, Y.Ultrastructural identification of the hemopoietic inductive microenvironment in the human embryonic liver. Arch Histol Jpn 1984; 47: 95–112CrossRefGoogle ScholarPubMed
Emura, I., Sekiya, M., Ohnishi, Y.Four types of presumptive hemopoietic stem cells in the human fetal liver. Arch Histol Jpn 1983; 46: 645–662CrossRefGoogle ScholarPubMed
Emura, I., Sekiya, M., Ohnishi, Y.Two types of immature erythrocytic series in the human fetal liver. Arch Histol Jpn 1983; 46: 631–643CrossRefGoogle ScholarPubMed
Fukuda, T.Fetal hemopoiesis. I. Electron microscopic studies on human yolk sac hemopoiesis. Virchows Arch B Cell Pathol 1973; 14: 197–213Google ScholarPubMed
Zamboni, L.Electron microscopic studies of blood embryogenesis in humans. II. The hemopoietic activity in the fetal liver. J Ultrastruct Res 1965; 12: 525–541CrossRefGoogle ScholarPubMed
Gilmour, J. R.Normal haemopoiesis in intra-uterine and neonatal life. J Pathol 1941; 52: 25–55CrossRefGoogle Scholar
Eichmann, A., Corbel, C., Nataf, V., et al.Ligand-dependent development of the endothelial and hemopoietic lineages from embryonic mesodermal cells expressing vascular endothelial growth factor receptor 2. Proc Natl Acad Sci USA 1997; 94: 5141–5146CrossRefGoogle ScholarPubMed
Takashina, T.Haemopoiesis in the human yolk sac. J Anat 1987; 151: 125–35Google ScholarPubMed
Fukuda, T.Fetal hemopoiesis. II. Electron microscopic studies on human hepatic hemopoiesis. Virchows Arch B Cell Pathol 1974; 16: 249–270CrossRefGoogle ScholarPubMed
Moore, M. A., Metcalf, D.Ontogeny of the haemopoietic system: yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo. Br J Haematol 1970; 18: 279–296CrossRefGoogle ScholarPubMed
Delassus, S., Titley, I., Enver, T.Functional and molecular analysis of hematopoietic progenitors derived from the aorta-gonad-mesonephros region of the mouse embryo. Blood 1999; 94: 1495–1503Google ScholarPubMed
Yoder, M. C., Cumming, J. G., Hiatt, K., Mukherjee, P., Williams, D. A.A novel method of myeloablation to enhance engraftment of adult bone marrow cells in newborn mice. Biol Blood Marrow Transplant 1996; 2: 59–67Google ScholarPubMed
Yoder, M. C., Hiatt, K.Engraftment of embryonic hematopoietic cells in conditioned newborn recipients. Blood 1997; 89: 2176–2183Google ScholarPubMed
Stockman, J. A., Pochedly, C.Developmental and Neonatal Hematology.New York: Raven Press, 1988Google Scholar
Lee, G. R., Foerster, J., Lukens, J., et al.Wintrobe's Clinical Hematology, 10th edn. Philadelphia: Lippincott Williams & Wilkins, 1999Google Scholar
Nathan, D. G., Orkin, S. H.Hematology of Infancy and Childhood, 5th edn. Philadelphia: W. B. Saunders Co., 1998Google Scholar
Gross, G. P., Hathaway, W. E.Fetal erythrocyte deformability. Pediatr Res 1972; 6: 593–599Google ScholarPubMed
Tillman, W., Wagner, D., Schroter, W.Decreased flexibility of newborn infant erythrocytes. Blut 1977; 34: 281–288Google Scholar
Buchan, P. C.Evaluation and modification of whole blood filtration in the measurement of erythrocyte deformability in preganacy and the newborn. Br J Haematol 1980; 45: 97–105CrossRefGoogle Scholar
Landaw, S. A., Rathbun, S. C., Guancial, R. L.Evidence for a tightly linked spectrin lattice in red blood cells of newborn man. Prog Soc Pediatr Res 1982; 16 (2): 208A, abstract 776Google Scholar
Neerhout, R. C.Erythrocyte lipids in the neonate. Pediatr Res 1968; 2: 172–178CrossRefGoogle ScholarPubMed
Crowley, J., Ways, P., Jones, J. W.Human fetal erythrocyte and plasma lipids. J Clin Invest 1965; 44: 989–998CrossRefGoogle ScholarPubMed
Delaunay, J.Red cell membrane and erythropoiesis genetic defects. Hematol J 2003; 4 (4): 225–232CrossRefGoogle ScholarPubMed
Hoffman, R.Hematology: Basic Principles and Practice, 3rd edn. New York: Churchill Livingstone, 2000Google Scholar
Oski, F. A., Naiman, J. L.Red cell metabolism in the premature infant. I. Adenosine triphosphate levels, adenosine triphosphate stability and glucose consumption. Pediatrics 1965; 36: 104–112Google ScholarPubMed
Ng, W. G., Bergren, W. R., Donnell, G. N., Hodgman, J. E., et al.Galactose-1 phosphate uridyl transferase activity in hemolysates of newborn infants. Pediatrics 1967; 39 (2): 293–294Google Scholar
Travis, S. F., Kumar, S. P., Paez, P. C., Delivoria-Papadopoulous, M.Red cell metabolic alterations and postnatal life in term infants: glycolytic enzymes and glucose-6-phosphate dehydrogenase. Pediatr Res 1980; 14: 1349–1352CrossRefGoogle ScholarPubMed
Konrad, P. N., Valentine, W. N., Paglia, D. E.Enzymatic activities and glutathione content of erythrocytes in the newborn: comparison with red cells of older subjects and those with comparable reticulocytosis. Acta Haematol 1972; 48: 193CrossRefGoogle ScholarPubMed
Gross, R. T., Schroeder, E. A., Brounstein, S. A.Energy metabolism in the erythrocytes of premature infants compared to full term newborn infants and adults. Blood 1963; 21: 755–765Google ScholarPubMed
Whittam, R.Control of membrane permeability to potassium in red blood cells. Nature 1968; 219 (154): 610CrossRefGoogle ScholarPubMed
Stave, U., Hintz, H.On erythrocytes in newborn infants. Hematological and enzymological studies in the 1st year of life. Z Kinderheinkd 1961; 86: 184–197CrossRefGoogle ScholarPubMed
Luca, C., Stevenson, J. H. Jr, Kaplan, E.Simultaneous multiple-column chromatography: its application to the separation of the adenine nucleotides of human erythrocytes. Anal Biochem 1962; 4: 39–45CrossRefGoogle Scholar
Schroter, W., Tillman, W.Heinz body susceptibility of red cells and exchange transfusion. Acta Haematol 1973; 49: 74–79CrossRefGoogle ScholarPubMed
Tillman, W., Menke, J., Schroter, W.The formation of Heinz bodies in ghosts of human erythrocytes of adults and newborn infants. Clin Wochenschr 1973; 51: 201–203CrossRefGoogle Scholar
Stockman, J. A., Clark, D. A.Diminished antioxidant activity of newborn infants. Pediatr Res 1981; 15: 684. Abstract 1444Google Scholar
Carrell, R. W., Winterbourn, C. C., Rachmilewitz, E. A.Activated oxygen and hemolysis. Br J Haematol 1975; 30: 259–264CrossRefGoogle Scholar
Stockman, J. A.Newborn red cells, the nature of oxidant injury. Pediatr Res 1977; 11: 41CrossRefGoogle Scholar
Bunn, H. F. Human hemoglobins: normal and abnormal. In Nathan, D. G., Orkin, S. H., eds. Hematology of Infancy and Childhood, 5th edn. Philadelphia: W. B. Saunders Co., 1998: 729–762Google Scholar
Hann, I. M. The normal blood picture in neonates. In Hann, I. M., Gibson, B. E. S., Letsky, E. A., eds. Fetal and Neonatal Hematology. London: Bailliere Tindall, 1991: 29–50Google Scholar
Stockman, J. A., 3rd, Garcia, J. F., Oski, F. A.The anemia of prematurity. Factors governing the erythropoietin response. N Engl J Med 1977; 296: 647–650CrossRefGoogle ScholarPubMed
Delivoria-Papadopoulos, M., Roncevic, , Oski, N. P., , F. A.Postnatal changes in oxygen transport of term, preterm and sick infants: the role of red cell 2,3-diphosphoglycerate and adult hemoglobin. Pediatr Res 1971; 5: 235–245CrossRefGoogle Scholar
Bifano, E. M., Smith, F., Borer, J.Relationship between determinants of oxygen delivery and respiratory abnormalities in preterm infants with anemia. J Pediatr 1992; 120: 292–296CrossRefGoogle ScholarPubMed
Izraeli, S., Ben-Sira, L., Harell, D., et al.Lactic acid as a predictor for erythrocyte transfusion in healthy preterm infants with anemia of prematurity. J Pediatr 1993; 122: 629–631CrossRefGoogle ScholarPubMed
Stockman, J. A., 3rd, Clark, D. A.Weight gain: a response to transfusion in selected preterm infants. Am J Dis Child 1984; 138: 828–830Google ScholarPubMed
Delivoria-Papadopoulos, M., Roncevic, N. P., Oski, F. A.Postnatal changes in oxygen transport of term, preterm and sick infants: the role of red cell 2, 3-diphosphoglycerate and adult hemoglobin. Pediatr Res 1971; 5: 235–245CrossRefGoogle Scholar
Forestier, F., Daffos, F., Glacteros, F., et al.Hematological values of 163 normal fetuses between 18 and 30 weeks of gestation. Pediatr Res 1986; 20: 342–346CrossRefGoogle ScholarPubMed
Saltzman, D. H., Frigoletto, F. D., Harlow, B. L., Barss, V. A., Benacerraf, B. R.Sonographic evaluation of hydrops fetalis. Obstet Gynecol 1989; 74: 106–111Google ScholarPubMed
Burman, D., Morris, A. F.Cord haemoglobin in low birthweight infants. Arch Dis Child 1974; 49: 382–385CrossRefGoogle ScholarPubMed
Rivera, L. M., Rudolph, N.Postnatal persistence of capillary-venous differences in hematocrit and hemoglobin values in low-birth-weight and term infants. Pediatrics 1982; 70: 956–957Google ScholarPubMed
Thurlbeck, S. M., McIntosh, N.Preterm blood counts vary with sampling site. Arch Dis Child 1987; 62: 74–75CrossRefGoogle ScholarPubMed
Stockman, J. A. III, Oski, F. A.Physiological anaemia of infancy and the anaemia of prematurity. Clin Haematol 1978; 7: 3–18Google ScholarPubMed
O'Brien, R. T., Pearson, H. A.Physiologic anemia of the newborn infant. J Pediatr 1971; 79: 132–138CrossRefGoogle ScholarPubMed
Stockman, J. A. III, Garcia, J. F., Oski, F. A.The anemia of prematurity: factors governing the erythropoietin response. N Engl J Med 1977; 296: 647–650CrossRefGoogle ScholarPubMed
Lin, J. C., Strauss, R. G., Kulhavy, J. C., et al.Phlebotomy overdraw in the neonatal intensive care nursery. Pediatrics 2000; 106: E19CrossRefGoogle ScholarPubMed
Stockman, J. A. III, Alarcon, P. A.Overview of the state of the art of Rh disease: history, current clinical management, and recent progress. J Pediatr Hematol Oncol 2001; 23: 385–393CrossRefGoogle ScholarPubMed
Hariharan, D., Manno, C. S., Seri, I.Neonatal lupus erythematosus with microvascular hemolysis. J Pediatr Hematol Oncol 2000; 22: 351–354CrossRefGoogle ScholarPubMed
Passi, G. R., Kriplani, A., Pati, H. P., Choudhry, V. P.Isoimmune hemolysis in an infant due to maternal Evans' syndrome. Indian J Pediatr 1997; 64: 893–895CrossRefGoogle Scholar
Sokol, R. J., Hewitt, S., Stamps, B. K.Erythrocyte autoantibodies, autoimmune haemolysis and pregnancy. Vox Sang 1982; 43: 169–176CrossRefGoogle Scholar
Sacks, D. A., Platt, L. D., Johnson, C. S.Autoimmune hemolytic disease during pregnancy. Am J Obstet Gynecol 1981; 140: 942–946CrossRefGoogle ScholarPubMed
Kitzmiller, J. L.Autoimmune disorders: maternal, fetal, and neonatal risks. Clin Obstet Gynecol 1978; 21: 385–396CrossRefGoogle ScholarPubMed
Chaplin, H. Jr, Cohen, R., Bloomberg, G., et al.Pregnancy and idiopathic autoimmune haemolytic anaemia: a prospective study during 6 months gestation and 3 months post-partum. Br J Haematol 1973; 24: 219–229CrossRefGoogle ScholarPubMed
Baumann, R., Rubin, H.Autoimmune hemolytic anemia during pregnancy with hemolytic disease in the newborn. Blood 1973; 41: 293–297Google ScholarPubMed
Gilsanz, F., Vega, M. A., Gomez-Castillo, E., Ruiz-Balda, J. A., Omenaca, F.Fetal anaemia due to pyruvate kinase deficiency. Arch Dis Child 1993; 69: 523–524CrossRefGoogle ScholarPubMed
Hennekam, R. C., Beemer, F. A., Cats, B. P., Jansen, G., Staal, G. E.Hydrops fetalis associated with red cell pyruvate kinase deficiency. Genet Couns 1990; 1: 75–79Google ScholarPubMed
Whitelaw, A. G., Rogers, P. A., Hopkinson, D. A., et al.Congenital haemolytic anaemia resulting from glucose phosphate isomerase deficiency: genetics, clinical picture, and prenatal diagnosis. J Med Genet 1979; 16: 189–196CrossRefGoogle ScholarPubMed
Gallagher, P. G., Petruzzi, M. J., Weed, S. A., et al.Mutation of a highly conserved residue of betaI spectrin associated with fatal and near-fatal neonatal hemolytic anemia. J Clin Invest 1997; 99: 267–277CrossRefGoogle ScholarPubMed
Gallagher, P. G., Weed, S. A., Tse, W. T., et al.Recurrent fatal hydrops fetalis associated with a nucleotide substitution in the erythrocyte beta-spectrin gene. J Clin Invest 1995; 95: 1174–1182CrossRefGoogle ScholarPubMed
Whitfield, C. F., Follweiler, J. B., Lopresti-Morrow, L., Miller, B. A.Deficiency of alpha-spectrin synthesis in burst-forming units-erythroid in lethal hereditary spherocytosis. Blood 1991; 78: 3043–3051Google ScholarPubMed
Delhommeau, F., Cynober, T., Schischmanoff, P. O., et al.Natural history of hereditary spherocytosis during the first year of life. Blood 2000; 95: 393–397Google ScholarPubMed
Kaplan, M., Hammerman, C.Glucose-6-phosphate dehydrogenase deficiency: a potential source of severe neonatal hyperbilirubinaemia and kernicterus. Semin Neonatol 2002; 7: 121–128CrossRefGoogle ScholarPubMed
Herschel, M., Ryan, M., Gelbart, T., Kaplan, M.Hemolysis and hyperbilirubinemia in an African American neonate heterozygous for glucose-6-phosphate dehydrogenase deficiency. J Perinatol 2002; 22: 577–579CrossRefGoogle Scholar
Kaplan, M., Abramov, A.Neonatal hyperbilirubinemia associated with glucose-6-phosphate dehydrogenase deficiency in Sephardic-Jewish neonates: incidence, severity, and the effect of phototherapy. Pediatrics 1992; 90: 401–405Google ScholarPubMed
Lu, T. C., Wei, H., Blackwell, R. Q.Increased incidence of severe hyperbilirubinemia among newborn Chinese infants with G-6-P D deficiency. Pediatrics 1966; 37: 994–999Google ScholarPubMed
Missiou-Tsagaraki, S.Screening for glucose-6-phosphate dehydrogenase deficiency as a preventive measure: prevalence among 1,286,000 Greek newborn infants. J Pediatr 1991; 119: 293–299CrossRefGoogle ScholarPubMed
Kaplan, M., Renbaum, P., Levy-Lahad, E., et al.Gilbert syndrome and glucose-6-phosphate dehydrogenase deficiency: a dose-dependent genetic interaction crucial to neonatal hyperbilirubinemia. Proc Natl Acad Sci USA 1997; 94: 12128–12132CrossRefGoogle ScholarPubMed
Slusher, T. M., Vreman, H. J., McLaren, D. W., et al.Glucose-6-phosphate dehydrogenase deficiency and carboxyhemoglobin concentrations associated with bilirubin-related morbidity and death in Nigerian infants. J Pediatr 1995; 126: 102–108CrossRefGoogle ScholarPubMed
Kaplan, M., Hammerman, C., Vreman, H. J., Stevenson, D. K., Beutler, E.Acute hemolysis and severe neonatal hyperbilirubinemia in glucose-6-phosphate dehydrogenase-deficient heterozygotes. J Pediatr 2001; 139: 137–140CrossRefGoogle ScholarPubMed
Sarihan, H., Mocan, H., Abeys, M., et al.Kasabach–Merrit syndrome in infants. Panminerva Med 1998; 40: 128–131
Bjerke, H. S., Kelly, R. E. J., Foglia, R. P., Barcliff, L., Petz, L.Decreasing transfusion exposure risk during extracorporeal membrane oxygenation (ECMO). Transfus Med 1992; 2: 43–49CrossRefGoogle Scholar
Sartori, P. C., Enayat, M. S., Darbyshire, P. J.Congenital microangiopathic haemolytic anemia: a variant of thrombotic thrombocytopenic purpura?Pediatr Hematol Oncol 1993; 10: 271–277CrossRefGoogle ScholarPubMed
Kling, P. J., Schmidt, R. L., Roberts, R. A., Widness, J. A.Serum erythropoietin levels during infancy: associations with erythropoiesis. J Pediatr 1996; 128: 791–796CrossRefGoogle ScholarPubMed
Kanto, W. P. Jr, Marino, B., Godwin, A. S., Bunyapen, C.ABO hemolytic disease: a comparative study of clinical severity and delayed anemia. Pediatrics 1978; 62: 365–369Google ScholarPubMed
Strand, C., Polesky, H. F.Delayed anemia in erythroblastosis fetalis. Minn Med 1972; 55: 439–441Google ScholarPubMed
Scaradavou, A., Inglis, S., Peterson, P., et al.Suppression of erythropoiesis by intrauterine transfusions in hemolytic disease of the newborn: use of erythropoietin to treat the late anemia. J Pediatr 1993; 123: 279–284CrossRefGoogle ScholarPubMed
Ohls, R. K., Hunter, D. D., Christensen, R. D.A randomized, double-blind, placebo-controlled trial of recombinant erythropoietin in treatment of the anemia of bronchopulmonary dysplasia. J Pediatr 1993; 123: 996–1000CrossRefGoogle ScholarPubMed
Christensen, R. D., Hunter, D. D., Goodell, H., Rothstein, G.Evaluation of the mechanism causing anemia in infants with bronchopulmonary dysplasia. J Pediatr 1992; 120: 593–598CrossRefGoogle ScholarPubMed
Sood, S. K., Ramachandran, K., Mathur, M., et al.W.H.O. sponsored collaborative studies on nutritional anaemia in India. 1. The effects of supplemental oral iron administration to pregnant women. Q J Med 1975; 44: 241–258Google ScholarPubMed
Chan, S., Gerson, B., Subramaniam, S.The role of copper, molybdenum, selenium, and zinc in nutrition and health. Clin Lab Med 1998; 18: 673–685Google ScholarPubMed
Oski, F. A.Nutritional anemias. Semin Perinatol 1979; 3: 381–395Google ScholarPubMed
Ashkenazi, A., Levin, S., Djaldetti, M., Fishel, E., Benvenisti, D.The syndrome of neonatal copper deficiency. Pediatrics 1973; 52: 525–533Google ScholarPubMed
Karpel, J. T., Peden, V. H.Copper deficiency in long-term parenteral nutrition. J Pediatr 1972; 80: 32–36CrossRefGoogle ScholarPubMed
Krasinski, K., Perkin, R., Rutledge, J.Gray baby syndrome revisited. Clin Pediatr (Phila) 1982; 21: 571–572CrossRefGoogle ScholarPubMed
Stahl, M. M., Neiderud, J., Vinge, E.Thrombocytopenic purpura and anemia in a breast-fed infant whose mother was treated with valproic acid. J Pediatr 1997; 130: 1001–1003CrossRefGoogle Scholar
Ramaekers, L. H., The, T. S. Maternal anticonvulsants and perinatal risk. Eur J Obstet Gynecol Reprod Biol 1975; 5: 277–282CrossRefGoogle Scholar
Widness, J. A., Seward, V. J., Kromer, I. J., et al.Changing patterns of red blood cell transfusion in very low birth weight infants. J Pediatr 1996; 129: 680–687CrossRefGoogle ScholarPubMed
Fain, J., Hilsenrath, P., Widness, J. A., Strauss, R. G., Mutnick, A. H.A cost analysis comparing erythropoietin and red cell transfusions in the treatment of anemia of prematurity. Transfusion 1995; 35: 936–943CrossRefGoogle ScholarPubMed
Stockman, J. A. III.Anemia in children. Differential Insight 1979; 1: 13–20Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×