Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-27T19:06:02.724Z Has data issue: false hasContentIssue false

11 - Neutrophil function and disorders of neutrophils in the newborn

Published online by Cambridge University Press:  10 August 2009

E. Stephen Buescher
Affiliation:
M.D. Eastern Virginia Medical School, Norfolk, VA, USA
Pedro A. de Alarcón
Affiliation:
University of Tennessee
Eric J. Werner
Affiliation:
Eastern Virginia Medical School
J. Lawrence Naiman
Affiliation:
Stanford University School of Medicine, California
Get access

Summary

Introduction

The phagocytes comprise a small group of hematopoietically derived cells that play diverse roles in human host defense. The name, coined by Elie Metchnikoff over a century ago [1], refers to one of their most prominent specializations – the ability to ingest particulate targets. However, Metchnikoff's “microphages” and “macrophages” do much more than simply ingest foreign materials. They are now appreciated to perform multiple roles in inflammation and host defense, in both the innate and adaptive arms of immunity. This chapter will address phagocytic cells in their host-defense roles as they relate to innate immunity, using the polymorphonuclear leukocyte (PMN) and its functions in the human neonate as the major focus of discussion.

Neonatal phagocyte production

Hematopoiesis in the fetus is initiated in the yolk sac, with the formation of “blood islands” from primitive blood progenitor cells. By the second month of gestation, the fetal liver becomes the major site of blood-cell production, which then extends to include the spleen by five months' gestation. At about the same time, the earliest components of marrow-based blood production appear and continue to become more prominent over the subsequent months leading up to term, while splenic and hepatic hematopoiesis diminish. During this time, pluripotent hematopoietic stem cells are present in the circulation [2], presumably in transit from the hepatic and splenic hematopoiesis sites to the marrow to populate the latter for subsequent blood-cell production during extrauterine life.

Type
Chapter
Information
Neonatal Hematology , pp. 254 - 279
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Metchnikoff, E.Lectures on the Comparative Pathology of Inflammation. New York: Dover Publications, 1968Google Scholar
Nathan, D. G.The beneficence of neonatal hematopoiesis. N Engl J Med 1989; 321: 1190–1191CrossRefGoogle ScholarPubMed
Liu, J., Li, K., Yuen, P. M., et al.Ex vivo expansion of enriched CD34+ cells from neonatal blood in the presence of thrombopoietin, a comparison with cord blood and bone marrow. Bone Marrow Transplant 1999; 24: 247–252CrossRefGoogle ScholarPubMed
Christensen, R. D., Harper, T. E., Rothstein, G.Granulocyte-macrophage progenitor cells (CFU-GM) in term and preterm neonates. J Pediatr 1986; 109: 1047–1051CrossRefGoogle ScholarPubMed
Cairo, M. S.Neonatal neutrophil host defense. Am J Dis Child 1989; 143: 40–46CrossRefGoogle ScholarPubMed
Ohls, R. K., Li, Y., Abdel-Mageed, A., et al.Neutrophil pool sizes and granulocyte colony-stimulating factor production in human mid-trimester fetuses. Pediatr Res 1995; 37: 806–811CrossRefGoogle ScholarPubMed
Laver, J., Duncan, E., Abboud, M., et al.High levels of granulocyte and granulocyte-macrophage colony-stimulating factors in cord blood of normal full-term neonates. J Pediatr 1990; 116: 627–632CrossRefGoogle ScholarPubMed
Christensen, R. D.Neutrophil kinetics in the fetus and neonat. Am J Pediatr Hematol Oncol 1989; 11: 215–223Google Scholar
Berger, M.Complement deficiency and neutrophil dysfunction as risk factors for bacterial infection in newborns and the role of granulocyte transfusion in therapy. Rev Infect Dis 1990; 12 (Suppl 4): S401–S409CrossRefGoogle ScholarPubMed
Berkow, R. L., Dodson, R. W.Functional analysis of the marginating pool of human polymorphonuclear leukocytes. Am J Hematol 1987; 24: 47–54CrossRefGoogle ScholarPubMed
Athens, J. W., Haab, O. P., Raab, S. O., et al.Leukokinetic studies. IV. The total blood, circulating and marginal granulocyte pools and the granulocyte turnover rate in normal subjects. J Clin Invest 1964; 40: 989–995CrossRefGoogle Scholar
Hansen, N. E., Karle, H., Valerius, N. H.Neutrophil kinetics in acute bacterial infection. Acta Med Scand 1978; 204: 407–412CrossRefGoogle ScholarPubMed
Athens, J. W., Haab, O. P., Raab, S. O., et al.Leukokinetic studies. Ⅺ. Blood granulocyte kinetics in polycythemia vera, infection and myelofibrosis. J Clin Invest 1965; 44: 778–788CrossRefGoogle ScholarPubMed
Gallin, J. I.Human neutrophil heterogeneity exists, but is it meaningful?Blood 1984; 63: 977–983Google ScholarPubMed
Etzioni, A.Adhesion molecules: their role in health and disease. Pediatr Res 1996; 39: 191–198CrossRefGoogle ScholarPubMed
Galustian, C., Lubineau, A., Narvor, C., et al.L-selectin interactions with novel mono- and multisulfated Lewisx sequences in comparison with the potent ligand 3′-Lewisa. J Biol Chem 1999; 274: 18213–18217CrossRefGoogle Scholar
Wright, D. G., Gallin, J. I.Secretory responses of human neutrophils: exocytosis of specific (secondary) granules by human neutrophils during adherence in vitro and during exudation in vivo. J Immunol 1979; 123: 285–294Google ScholarPubMed
Hampton, M. B., Kettle, A. J., Winterbourn, C. C.Inside the neutrophil phagosome: oxidants, myeloperoxidase and bacterial killing. Blood 1998; 92: 3007–3017Google ScholarPubMed
Clark, R. A., Borregaard, N.Neutrophils autoinactivate secretory products by myeloperoxidase-catalyzed oxidation. Blood 1985; 65: 375–381Google ScholarPubMed
Grigg, J. M., Savill, J. S., Sarraf, C., Haslett, C., Silverman, M.Neutrophil apoptosis and clearance from neonatal lungs. Lancet 1991; 338: 720–722CrossRefGoogle ScholarPubMed
Buhrer, C., Graulich, J., Stibenz, D., Dudenhausen, J. W., Obladen, M.L-selectin is down-regulated in umbilical cord blood granulocytes and monocytes of newborn infants with acute infection. Pediatr Res 1994; 36: 799–804CrossRefGoogle Scholar
Koenig, J. M., Simon, J., Anderson, D. C., Smith, E., Smith, C. W.Diminished soluble and total cellular L-selectin in cord blood is associated with its impaired shedding from activated neutrophils. Pediatr Res 1996; 39: 616–621CrossRefGoogle ScholarPubMed
Torok, C., Lundahl, J., Hed, J., Lagercrantz, H.Diversity in regulation of adhesion molecules (Mac-1 and L-selectin) in monocytes and neutrophils from neonates and adults. Arch Dis Child 1993; 68: 561–565CrossRefGoogle ScholarPubMed
Smith, J. R., Campbell, D. E., Ludomirsky, A., et al.Expression of the complement receptors CR1 and CR3 and the type III Fcɣ receptor on neutrophils from newborn infants and fetuses with Rh disease. Pediatr Res 1990; 28: 120–126CrossRefGoogle ScholarPubMed
Bruce, M. C., Baley, J. E., Medvik, K. A., Berger, M.Impaired surface membrane expression of C3bi but not C3b receptors on neonatal neutrophils. Pediatr Res 1987; 21: 306–311CrossRefGoogle Scholar
Reddy, R. K., Xia, Y., Hanikyrova, M., Ross, G. D.A mixed population of immature and mature leucocytes in umbilical cord blood results in a reduced expression and function of CR3 (CD11b/CD18). Clin Exp Immunol 1998; 114: 462–467CrossRefGoogle Scholar
McEvoy, L. T., Zakem-Cloud, H., Tosi, M. F.Total cell content of CR3 (CD11b/CD18) and LFA-1 (CD11a/CD18) in neonatal neutrophils: relationship to gestational age. Blood 1996; 87: 3929–3933Google ScholarPubMed
Smith, J. B., Kunjummen, R. D., Raghavender, B. H.Eosinophils and neutrophils of human neonates have similar impairments of quantitative up-regulation of Mac-1 (CD11b/CD18) expressionin vitro. Pediatr Res 1991; 30: 355–361CrossRefGoogle ScholarPubMed
Olson, T. A., Ruymann, F. B., Cook, B. A., et al.Newborn polymorphonuclear leukocyte aggregation: a study of physical properties and ultrastructure using chemotactic peptides. Pediatr Res 1983; 12: 993–997CrossRefGoogle Scholar
Anderson, D. C., Rothlein, R., Marlin, S. D., Krater, S. S., Smith, C. W.Impaired transendothelial migration by neonatal neutrophils: abnormalities of Mac-1 (CD11b/ CD18)-dependent adherence reactions. Blood 1990; 76: 2613–2621Google ScholarPubMed
Masuda, K., Kinoshita, Y.Kobayashi, Y.Heterogeneity of Fc receptor expression in chemotaxis and adherence of neonatal neutrophils. Pediatr Res 1989; 25: 6–10CrossRefGoogle ScholarPubMed
Krause, P. J., Maderazo, E. G., Scroggs, M.Abnormalities of neutrophil adherence in new borns. Pediatrics 1982; 69: 184–187Google Scholar
Carr, R., Davies, J. M.Abnormal FcRIII expression by neutrophils from very preterm neonates. Blood 1990; 76: 607–611Google ScholarPubMed
Payne, N. R., Frestedt, J., Hunkeler, N., Eehrz, R.Cell-surface expression of immunoglobulin G receptors an the polymorphonuclear leukocytes and monocytes of extremely premature infants. Pediatr Res 1993; 33: 452–457CrossRefGoogle ScholarPubMed
Rider, E. D., Christensen, R. D., Hall, D. C., Rothstein, G.Myeloperoxidase deficiency in neutrophils of neonates. J Pediatr 1988; 112: 648–651CrossRefGoogle ScholarPubMed
Kjeldsen, L., Sengelov, H., Lollike, K., Borregaard, N.Granules and secretory vesicles in human neonatal neutrophils. Pediatr Res 1996; 40: 120–129CrossRefGoogle ScholarPubMed
Ambruso, D. R., Bentwood, B., Henson, P. M., Johnston, R. B. Jr.Oxidative metabolism of cord blood neutrophils: relationship to content and degranulation of cytoplasmic granules. Pediatr Res 1984; 18: 1148–1153CrossRefGoogle ScholarPubMed
Gahr, M., Schulze, M., Scheffczyk, D., Speer, C. P., Peters, J. H.Diminished release of lactoferrin from polymorphonuclear leukocytes of human neonates. Acta Haematol (Basel) 1987; 77: 90–94CrossRefGoogle ScholarPubMed
Anderson, D. C., Hughes, B. J., Smith, C. W.Abnormal mobility of neonatal polymorphonuclear leukocytes: relationship to impaired redistribution of surface adhesion sites by chemotactic factor or colchicine. J Clin Invest 1981; 68: 863–874CrossRefGoogle ScholarPubMed
Sacchi, F., Rondini, G., Mingrat, G., et al.Different maturation of neutrophil chemotaxis in term and preterm newborn infants. J Pediatr 1982; 101: 273–274CrossRefGoogle ScholarPubMed
Tan, N. D., Davidson, D.Comparative differences and combined effects of interleukin-8, leukotriene B4, and platelet activating factor on neutrophil chemotaxis of the new born. Pediatr Res 1995; 38: 11–16CrossRefGoogle Scholar
Usmani, S. S., Schlessel, J. S., Sia, C. G., Kamran, S., Orner, S. D.Poly morphonuclear leukocyte function in the preterm neonate: effect of chronologic age. Pediatrics 1991; 87: 675–679Google Scholar
Santos, C. D., Davidson, D.Neutrophil chemotaxis to leukotriene B4in vitro is decreased for the human neonate. Pediatr Res 1993; 33: 242–246CrossRefGoogle ScholarPubMed
Frenck, R. W. Jr, Buescher, E. S., Vadhan-Raj, S.The effects of recombinant human granulocyte-macrophage colony stimulating factor on in vitro cord blood granulocyte function. Pediatr Res 1989; 26: 43–48CrossRefGoogle ScholarPubMed
Yegin, O.Chemotaxis in childhood. Pediatr Res 1983; 17: 183–187CrossRefGoogle ScholarPubMed
Raghunathan, R., Miller, M. E., Everett, S., Leake, R. D.Phagocyte chemotaxis in the perinatal period. J Clin Immunol 1982; 2: 242–245CrossRefGoogle ScholarPubMed
Wilkinson, P. C.Micropore filter methods for leukocyte chemotaxis. Meth Enzymol 1988; 162: 38–50CrossRefGoogle ScholarPubMed
Rueff, P., Bihler, T., Linderkamp, O.Deformability and volume of neonatal and adult leukocytes. Pediatr Res 1991; 29: 128–132CrossRefGoogle Scholar
Krause, P. J., Kreutzer, D. L., Eisenfeld, L., et al.Characterization of nonmotile neutrophil subpopulations in neonates and adults. Pediatr Res 1989; 25: 519–524CrossRefGoogle ScholarPubMed
Wolach, B., Ben Dor, M., Chomsky, O., Gavrieli, R., Shinitzky, M.Improved chemotactic ability of neonatal polymorphonuclear cells induced by mild membrane rigidification. J Leukoc Biol 1992; 51: 324–328CrossRefGoogle ScholarPubMed
Yasui, K., Masida, M., Matsuoka, T., et al.Abnormal membrane fluidity as a cause of impaired functional dynamics of chemoattractant receptors on neonatal polymorphonuclear leukocytes: lack of modulation of the receptors by a membrane fluidizer. Pediatr Res 1988; 24: 442–446CrossRefGoogle ScholarPubMed
Harris, M. C., Shalit, M., Southwick, F. S.Diminished actin polymerization by neutrophils from newborn infants. Pediatr Res 1993; 33: 27–31CrossRefGoogle ScholarPubMed
Merry, C., Puri, P., Reen, D. J.Phosphorylation and the actin cytoskeleton in defective newborn neutrophil chemotaxis. Pediatr Res 1998; 44: 259–264CrossRefGoogle ScholarPubMed
Anderson, D. C., Hughes, B. J., Wible, L. J., et al.Impaired motility of neonatal PMN leukocytes: relationship to abnormalities of cell orientation and assembly of microtubules in chemotactic gradients. J Leukoc Biol 1984; 36: 1–15CrossRefGoogle ScholarPubMed
Strauss, R. G., Hart, M. J.Spontaneous and drug-induced concanavalin A capping of neutrophils from human infants and their mothers. Pediatr Res 1981; 15: 1314–1318CrossRefGoogle ScholarPubMed
Santoro, P., Agosti, V., Viggiano, D., et al.Impaired D-myo-inositol 1,4,5-triphosphate generation from cord blood polymorphonuclear leukocytes. Pediatr Res 1995; 38: 564–567CrossRefGoogle ScholarPubMed
Sacchi, F., Hill, H. R.Defective membrane potential changes in neutrophils from human neonates. J Exp Med 1984; 160: 1247–1252CrossRefGoogle ScholarPubMed
Strauss, R. G., Snyder, E. L.Uptake of extracellular calcium by neonatal neutrophils. J Leukoc Biol 1985; 37: 423–429CrossRefGoogle ScholarPubMed
Forman, M. L., Stiehm, E. R.Impaired opsonic activity but normal phagocytosis in low-birth-weight infants. N Engl J Med 1969; 281: 926–931CrossRefGoogle ScholarPubMed
McCracken, G. H., Eichenwald, H. F.Leukocyte function and the development of opsonic and complement activity in the neonate. Am J Dis Child 1971; 121: 120–126Google ScholarPubMed
Wright, W. C. Jr, Ank, B. J., Herbert, J., Stiehm, E. R.Decreased bactericidal activity of leukocytes of stressed newborn infants. Pediatrics 1975; 56: 579–584Google ScholarPubMed
Dossett, J. H., Wiliams, R. C. Jr, Quie, P. G.Studies on interactions of bacteria, serum factors and polymorphonuclear leukocytes in mothers and newborns. Pediatrics 1969; 44: 49–57Google Scholar
Lopez-Osuna, M., Kretschmer, R. R.Bactericidal kinetics of newborn polymorphonuclear leukocytes against group B streptococci type III. Infection 1984; 12: 367–368CrossRefGoogle ScholarPubMed
Marodi, L., Leijh, P. C. J., Furth, R.Characteristics and functional capabilities of human cord blood granulocytes and monocytes. Pediatr Res 1984; 18: 1127–1131CrossRefGoogle Scholar
Stroobant, J., Harris, M. C., Cody, C. S., Polin, R. A., Douglas, S. D.Diminished bactericidal capacity for group B streptococcus in neutrophils from “stressed” and healthy neonates. Pediatr Res 1984; 18: 634–637CrossRefGoogle Scholar
Wolach, B., Carmi, D., Gilboa, S., et al.Some aspects of the humoral immunity and the phagocytic function of newborn infants. Isr J Med Sci 1994; 30: 331–335Google ScholarPubMed
Edwards, M. S., Buffone, G. J., Fuselier, P. A., Weels, J. L., Baker, C. J.Deficient classical complement pathway activity in newborn sera. Pediatr Res 1983; 17: 685–688CrossRefGoogle ScholarPubMed
Marodi, L., Leijh, P. C. J., Braat, A., Daha, M. R., Furth, R.Opsonic activity of cord blood sera against various species of microorganism. Pediatr Res 1985; 19: 433–436CrossRefGoogle ScholarPubMed
Chirico, G., Marconi, M., Amici, M., et al.Deficiency of neutrophil bactericidal activity in term and preterm infants. Biol Neonate 1985; 47: 125–129CrossRefGoogle ScholarPubMed
Schuit, K. E., Powell, D. A.Phagocytic dysfunction in monocytes of normal newborn infants. Pediatrics 1980; 65: 501–504Google ScholarPubMed
Nurcombe, H. L., Edwards, S. W.Role of myeloperoxidase in intracellular and extracellular chemiluminescence of neutrophils. Ann Rheum Dis 1989; 48: 56–62CrossRefGoogle ScholarPubMed
Shigeoka, A. O., Santos, J. I., Hill, H. R.Functional analysis of neutrophil granulocytes from healthy, infected and stressed neonates. J Pediatr 1979; 95: 454–460CrossRefGoogle ScholarPubMed
Krause, P. J., Herson, V. C., Boutin-Lebowitz, J., et al.Polymorphonuclear leukocyte adherence and chemotaxis in stressed and healthy neonates. Pediatr Res 1986; 20: 296–300CrossRefGoogle ScholarPubMed
Gasparoni, A., Chirico, G., Amici, D., et al.Neutrophil chemotaxis in infants delivered by caesarian section. Eur J Pediatr 1991; 150: 481–482CrossRefGoogle Scholar
Frazier, J. P., Cleary, T. G., Pickering, L. K., Kohl, S., Ross, P. J.Leukocyte function in healthy neonates following vaginal and caesarian deliveries. J Pediatr 1982; 101: 269–272CrossRefGoogle Scholar
Kinoshita, Y., Masuda, K., Kobayashi, Y.Adherence of cord blood neutrophils: effect of mode of delivery. J Pediatr 1991; 118: 115–117CrossRefGoogle ScholarPubMed
Usmani, S. S., Kamran, S., Harper, R. G., Wapnir, R. A., Mehta, R.Effect of maternal labor and mode of delivery on polymorphonuclear leukocyte function in healthy neonates. Pediatr Res 1993; 33: 466–468CrossRefGoogle ScholarPubMed
Brus, F., Oeveren, W., Okken, A., Oetomo, S. O.Activation of circulating polymorphonuclear leukocytes in preterm infants with severe idiopathic respiratory distress syndrome. Pediatr Res 1996; 39: 456–463CrossRefGoogle ScholarPubMed
Shigeoka, A. O., Charette, R. P., Wyman, M. L., Hill, H. R.Defective oxidative metabolic responses of neutrophils from stressed neonates. J Pediatr 1981; 98: 392–398CrossRefGoogle ScholarPubMed
Ambruso, D. R., Altenburger, K. M., Johnston, R. B. Jr.Defective oxidative metabolism in newborn neutrophils: discrepancy between superoxide anion and hydroxyl radical generation. Pediatrics 1979; 64: 722–725Google ScholarPubMed
Yamazaki, M., Matsuoka, T., Yasui, K., Komiyama, A., Akabane, T.Increased production of d superoxide anion by neonatal polymorphonuclear leukocytes stimulated with a chemotactic peptide. Am J Hematol 1988; 27: 169–173CrossRefGoogle Scholar
Ambruso, D. R., Stork, L. C., Gibson, B. E., Thurman, G. W.Increased activity of the respiratory burst in cord blood neutrophils: kinetics of the NADPH oxidase enzyme system in subcellular fractions. Pediatr Res 1987; 21: 205–210CrossRefGoogle ScholarPubMed
Newberger, P. E.Superoxide generation by human fetal granulocytes. Pediatr Res 1982; 16: 373–376CrossRefGoogle Scholar
Kugo, M., Sano, K., Uetani, Y., Nakamura, H.Superoxide dismutase in polymorphonuclear leukocytes of term newborn infants and very low birth weight infants. Pediatr Res 1989; 26: 227–231CrossRefGoogle ScholarPubMed
Peden, D. B., VanDyke, K., Ardekani, A., et al.Diminished chemiluminescent responses of polymorphonuclear leukocytes in severely and moderately preterm infants. J Pediatr 1987; 111: 904–905CrossRefGoogle Scholar
Strauss, R. G., Snyder, E. L.Neutrophils from human infants exhibit decreased viability. Pediatr Res 1981; 15: 794–797CrossRefGoogle ScholarPubMed
Allgaier, B., Shi, M., Luo, D., Koenig, J. M.Spontaneous and Fas-mediated apoptosis are diminished in umbilical cord blood neutrophils compared with adult neutrophils. J Leukoc Biol 1998; 64: 331–336CrossRefGoogle ScholarPubMed
Kohl, S., Loo, L. S., Gonik, B.Analysis in human neonates of defective antibody-dependent cellular cytotoxicity and natural killer cytotoxicity to herpes simplex virus-infected cells. J Infect Dis 1984; 150: 14–19CrossRefGoogle ScholarPubMed
Stiehm, E. R., Roberts, R. L., Ank, B. J., et al.Comparison of cytotoxic properties of neonatal and adult neutrophils and monocytes and enhancement by cytokines. Clin Diagn Lab Immunol 1994; 1: 342–347Google ScholarPubMed
Roberts, R. L., Ank, B. J., Stiehm, E. R.Antiviral properties of neonatal and adult human neutrophils. Pediatr Res 1994; 36: 792–798CrossRefGoogle ScholarPubMed
Hill, H. R., Augustine, N. H., Newton, J. A., et al.Correction of a developmental defect in neutrophil activation and movement. Am J Clin Pathol 1987; 128: 307–314Google ScholarPubMed
Krause, P. J., Maderazo, E. G., Contrino, J., et al.Modulation of neonatal neutrophil function by pentoxifylline. Pediatr Res 1991; 29: 123–127CrossRefGoogle ScholarPubMed
Lauterbach, R., Pawlik, D., Kowalezyk, D., et al.Effect of the immunomodulating agent, pentoxifylline, in the treatment of sepsis in prematurely delivered infants: a placebo controlled, double blind trial. Crit Care Med 1999; 27: 807–814CrossRefGoogle ScholarPubMed
Hill, H. R., Augustine, N. H., Jaffe, H. S.Human recombinant interferon γ enhances neonatal polymorphonuclear leukocyte activation and movement, and increases free intracellular calcium. J Exp Med 1991; 173: 767–770CrossRefGoogle ScholarPubMed
Cairo, M. S., Ven, C., Toy, C., Mauss, D., Sender, L.Recombinant human granulocyte-macrophage colony- stimulating factor primes neonatal granulocytes for enhanced oxidative metabolism and chemotaxis. Pediatr Res 1989; 26: 395–399CrossRefGoogle ScholarPubMed
Kamran, S., Usmani, S. S., Wapnir, R. A., Mehta, R., Harper, R. G.In vitro effect of indomethacin on polymorphonuclear leukocyte function in preterm infants. Pediatr Res 1993; 33: 32–35CrossRefGoogle ScholarPubMed
Freeman, J., Goldmann, D. A., Smith, N. E., et al.Association of intravenous lipid emulsion and coagulase-negative staphylococcal bacteremia in neonatal intensive care units. N Engl J Med 1990; 323: 301–308CrossRefGoogle ScholarPubMed
Cleary, T. G., Pickering, L. K.Mechanisms of intralipid effect on polymorphonuclear leukocytes. J Clin Lab Immunol 1983; 11: 21–26Google ScholarPubMed
El-Mohandes, A. A., Rivas, R. A., Kiang, E., Wahl, L. M., Katona, I. M.Membrane antigen and ligand receptor expression on neonatal monocytes. Biol Neonate 1995; 68: 308–317CrossRefGoogle ScholarPubMed
Schuit, K. E., Powell, D. A.Phagocytic dysfunction of monocytes of normal newborn infants. Pediatrics 1980; 65: 501–503Google ScholarPubMed
Speer, C. P., Ambruso, D. R., , Grimsley J., Johnston, R. B. Jr.Oxidative metabolism in cord blood monocytes and monocyte-derived macrophages. Infect Immun 1985; 50: 919–921Google ScholarPubMed
Speer, C. P., Gahr, M., Wieland, M., Eber, S.Phagocytosis-associated functions in neonatal monocyte-derived macrophages. Pediatr Res 1988; 24: 213–216CrossRefGoogle ScholarPubMed
Kaufman, D., Kilpatrick, L., Hudson, R. G., et al.Decreased superoxide production, degranulation, tumor necrosis factor alpha secretion, and CD11b/CD18 receptor expression by adherent monocytes from preterm infants. Clin Diagn Lab Immunol 1999; 6: 525–529Google ScholarPubMed
Marodi, L., Kaposzta, R., Campbell, D. E., et al.Candidacidal mechanism in the human neonate: impaired IFN-gamma activation of macrophages in new born infants. J Immunol 1994; 153: 5643–5649Google Scholar
Manroe, B. L., Weinberg, A. G., Rosenfeld, C. R., Browne, R.The neonatal blood count in health and disease. I. Reference values for neutrophilic cells. J Pediatr 1979; 95: 89–98CrossRefGoogle ScholarPubMed
Mouzinho, A., Rosenfeld, C. R., Sanchez, P. J., Risser, R.Revised reference ranges for circulating neutrophils in very low birth weight neonates. Pediatrics 1994; 94: 76–82Google ScholarPubMed
Christensen, R. D., Calhoun, D. A., Rimsza, L. M.A practical approach to evaluating and treating neutropenia in the neonatal intensive care unit. Clin Perinatol 2000; 27: 577–601CrossRefGoogle ScholarPubMed
Gray, P. H., Rodwell, R. L.Neonatal neutropenia associated with maternal hypertension poses a risk for nosocomial infection. Eur J Pediatr 1999; 158: 71–73CrossRefGoogle ScholarPubMed
Koenig, J. M., Christiansen, R. D.The mechanism responsible for diminished neutrophil production in neonates delivered of women with pregnancy-induced hypertension. Am J Obstet Gynecol 1991; 165: 467–473CrossRefGoogle ScholarPubMed
Ong, F., Dale, D. C., Bonilla, M. A., et al.Mutations in the granulocyte colony-stimulating factor receptor gene in patients with severe congenital neutropenia. Leukemia 1997; 11: 120–125Google Scholar
Doron, M. W., Makhlouf, R. A., Katz, V. L., Lawson, E. E., Stiles, A. D.Increased incidence of sepsis at birth in neutropenic infants of mothers with preeclampsia. J Pediatr 1994; 125: 452–458CrossRefGoogle ScholarPubMed
Christensen, R. D., Rothstein, G.Exhaustion of mature marrow neutrophils in neonates with sepsis. J Pediatr 1980; 96: 316–318CrossRefGoogle ScholarPubMed
Christensen, R. D., Bradley, P. P., Rothstein, G.The leukocyte left shift in clinical and experimental neonatal sepsis. J Pediatr 1981; 98: 101–105Google ScholarPubMed
Russell, G. A., Smyth, A., Cooke, R. W.Receiver operating charateristic curves for comparison of serial neutrophil band forms and C reactive protein in neonates at risk for infection. Arch Dis Child 1992; 67: 808–812CrossRefGoogle Scholar
Krediet, K., Gerards, L., Fleer, A., Stekelenburg, G.The predictive value of CRP and I/T ratio in neonatal infection. J Perinat Med 1992; 20: 479–485CrossRefGoogle ScholarPubMed
Berger, C., Uehlinger, J., Ghelfi, D., Blau, N., Fanconi, S.Comparison of Creactive protein and white blood cell count with differential in neonates at risk for septicaemia. Eur J Pediatr 1995; 154: 138–144CrossRefGoogle Scholar
Weinberg, A. G., Rosenfeld, C. R., Manroe, B. L., Browne, R.Neonatal blood cell count in health and disease. II. Values for lymphocytes, monocytes, and eosinophils. J Pediatr 1985; 106: 462–466CrossRefGoogle ScholarPubMed
Patel, L., Garvey, B., Arnon, S., Roberts, I. A. G.Eosinophilia in newborn infants. Acta Paediatr 1994; 83: 797–801CrossRefGoogle ScholarPubMed
Bhat, A., Scanlon, J.The pattern of eosinophilia in premature infants. J Pediatr 1981; 98: 612–616CrossRefGoogle ScholarPubMed
Lawrence, R. Jr, Church, J. A., Richards, W., et al.Eosinophilia in the hospitalized neonate. Ann Allergy 1980; 44: 349–352Google ScholarPubMed
Sullivan, S. E., Calhoun, D. A.Eosinophilia in the neonatal intensive care unit. Clin Perinatol 2000; 27: 603–622CrossRefGoogle ScholarPubMed
Gibson, E. L., Vaucher, Y., Corrigan, J. J. Jr.Eosinophilia in premature infants; relationship to weight gain. J Pediatr 1979; 95: 99–101CrossRefGoogle ScholarPubMed
Clark, R. A., Malech, H. L., Gallin, J. I., et al.Genetic variants of chronic granulomatous disease: prevalence of deficiencies of two cytosolic components of the NADPH oxidase system. N Engl J Med 1989; 321: 647–652CrossRefGoogle ScholarPubMed
Newburger, P. E., Cohen, H. J., Rothchild, S. B., et al.Prenatal diagnosis of chronic granulomatous disease. N Engl J Med 1979; 300: 178–181CrossRefGoogle ScholarPubMed
Anderson, D. C., Schmalsteig, F. C., Finegold, M. J., et al.The severe and moderate phenotypes of heritable Mac-1, LFA-1 deficiency: their quantitative definition and relation to leukocyte dysfunction and clinical features. J Clin Infect 1985; 152: 668–689CrossRefGoogle ScholarPubMed
Etzioni, A., Frydman, M., Pollack, S., et al.Brief report: recurrent severe infections caused by a nevel leukocyte adhesion deficiency. N Engl J Med 1992; 327: 1789–1792CrossRefGoogle Scholar
Marquardt, T., Luhn, K., Srikrishna, G., et al.Correction of leukocyte adhesion deficiency type II with oral fucose. Blood 1999; 94: 3976–3985Google ScholarPubMed
Hsu, C. F., Wang, C. C., Yuh, Y. S., Chen, Y. H., Chu, M. L.The effectiveness of single and multiple applications of triple dye on umbilical cord separation time. Eur J Pediatr 1999; 158: 144–146CrossRefGoogle ScholarPubMed
Dore, S., Buchan, D., Coulas, S., et al.Alcohol versus natural drying for newborn cord care. J Obstet Gynecol Neonatal Nurs 1998; 27: 621–627CrossRefGoogle ScholarPubMed
Kemp, A. S., Lubitz, L.Delayed umbilical cord separation in alloimmune neutropenia. Arch Dis Child 1993; 68: 52–53CrossRefGoogle ScholarPubMed
Borgna-Pignatti, C., Andreis, I. A., Bettili, G., Zamboni, G.Delayed separation of an appendix-containing umbilical stump. J Pediatr Surg 1995; 30: 1717–1718CrossRefGoogle ScholarPubMed
Parry, M. F., Root, R. K., Metcalf, J. A., et al.Myeloperoxidase deficiency: prevalence and clinical significance. Ann Intern Med 1981; 95: 293–301CrossRefGoogle ScholarPubMed
Nauseef, W. M., Metcalf, J. A., Root, R. K.Role of myeloperoxidase in the respiratory burst of human neutrophils. Blood 1983; 61: 483–492Google ScholarPubMed
Gray, G. R., Stamatoyannopoulos, G., Naiman, S. C., et al.Neutrophil dysfunction, chronic granulomatous disease, and non-spherocytic haemolytic anaemia caused by complete deficiency of glucose-6-phosphate dehydrogenase. Lancet 1973; 2: 530–534CrossRefGoogle ScholarPubMed
Corrons, V., Feliu, E., Pujades, M. A., et al.Severe-glucose-6-phosphate-dehydrogenase (G6PD) deficiency associated with chronic hemolytic anemia, granulocyte dysfunction, and increased susceptibility to infections: description of new molecular variant (G6PD barcelona). Blood 1982; 59: 428–434Google Scholar
Ardati, K. O., Bajakian, K. M., Tabbara, K. S.Effect of glucose-6-phosphate dehydrogenase deficiency on neutrophil function. Acta Haematol 1997; 97: 211–215CrossRefGoogle ScholarPubMed
Abu-Osba, Y. K., Mallouh, A. A., Hann, R. W.Incidence and causes of sepsis in glucose-6-phosphate dehydrogenase-deficient newborn infants. J Pediatr 1989; 114: 748–752CrossRefGoogle ScholarPubMed
Thomas, G. H., Beaudet, A. L. Disorders of glycoprotein degradation and structure: α-mannosidosis, β-mannosidosis, fucosidosis, sialidosis, aspartyl glucosaminuria and carbohydrate deficient glycoprotein syndrome. In Scrivner, C. R., Beaudet, A. L., Sly, W. S., Valle, D., eds. The Metabolic and Molecular Basis of Inherited Disease, 7th edn. New York: McGraw-Hill; 1995: 2529–2561Google Scholar
Newberger, P. E., Malawista, S. E., Dinauer, M. C., et al.Chronic granulomatous disease and glutathione peroxidase deficiency, revisited. Blood 1994; 84: 3861–3869Google Scholar
Levy, H. L., Sepe, S. J., Shih, V. E., Vawter, G. F., Klein, J. O.Sepsis due to Escherichia coli in neonates with galactosemia. N Engl J Med 1977; 297: 823–825CrossRefGoogle ScholarPubMed
Kobayashi, R. H., Kettelhut, B. V., Kobayashi, A. L.Galactose inhibition of neonatal neutrophil function. Pediatr Infect Dis 1983; 2: 442–445Google ScholarPubMed
Gitzelmann, R., Bosshard, N. U.Defective neutrophil and monocyte functions in glycogen storage disease type Ib: a literature review. Eur J Pediatr 1993; 152 (Suppl 1): S33–S38CrossRefGoogle ScholarPubMed
Novo, E., Garcia, M. I., Lavergne, J.Nonspecific immunity in Down syndrome: a study of chemotaxis, oxidative metabolism, and cell surface marker expression in polymorphonuclear cells. Am J Med Genet 1993; 46: 384–391CrossRefGoogle ScholarPubMed
Yasui, K., Shinozaki, K., Nakazawa, T., Agematsu, K., Komiyama, A.Presenility of granulocytes in Down syndrome individuals. Am J Med Genet 1999; 84: 406–4123.0.CO;2-4>CrossRefGoogle ScholarPubMed
Alaracón, P. A., Patil, S., Golberg, J., Allen, J. B., Shaw, S.Infants with Down's syndrome: use of cytogenetic studies and in vitro colony assay for granulocyte progenitor to distinguish acute nonlymphocytic leukemia from a transient myeloproliferative disorder. Cancer 1987; 60: 987–9933.0.CO;2-M>CrossRefGoogle Scholar
Courtney, S. E., Hall, R. T., Harris, D. J.Effect of blood transfusions on mortality in early-onset group-B streptococcal septicaemia. Lancet 1979; 2: 462–463CrossRefGoogle ScholarPubMed
Christensen, R. D., Hill, H. R., Anstall, H. B., Rothstein, G.Exchange transfusion as an alternative to granulocyte concentrate administration in neonates with bacterial sepsis and profound neutropenia. J Clin Apheresis 1984; 2: 177–183CrossRefGoogle ScholarPubMed
Laurenti, F., Ferro, R., Isacchi, G., et al.Polymorphonuclear leukocyte transfusion for the treatment of sepsis in the newborn infant. J Pediatr 1981; 98: 118–122CrossRefGoogle ScholarPubMed
Christensen, R. D., Rothstein, G., Anstall, H. B., Bybee, B.Granulocyte transfusion in neonates with bacterial infection, neutropenia and depletion of mature marrow neutrophils. Pediatrics 1982; 70: 1–6Google ScholarPubMed
Cairo, M. S., Worcester, C., Rucker, R., et al.Role of circulating complement and polymorphonuclear leukocyte transfusion in treatment and outcome in critically ill neonates with sepsis. J Pediatr 1987; 110: 935–941CrossRefGoogle ScholarPubMed
Baley, J. E., Stork, E. K., Warkentin, P. I., Shurin, S. B.Buffy coat transfusions in neutropenic neonates with presumed sepsis: a prospective, randomized trial. Pediatrics 1987; 80: 712–720Google ScholarPubMed
Wheeler, J. G., Chauvenet, A. R., Johnson, C. A., et al.Neutrophil storage depletion in septic, neutropenic neonates. Pediatr Infect Dis J 1984; 3: 407–409CrossRefGoogle ScholarPubMed
Friedman, C. A., Robbins, K. K., Temple, D. M., Miller, C. J., Rawson, J. E.Survival and neutrophil kinetics in infants with severe group B streptococcal disease treated with gammaglobulin. J Perinatol 1996; 16: 439–442Google Scholar
Sanders, M. R., Graeber, J. E.Posttransfusion graft-versus-host disease in infancy. J Pediatr 1990; 117: 159–163CrossRefGoogle ScholarPubMed
Leitman, S. F., Holland, P. V.Irradiation of blood products. Transfusion 1985; 25: 293–303CrossRefGoogle ScholarPubMed
Wheeler, J. G., Abramson, J. S., Ekstrand, K.Function of irradiated polymorphonuclear leukocytes obtained by buffy-coat centrifugation. Transfusion 1984; 24: 238–239CrossRefGoogle ScholarPubMed
Buescher, E. S., Gallin, J. I.Effects of storage and radiation on human neutrophil function in vitro. Inflammation 1987;11: 401–416CrossRefGoogle ScholarPubMed
Calhoun, D. A., Christensen, R. D.Human developmental biology of granulocyte colony stimulating factor. Clin Perinatol 2000; 27: 559–576CrossRefGoogle ScholarPubMed
Cairo, M. S., Christensen, R., Sender, L. S.et al.Results of a phase I/II trial of recombinant human granulocyte-macrophage colony-stimulating factor in very low birth weight infants: significant induction of circulatory neutrophils, monocytes, platelets, and bone marrow neutrophils. Blood 1995; 86: 2509–2515Google ScholarPubMed
Kocherlakota, P., Gamma, E. F.Human granulocyte colony-stimulating factor may improve outcome attributable to neonatal sepsis complicated by neutropenia. Pediatrics 1997; 100: E6CrossRefGoogle ScholarPubMed
Schlibler, K. R., Osborne, K. A., Leung, L. Y.et al.A randomized, placebo-controlled trial of granulocyte colony-stimulating factor administered to newborn infants with neutropenia and clinical signs of early-onset sepsis. Pediatrics 1998; 102: 6–13CrossRefGoogle Scholar
Makhlouf, R. A., Doron, M. W., Bose, C. L., Price, W. A., Stiles, A. D.Administration of granulocyte colony-stimulating factor to neutropenic low birth weight infants of mothers with preeclampsia. J Pediatr 1995; 124: 454–456CrossRefGoogle Scholar
LaGamma, E. F., Alpan, O., Kocherlakota, P.Effect of granulocyte colony-stimulating factor on preeclampsia-associated neonatal neutropenia. J Pediatr 1995; 126: 457–459CrossRefGoogle Scholar
Kocherlakota, P., LaGamma, E. F.Preliminary report: rhG-CSF may reduce the incidence of neonatal sepsis in prolonged preeclampsia-associated neutropenia. Pediatrics 1998; 102: 1107–1111CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×