Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-16T18:23:48.525Z Has data issue: false hasContentIssue false

2 - Disorders of the fetomaternal unit

Published online by Cambridge University Press:  10 August 2009

Eric J. Werner
Affiliation:
M.D. Eastern Virginia Medical School and Children's Hospital of The King's Daughters, Norfolk, VA, USA
Pedro A. de Alarcón
Affiliation:
University of Tennessee
Eric J. Werner
Affiliation:
Eastern Virginia Medical School
J. Lawrence Naiman
Affiliation:
Stanford University School of Medicine, California
Get access

Summary

In health, the placenta functions marvelously well as the interface between the maternal and fetal circulations, providing nutrition, oxygen, fluid, and electrolytes and removing fetal waste and carbon dioxide. Disorders that disrupt placental physiology, and the presence of pathogens or toxins that can cross the placental barrier, can adversely affect the fetus. This chapter will discuss disorders of the maternal–fetal unit that result in hematologic abnormalities in the fetus and/or newborn infant.

Hemorrhagic disorders of the fetoplacental unit

The average blood volume of the fetoplacental circulation is roughly 110 ml/kg [1], and hence a relatively small amount of blood loss can be a sizable proportion of the fetal blood volume. Placental abnormalities causing fetal blood loss are shown in Table 2.1. Such blood loss can be visible, as with placenta previa, or occult, as with fetomaternal bleeds or twin–twin transfusion syndrome. The clinician must suspect fetal blood loss if the neonate presents with shock and pallor. The placenta and cord should be inspected for pallor, a hematoma, or other anomalies. As discussed below, maternal blood should be studied for the presence of fetal cells.

Abruptio placenta and placenta previa

While the majority of blood loss with placenta previa or abruptio placenta is maternal, fetal blood loss can also occur [2, 3]. The frequency of neonatal anemia requiring transfusion increases with the severity of maternal bleeding [4].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wardrop, C. A., Holland, B. M.The roles and vital importance of placental blood to the newborn infant. J Perinat Med 1995; 23: 139–143CrossRefGoogle ScholarPubMed
Crane, J. M., Hof, M. C., Dodds, L., Armson, B. A., Liston, R.Neonatal outcomes with placenta previa. Obstet Gynecol 1999; 93: 541–544Google ScholarPubMed
Faxelius, G., Raye, J., Gutberlet, R., et al.Red cell volume measurements and acute blood loss in high-risk newborn infants. J Pediatr 1977; 90: 273–281CrossRefGoogle ScholarPubMed
McShane, P. M., Heyl, P. S., Epstein, M. F.Maternal and perinatal morbidity resulting from placenta previa. Obstet Gynecol 1985; 65: 176–182Google ScholarPubMed
Linderkamp, O., Versmold, H. T., Strohhacker, I., et al.Capillary-venous hematocrit differences in newborn infants. I. Relationship to blood volume, peripheral blood flow, and acid base parameters. Eur J Pediatr 1977; 127: 9–14CrossRefGoogle ScholarPubMed
Jorgensen, J.Feto-maternal bleeding. During pregnancy and at delivery. Acta Obstet Gynecol Scand 1977; 56: 487–490CrossRefGoogle ScholarPubMed
Sebring, E. S., Polesky, H. F.Fetomaternal hemorrhage: incidence, risk factors, time of occurrence, and clinical effects. Transfusion 1990; 30: 344–357CrossRefGoogle ScholarPubMed
Laube, D. W., Schauberger, C. W.Fetomaternal bleeding as a cause for unexplained fetal death. Obstet Gynecol 1982; 60: 649–651Google ScholarPubMed
Catalano, P. M., Capeless, E. L.Fetomaternal bleeding as a cause of recurrent fetal morbidity and mortality. Obstet Gynecol 1990; 76: 972–973Google ScholarPubMed
Downing, G. J., Kilbride, H. W., Yeast, J. D.Nonimmune hydrops fetalis caused by a massive fetomaternal hemorrhage associated with elevated maternal serum alpha-fetoprotein levels: a case report. J Reprod Med 1990; 35: 444–446Google ScholarPubMed
Duckett, J. R., Constantine, G.The Kleihauer technique: an accurate method of quantifying fetomaternal haemorrhage?Br J Obstet Gynaecol 1997; 104: 845–846CrossRefGoogle ScholarPubMed
Davis, B. H., Olsen, S., Bigelow, N. C., Chen, J. C.Detection of fetal red cells in fetomaternal hemorrhage using a fetal hemoglobin monoclonal antibody by flow cytometry. Transfusion 1998; 38: 749–756CrossRefGoogle ScholarPubMed
Alter, B. P., Weiner, M. A., Harris, M. B.Erythrocyte characteristics in childhood acute leukemia. Am J Pediatr Hematol Oncol 1989; 11: 8–15CrossRefGoogle ScholarPubMed
Whitecar, P. W., Moise, K. J. Jr.Sonographic methods to detect fetal anemia in red blood cell alloimmunization. Obstet Gynecol Surv 2000; 55: 240–250CrossRefGoogle ScholarPubMed
Tsuda, H., Matsumoto, M., Sutoh, Y., et al.Massive fetomaternal hemorrhage. Int J Gynaecol Obstet 1995; 50: 47–49CrossRefGoogle ScholarPubMed
Dickinson, J. E., Evans, S. F.Obstetric and perinatal outcomes from the Australian and New Zealand Twin–Twin Transfusion Syndrome Registry. Am J Obstet Gynecol 2000; 182: 706–712CrossRefGoogle ScholarPubMed
Fries, M. H., Goldstein, R. B., Kilpatrick, S. J., et al.The role of velamentous cord insertion in the etiology of twin–twin transfusion syndrome. Obstet Gynecol 1993; 81: 569–574Google ScholarPubMed
Blickstein, I.The twin–twin transfusion syndrome. Obstet Gynecol 1990; 76: 714–722Google ScholarPubMed
Wenstrom, K. D., Tessen, J. A., Zlatnik, F. J., Sipes, S. L.Frequency, distribution, and theoretical mechanisms of hematologic and weight discordance in monochorionic twins. Obstet Gynecol 1992; 80: 257–261Google ScholarPubMed
Danskin, F. H., Neilson, J. P.Twin-to-twin transfusion syndrome: what are appropriate diagnostic criteria?Am J Obstet Gynecol 1989; 161: 365–369CrossRefGoogle ScholarPubMed
Fesslova, V., Villa, L., Nava, S., Mosca, F., Nicolini, U.Fetal and neonatal echocardiographic findings in twin-twin transfusion syndrome. Am J Obstet Gynecol 1998; 179: 1056–1062CrossRefGoogle ScholarPubMed
Scott, F., Evans, N.Distal gangrene in a polycythemic recipient fetus in twin–twin transfusion. Obstet Gynecol 1995; 86: 677–69CrossRefGoogle Scholar
Dawkins, R. R., Marshall, T. L., Rogers, M. S.Prenatal gangrene in association with twin–twin transfusion syndrome. Am J Obstet Gynecol 1995; 172: 1055–1057CrossRefGoogle ScholarPubMed
Bowden, J. B., Hebert, A. A., Rapini, R. P.Dermal hema-topoiesis in neonates: report of five cases. J Am Acad Dermatol 1989; 20: 1104–1110CrossRefGoogle ScholarPubMed
Schwartz, J. L., Maniscalco, W. M., Lane, A. T., Currao, W. J.Twin transfusion syndrome causing cutaneous erythropoiesis. Pediatrics 1984; 74: 527–529Google ScholarPubMed
Koenig, J. M., Hunter, D. D., Christensen, R. D.Neutropenia in donor (anemic) twins involved in the twin–twin transfusion syndrome. J Perinatol 1991; 11: 355–358Google ScholarPubMed
Pietrantoni, M., Stewart, D. L., Ssemakula, N., et al.Mortality conference: twin-to-twin transfusion. J Pediatr 1998; 132: 1071–1076CrossRefGoogle ScholarPubMed
Rainey, K. E., DiGeronimo, R. J., Pascual-Baralt, J.Successful long-term peritoneal dialysis in a very low birth weight infant with renal failure secondary to feto-fetal transfusion syndrome. Pediatrics 2000; 106: 849–851CrossRefGoogle Scholar
Lopriore, E., Vandenbussche, F. P., Tiersma, E. S., Beaufort, A. J., Leeuw, J. P.Twin-to-twin transfusion syndrome: new perspectives. J Pediatr 1995; 127: 675–680CrossRefGoogle ScholarPubMed
Pinette, M. G., Pan, Y., Pinette, S. G., Stubblefield, P. G.Treatment of twin–twin transfusion syndrome. Obstet Gynecol 1993; 82: 841–846Google ScholarPubMed
Zikulnig, L., Hecher, K., Bregenzer, T., Baz, E., Hackeloer, B. J.Prognostic factors in severe twin-twin transfusion syndrome treated by endoscopic laser surgery. Ultrasound Obstet Gynecol 1999; 14: 380–387CrossRefGoogle ScholarPubMed
Cordero, L., Landon, M. B.Infant of the diabetic mother. Clin Perinatol 1993; 20: 635–648CrossRefGoogle ScholarPubMed
Cowett, R. M., Schwartz, R.The infant of the diabetic mother. Pediatr Clin North Am 1982; 29: 1213–1231CrossRefGoogle ScholarPubMed
Mimouni, F., Miodovnik, M., Siddiqi, T. A., et al.Neonatal polycythemia in infants of insulin-dependent diabetic mothers. Obstet Gynecol 1986; 68: 370–372CrossRefGoogle ScholarPubMed
Green, D. W., Khoury, J., Mimouni, F.Neonatal hematocrit and maternal glycemic control in insulin-dependent diabetes. J Pediatr 1992; 120: 302–305CrossRefGoogle ScholarPubMed
Stonestreet, B. S., Goldstein, M., Oh, W., Widness, J. A.Effects of prolonged hyperinsulinemia on erythropoiesis in fetal sheep. Am J Physiol 1989; 257: R1199–1204Google ScholarPubMed
Perrine, S. P., Greene, M. F., Lee, P. D., Cohen, R. A., Faller, D. V.Insulin stimulates cord blood erythroid progenitor growth: evidence for an aetiological role in neonatal polycythaemia. Br J Haematol 1986; 64: 503–511CrossRefGoogle ScholarPubMed
Widness, J. A., Teramo, K. A., Clemons, G. K., et al.Direct relationship of antepartum glucose control and fetal erythropoietin in human type 1 (insulin-dependent) diabetic pregnancy. Diabetologia 1990; 33: 378–383CrossRefGoogle ScholarPubMed
Widness, J. A., Susa, J. B., Garcia, J. F., et al.Increased erythropoiesis and elevated erythropoietin in infants born to diabetic mothers and in hyperinsulinemic rhesus fetuses. J Clin Invest 1981; 67: 637–642CrossRefGoogle ScholarPubMed
Shannon, K., Davis, J. C., Kitzmiller, J. L., Fulcher, S. A., Koenig, H. M.Erythropoiesis in infants of diabetic mothers. Pediatr Res 1986; 20: 161–165CrossRefGoogle ScholarPubMed
Green, D. W., Mimouni, F.Nucleated erythrocytes in healthy infants and in infants of diabetic mothers. J Pediatr 1990; 116: 129–31CrossRefGoogle ScholarPubMed
Green, D. W., Mimouni, F., Khoury, J.Decreased platelet counts in infants of diabetic mothers. Am J Perinatol 1995; 12: 102–105CrossRefGoogle ScholarPubMed
Perrine, S. P., Greene, M. F., Faller, D. V.Delay in the fetal globin switch in infants of diabetic mothers. N Engl J Med 1985; 312: 334–338CrossRefGoogle ScholarPubMed
Bard, H., Prosmanne, J.Relative rates of fetal hemoglobin and adult hemoglobin synthesis in cord blood of infants of insulin-dependent diabetic mothers. Pediatrics 1985; 75: 1143–1147Google Scholar
Oppenheimer, E. H., Esterly, J. R.Thrombosis in the newborn: comparison between infants of diabetic and nondiabetic mothers. J Pediatr 1965; 67: 549–556CrossRefGoogle ScholarPubMed
Allen, M. I., Jackson, J. C., Knopp, R. H., Cone, R.In utero thrombosis and neonatal gangrene in an infant of a diabetic mother. Am J Med Genet 1989; 33: 323–327CrossRefGoogle Scholar
Hathaway, W. E., Mahasandana, C., Makowski, E. L.Cord blood coagulation studies in infants of high-risk pregnant women. Am J Obstet Gynecol 1975; 121: 51–57CrossRefGoogle ScholarPubMed
Stuart, M. J., Elrad, H., Graeber, J. E., et al.Increased synthesis of prostaglandin endoperoxides and platelet hyperfunction in infants of mothers with diabetes mellitus. J Lab Clin Med 1979; 94: 12–26Google ScholarPubMed
Stuart, M. J., Sunderji, S. G., Allen, J. B.Decreased prostacyclin production in the infant of the diabetic mother. J Lab Clin Med 1981; 98: 412–416Google ScholarPubMed
Easa, D., Coen, R. W.Coagulation studies in infants of diabetic mothers. Am J Dis Child 1979; 133: 851–852Google ScholarPubMed
Ambrus, C. M., Ambrus, J. L., Courey, N., et al.Inhibitors of fibrinolysis in diabetic children, mothers, and their newborn. Am J Hematol 1979; 7: 245–254CrossRefGoogle ScholarPubMed
Fonseca, V. A., Reynolds, T., Fink, L. M.Hyperhomocysteinemia and microalbuminuria in diabetes. Diabet Care 1998; 21: 1028CrossRefGoogle ScholarPubMed
Shah, D. M. Hypertensive disorders of pregnancy. In Fanaroff, A. A., Martin, R. J., eds. Neonatal-Perinatal Medicine Disease of the Fetus and Infant, Vol. 1. St Louis: Mosby, 2002: 263–276Google Scholar
Manroe, B. L., Weinberg, A. G., Rosenfeld, C. R., Browne, R.The neonatal blood count in health and disease. I. Reference values for neutrophilic cells. J Pediatr 1979; 95: 89–98CrossRefGoogle ScholarPubMed
Engle, W. D., Rosenfeld, C. R.Neutropenia in high-risk neonates. J Pediatr 1984; 105: 982–986CrossRefGoogle ScholarPubMed
Mouzinho, A., Rosenfeld, C. R., Sanchez, P. J., Risser, R.Effect of maternal hypertension on neonatal neutropenia and risk of nosocomial infection. Pediatrics 1992; 90: 430–435Google ScholarPubMed
Koenig, J. M., Christensen, R. D.Incidence, neutrophil kinetics, and natural history of neonatal neutropenia associated with maternal hypertension. N Engl J Med 1989; 321: 557–562CrossRefGoogle ScholarPubMed
Doron, M. W., Makhlouf, R. A., Katz, V. L., Lawson, E. E., Stiles, A. D.Increased incidence of sepsis at birth in neutropenic infants of mothers with preeclampsia. J Pediatr 1994; 125: 452–458CrossRefGoogle ScholarPubMed
Gray, P. H., Rodwell, R. L.Neonatal neutropenia associated with maternal hypertension poses a risk for nosocomial infection. Eur J Pediatr 1999; 158: 71–73CrossRefGoogle ScholarPubMed
Makhlouf, R. A., Doron, M. W., Bose, C. L., Price, W. A., Stiles, A. D.Administration of granulocyte colony-stimulating factor to neutropenic low birth weight infants of mothers with preeclampsia. J Pediatr 1995; 126: 454–456CrossRefGoogle ScholarPubMed
Brazy, J. E., Grimm, J. K., Little, V. A.Neonatal manifestations of severe maternal hypertension occurring before the thirty-sixth week of pregnancy. J Pediatr 1982; 100: 265–271CrossRefGoogle ScholarPubMed
Kurlat, I., Sola, A.Neonatal polycythemia in appropriately grown infants of hypertensive mothers. Acta Paediatr 1992; 81: 662–4CrossRefGoogle ScholarPubMed
Moore, J. L. Jr, Martin, J. N. Jr.Cancer and pregnancy. Obstet Gynecol Clin North Am 1992; 19: 815–827Google Scholar
Waalen, J.Pregnancy poses tough questions for cancer treatment. J Natl Cancer Inst 1991; 83: 900–902CrossRefGoogle ScholarPubMed
Doll, D. C., Ringenberg, Q. S., Yarbro, J. W.Management of cancer during pregnancy. Arch Intern Med 1988; 148: 2058–2064CrossRefGoogle ScholarPubMed
Doll, D. C., Ringenberg, Q. S., Yarbro, J. W.Antineoplastic agents and pregnancy. Semin Oncol 1989; 16: 337–346Google Scholar
Zemlickis, D., Klein, J., Moselhy, G., Koren, G.Cisplatin protein binding in pregnancy and the neonatal period. Med Pediatr Oncol 1994; 23: 476–479CrossRefGoogle ScholarPubMed
Schapira, D. V., Chudley, A. E.Successful pregnancy following continuous treatment with combination chemotherapy before conception and throughout pregnancy. Cancer 1984; 54: 800–8033.0.CO;2-R>CrossRefGoogle ScholarPubMed
Glantz, J. C.Reproductive toxicology of alkylating agents. Obstet Gynecol Surv 1994; 49: 709–715CrossRefGoogle ScholarPubMed
Zemlickis, D., Lishner, M., Degendorfer, P., et al.Fetal outcome after in utero exposure to cancer chemotherapy. Arch Intern Med 1992; 152: 573–576CrossRefGoogle ScholarPubMed
Caligiuri, M. A., Mayer, R. J.Pregnancy and leukemia. Semin Oncol 1989; 16: 388–396Google ScholarPubMed
Buekers, T. E., Lallas, T. A.Chemotherapy in pregnancy. Obstet Gynecol Clin North Am 1998; 25: 323–329CrossRefGoogle ScholarPubMed
Achtari, C., Hohlfeld, P.Cardiotoxic transplacental effect of idarubicin administered during the second trimester of pregnancy. Am J Obstet Gynecol 2000; 183: 511–512CrossRefGoogle ScholarPubMed
Aviles, A., Niz, J.Long-term follow-up of children born to mothers with acute leukemia during pregnancy. Med Pediatr Oncol 1988; 16: 3–6CrossRefGoogle ScholarPubMed
Sorosky, J. I., Sood, A. K., Buekers, T. E.The use of chemotherapeutic agents during pregnancy. Obstet Gynecol Clin North Am 1997; 24: 591–599CrossRefGoogle ScholarPubMed
Aviles, A., Diaz-Maqueo, J. C., Talavera, A., Guzman, R., Garcia, E. L.Growth and development of children of mothers treated with chemotherapy during pregnancy: current status of 43 children. Am J Hematol 1991; 36: 243–248CrossRefGoogle ScholarPubMed
Randall, T.National registry seeks scarce data on pregnancy outcomes during chemotherapy. J Am Med Assoc 1993; 269: 323CrossRefGoogle Scholar
Mayr, N. A., Wen, B. C., Saw, C. B.Radiation therapy during pregnancy. Obstet Gynecol Clin North Am 1998; 25: 301–321CrossRefGoogle ScholarPubMed
Brent, R. L.The effect of embryonic and fetal exposure to x-ray, microwaves, and ultrasound: counseling the pregnant and nonpregnant patient about these risks. Semin Oncol 1989; 16: 347–368Google ScholarPubMed
Dildy, G. A. D., Moise, K. J. Jr, Carpenter, R. J. Jr, Klima, T.Maternal malignancy metastatic to the products of conception: a review. Obstet Gynecol Surv 1989; 44: 535–540CrossRefGoogle ScholarPubMed
Silverman, E. D., Laxer, R. M.Neonatal lupus erythematosus. Rheum Dis Clin North Am 1997; 23: 599–618CrossRefGoogle ScholarPubMed
Watson, R., Kang, J. E., May, M., et al.Thrombocytopenia in the neonatal lupus syndrome. Arch Dermatol 1988; 124: 560–563CrossRefGoogle ScholarPubMed
Hariharan, D., Manno, C. S., Seri, I.Neonatal lupus erythematosus with microvascular hemolysis. J Pediatr Hematol Oncol 2000; 22: 351–354CrossRefGoogle ScholarPubMed
Contractor, S., Hiatt, M., Kosmin, M., Kim, H. C.Neonatal thrombosis with anticardiolipin antibody in baby and mother. Am J Perinatol 1992; 9: 409–410CrossRefGoogle Scholar
Brewster, J. A., Shaw, N. J., Farquharson, R. G.Neonatal and pediatric outcome of infants born to mothers with antiphospholipid syndrome. J Perinat Med 1999; 27: 183–187CrossRefGoogle ScholarPubMed
Tabbutt, S., Griswold, W. R., Ogino, M. T., et al.Multiple thromboses in a premature infant associated with maternal phospholipid antibody syndrome. J Perinatol 1994; 14: 66–70Google Scholar
Sheridan-Pereira, M., Porreco, R. P., Hays, T., Burke, M. S.Neonatal aortic thrombosis associated with the lupus anticoagulant. Obstet Gynecol 1988; 71: 1016–1018Google Scholar
Fried, P. A.Prenatal exposure to tobacco and marijuana: effects during pregnancy, infancy, and early childhood. Clin Obstet Gynecol 1993; 36: 319–337CrossRefGoogle Scholar
Kendrick, J. S., Merritt, R. K.Women and smoking: an update for the 1990s. Am J Obstet Gynecol 1996; 175: 528–535CrossRefGoogle ScholarPubMed
Bardy, A. H., Seppala, T., Lillsunde, P., et al.Objectively measured tobacco exposure during pregnancy: neonatal effects and relation to maternal smoking. Br J Obstet Gynaecol 1993; 100: 721–726CrossRefGoogle ScholarPubMed
Nilsen, S. T., Sagen, N., Kim, H. C., Bergsjo, P.Smoking, hemoglobin levels, and birth weights in normal pregnancies. Am J Obstet Gynecol 1984; 148: 752–758CrossRefGoogle ScholarPubMed
Castles, A., Adams, E. K., Melvin, C. L., Kelsch, C., Boulton, M. L.Effects of smoking during pregnancy: five meta-analyses. Am J Prev Med 1999; 16: 208–215CrossRefGoogle ScholarPubMed
Bureau, M. A., Monette, J., Shapcott, D., et al.Carboxyhemoglobin concentration in fetal cord blood and in blood of mothers who smoked during labor. Pediatrics 1982; 69: 371–373Google ScholarPubMed
Bureau, M. A., Shapcott, D., Berthiaume, Y., et al.Maternal cigarette smoking and fetal oxygen transport: a study of P50, 2,3-diphosphoglycerate, total hemoglobin, hematocrit, and type F hemoglobin in fetal blood. Pediatrics 1983; 72: 22–26Google ScholarPubMed
Varvarigou, A., Beratis, N. G., Makri, M., Vagenakis, A. G.Increased levels and positive correlation between erythropoietin and hemoglobin concentrations in newborn children of mothers who are smokers. J Pediatr 1994; 124: 480–482CrossRefGoogle ScholarPubMed
Bili, H., Mamopoulos, M., Tsantali, C., et al.Elevated umbilical erythropoietin levels during labor in newborns of smoking mothers. Am J Perinatol 1996; 13: 85–87CrossRefGoogle ScholarPubMed
Meberg, A., Haga, P., Sande, H., Foss, O. P.Smoking during pregnancy: hematological observations in the newborn. Acta Paediatr Scand 1979; 68: 731–734CrossRefGoogle ScholarPubMed
D'Souza, S. W., Black, P. M., Williams, N., Jennison, R. F.Effect of smoking during pregnancy upon the haematological values of cord blood. Br J Obstet Gynaecol 1978; 85: 495–499CrossRefGoogle ScholarPubMed
Mercelina-Roumans, P. E., Breukers, R. B., Ubachs, J. M., Wersch, J. W.Hematological variables in cord blood of neonates of smoking and nonsmoking mothers. J Clin Epidemiol 1996; 49: 449–454CrossRefGoogle ScholarPubMed
Gruslin, A., Perkins, S. L., Manchanda, R., Fleming, N., Clinch, J. J.Maternal smoking and fetal erythropoietin levels. Obstet Gynecol 2000; 95: 561–564Google ScholarPubMed
Jazayeri, A., Tsibris, J. C., Spellacy, W. N.Umbilical cord plasma erythropoietin levels in pregnancies complicated by maternal smoking. Am J Obstet Gynecol 1998; 178: 433–435CrossRefGoogle ScholarPubMed
Hanion-Lundberg, K. M., Kirby, R. S., Gandhi, S., Broekhuizen, F. F.Nucleated red blood cells in cord blood of singleton term neonates. Am J Obstet Gynecol 1997; 176: 1149–1154, 1154–1156CrossRefGoogle ScholarPubMed
Dollberg, S., Fainaru, O., Mimouni, F. B., et al.Effect of passive smoking in pregnancy on neonatal nucleated red blood cells. Pediatrics 2000; 106: E34CrossRefGoogle ScholarPubMed
Spinillo, A., Ometto, A., Stronati, M., et al.Epidemiologic association between maternal smoking during pregnancy and intracranial hemorrhage in preterm infants. J Pediatr 1995; 127: 472–478CrossRefGoogle ScholarPubMed
Mercelina-Roumans, P. E., Ubachs, J. M., Wersch, J. W.Hemostasis in newborns of smoking and nonsmoking mothers. Am J Obstet Gynecol 1997; 176: 662–666CrossRefGoogle ScholarPubMed
Mountain, K. R., Hirsh, J., Gallus, A. S.Neonatal coagulation defect due to anticonvulsant drug treatment in pregnancy. Lancet 1970; 1: 265–268CrossRefGoogle ScholarPubMed
Hey, E.Effect of maternal anticonvulsant treatment on neonatal blood coagulation. Arch Dis Child Fetal Neonatal Ed 1999; 81: F208–F210CrossRefGoogle ScholarPubMed
Howe, A. M., Oakes, D. J., Woodman, P. D., Webster, W. S.Prothrombin and PIVKA-II levels in cord blood from newborn exposed to anticonvulsants during pregnancy. Epilepsia 1999; 40: 980–984CrossRefGoogle ScholarPubMed
Bleyer, W. A., Au, W. Y. A., Lange, W. A., Raisz, L. G.Studies on the detection of adverse drug reactions in the newborn. J Am Med Assoc 1970; 213: 2049–2053CrossRefGoogle ScholarPubMed
Stuart, M. J., Gross, S. J., Elrad, H., Graeber, J. E.Effects of acetylsalicylic-acid ingestion on maternal and neonatal hemostasis. N Engl J Med 1982; 307: 909–912CrossRefGoogle ScholarPubMed
Norton, M. E., Merrill, J., Cooper, B. A., Kuller, J. A., Clyman, R. I.Neonatal complications after the administration of indomethacin for preterm labor. N Engl J Med 1993; 329: 1602–1607CrossRefGoogle ScholarPubMed
Lukens, J. N.Neonatal haematological abnormalities associated with maternal disease. Clin Haematol 1978; 7: 155–173Google ScholarPubMed
Greinacher, A., Eckhardt, T., Mussmann, J., Mueller-Eckhardt, C.Pregnancy complicated by heparin associated thrombocytopenia: management by a prospectively in vitro selected heparinoid (Org 10172). Thromb Res 1993; 71: 123–126CrossRefGoogle Scholar
Beutler, E.Glucose-6-phosphate dehydrogenase: new perspectives. Blood 1989; 73: 1397–1401Google ScholarPubMed
Barak, M., Cohen, A., Herschkowitz, S.Total leukocyte and neutrophil count changes associated with antenatal betamethasone administration in premature infants. Acta Paediatr 1992; 81: 760–763CrossRefGoogle ScholarPubMed
Anday, E. K., Harris, M. C.Leukemoid reaction associated with antenatal dexamethasone administration. J Pediatr 1982; 101: 614–616CrossRefGoogle ScholarPubMed
Calhoun, D. A., Rosa, C., Christensen, R. D.Transplacental passage of recombinant human granulocyte colony-stimulating factor in women with an imminent preterm delivery. Am J Obstet Gynecol 1996; 174: 1306–1311CrossRefGoogle ScholarPubMed
Stoltzfus, R. J.Iron-deficiency anemia: reexamining the nature and magnitude of the public health problem. Summary: implications for research and programs. J Nutr 2001; 131: 697S–700S, 700S–701SCrossRefGoogle ScholarPubMed
Looker, A. C., Dallman, P. R., Carroll, M. D., Gunter, E. W., Johnson, C.Prevalence of iron deficiency in the United States. J Am Med Assoc 1997; 277: 973–976CrossRefGoogle ScholarPubMed
Strain, J. J., Thompson, K. A., Barker, M. E., Carville, D. G.Iron sufficiency in the population of Northern Ireland: estimates from blood measurements. Br J Nutr 1990; 64: 219–224CrossRefGoogle ScholarPubMed
Beard, J. L.Effectiveness and strategies of iron supplementation during pregnancy. Am J Clin Nutr 2000; 71: 1288S–1294SCrossRefGoogle ScholarPubMed
Choi, J. W., Kim, C. S., Pai, S. H.Erythropoietic activity and soluble transferrin receptor level in neonates and maternal blood. Acta Paediatr 2000; 89: 675–679CrossRefGoogle ScholarPubMed
Brugnara, C., Zurakowski, D., DiCanzio, J., Boyd, T., Platt, O.Reticulocyte hemoglobin content to diagnose iron deficiency in children. J Am Med Assoc 1999; 281: 2225–2230CrossRefGoogle ScholarPubMed
Milman, N., Bergholt, T., Byg, K. E., Eriksen, L., Graudal, N.Iron status and iron balance during pregnancy: a critical reappraisal of iron supplementation. Acta Obstet Gynecol Scand 1999; 78: 749–757CrossRefGoogle ScholarPubMed
Werner, E. J., Stockman, J. A. 3rd.Red cell disturbances in the feto-maternal unit. Semin Perinatol 1983; 7: 139–158Google ScholarPubMed
Allen, L. H.Anemia and iron deficiency : effects on pregnancy outcome. Am J Clin Nutr 2000; 71: 1280S–4SCrossRefGoogle ScholarPubMed
Harthoon-Lasthuizen, E. J., Lindemans, J., Langenhuijsen, M. M.Does iron-deficient erythropoiesis in pregnancy influence fetal iron supply?Acta Obstet Gynecol Scand 2001; 80: 392–386CrossRefGoogle Scholar
Barton, D. P., Joy, M. T., Lappin, T. R., et al.Maternal erythropoietin in singleton pregnancies: a randomized trial on the effect of oral hematinic supplementation. Am J Obstet Gynecol 1994; 170: 896–901CrossRefGoogle ScholarPubMed
Steer, P. J.Maternal hemoglobin concentration and birth weight. Am J Clin Nutr 2000; 71: 1285S–1287SCrossRefGoogle ScholarPubMed
Scholl, T. O., Hediger, M. L., Fischer, R. L., Shearer, J. W.Anemia vs iron deficiency: increased risk of preterm delivery in a prospective study. Am J Clin Nutr 1992; 55: 985–988CrossRefGoogle ScholarPubMed
Preziosi, P., Prual, A., Galan, P., et al.Effect of iron supplementation on the iron status of pregnant women: consequences for newborns. Am J Clin Nutr 1997; 66: 1178–1182CrossRefGoogle ScholarPubMed
Johnston, R. B. Jr., Folic acid : new dimensions of an old friendship. Adv Pediatr 1997; 44: 231–261Google ScholarPubMed
Chanarin, I.Folate and cobalamine. Clin Haematol 1985; 14: 629–641Google Scholar
Rosenblatt, D. S., Whitehead, V. M.Cobalamine and folate deficiency: acquired and hereditary disorders in children. Semin Hematol 1999; 36: 19–34Google Scholar
American Academy of Pediatrics. Committee on Genetics. Folic acid for the prevention of neural tube defects. Pediatrics 1999; 104: 325–327CrossRef
Ek, J.Plasma and red cell folate values in newborn infants and their mothers in relation to gestational age. J Pediatr 1980; 97: 288–192CrossRefGoogle ScholarPubMed
Kamen, B. A., Caston, J. D.Purification of folate binding factor in normal umbilical cord serum. Proc Natl Acad Sci USA 1975; 72: 4261–4264CrossRefGoogle ScholarPubMed
Pritchard, J. A., Scott, D. E., Whalley, P. J., Haling, R. F. Jr.Infants of mothers with megaloblastic anemia due to folate deficiency. J Am Med Assoc 1970; 211: 1982–1984CrossRefGoogle ScholarPubMed
Monsen, Bjorke A. L., Ueland, P. M., Vollset, S. E., et al.Determinants of cobalamin status in newborns. Pediatrics 2001; 108: 624–630CrossRefGoogle Scholar
Whitehead, V. M., Rosenblatt, D. S., Cooper, B. A. Megaloblastic anemia. In Nathan, D. G., Orkin, S. H., eds. Hematology of Infancy and Childhood, Vol. 1. Philadelphia: W. B. Saunders, 1998; 385–422Google Scholar
Lampkin, B. C., Shore, N. A., Chadwick, D.Megaloblastic anemia of infancy secondary to maternal pernicious anemia. N Engl J Med 1966; 274: 1168–1171CrossRefGoogle ScholarPubMed
American Academy of Pediatrics. Toxoplasma gondii infections. In Pickering, L. K., ed. Red Book: 2003 Report of the Committee on Infectious Disease. 26th edn. Elk Grove Village, IL: American Academy of Pediatrics, 2003; 189–781Google Scholar
Hohlfeld, P., Daffos, F., Costa, J. M., et al.Prenatal diagnosis of congenital toxoplasmosis with a polymerase-chain-reaction test on amniotic fluid. N Engl J Med 1994; 331: 695–699CrossRefGoogle ScholarPubMed
Remington, J. S., McLeod, R., Thulliez, P., Desmonts, G. Toxoplasmosis. In Remington, J. S., Klein, J. O., eds. Infectious Disease of the Fetus and Newborn. Philadelphia: W. B. Saunders Company, 2001; 205–346Google Scholar
Beazley, D. M., Egerman, R. S.Toxoplasmosis. Semin Perinatol 1998; 22: 332–338CrossRefGoogle ScholarPubMed
Guerina, N. G., Hsu, H. W., Meissner, H. C., et al.Neonatal serologic screening and early treatment for congenital Toxoplasma gondii infection. The New England Regional Toxoplasma Working Group. N Engl J Med 1994; 330: 1858–1863CrossRefGoogle ScholarPubMed
Couvreur, J., Desmonts, G., Girre, J. Y.Congenital toxoplasmosis in twins: a series of 14 pairs of twins: absence of infection in one twin in two pairs. J Pediatr 1976; 89: 235–240CrossRefGoogle ScholarPubMed
Pratlong, F., Boulot, P.Fetal diagnosis of toxoplasmosis in 190 women infected during pregnancy. Prenat Diagn 1995; 14: 191–198CrossRefGoogle Scholar
Romand, S., Wallon, M., Franck, J., et al.Prenatal diagnosis using polymerase chain reaction on amniotic fluid for congenital toxoplasmosis. Obstet Gynecol 2001; 97: 296–300Google ScholarPubMed
American Academy of Pediatrics. Toxoplasma gondii infections. In Pickering, L. K., ed. Red Book: 2003 Report of the Committee on Infectious Disease. 26th edn. Elk Grove Village, IL: American Academy of Pediatrics; 2003: 631–635Google Scholar
Koskiniemi, M., Lappalainen, M., Hedman, K.Toxoplamosis needs evaluation. Am J Dis Child 1989; 143: 724–728CrossRefGoogle Scholar
Alford, C. A. Jr, Stagno, S., Reynolds, D. W.Congenital toxoplasmosis: clinical, laboratory, and therapeutic considerations, with special reference to subclinical disease. Bull N Y Acad Med 1974; 50: 160–181Google ScholarPubMed
Barron, S. D., Pass, R. F.Infectious causes of hydrops fetalis. Semin Perinatol 1995; 19: 493–501CrossRefGoogle ScholarPubMed
Hohlfeld, P., Forestier, F., Kaplan, C., Tissot, J. D., Daffos, F.Fetal thrombocytopenia: a retrospective survey of 5,194 fetal blood samplings. Blood 1994; 84: 1851–1856Google ScholarPubMed
Hohlfeld, P., Forestier, F., Marion, S., et al.Toxoplasma gondii infection during pregnancy: T lymphocyte subpopulations in mothers and fetuses. Pediatr Infect Dis J 1990; 9: 878–881CrossRefGoogle ScholarPubMed
Ingall, D., Sanchez, P. J., Syphilis. In Remington, J. W., Klein, J. O., eds. Infectious Diseases of the Fetus and Newborn Infant. Philadelphia: W. B. Saunders, 2001; 643–681Google Scholar
Hurtig, A. K., Nicoll, A., Carne, C., et al.Syphilis in pregnant women and their children in the United Kingdom: results from national clinician reporting surveys 1994–7. Br Med J 1998; 317: 1617–1619CrossRefGoogle ScholarPubMed
Riedner, G., Dehne, K. L., Gromyko, A.Recent declines in reported syphilis rates in eastern Europe and central Asia: are the epidemics over?Sex Transm Infect 2000; 76: 363–365CrossRefGoogle ScholarPubMed
Southwick, K. L., Blanco, S., Santander, A., et al.Maternal and congenital syphilis in Bolivia, 1996: prevalence and risk factors. Bull World Health Organ 2001; 79: 33–42Google ScholarPubMed
Ndumbe, P. M., Andela, A., Nkemnkeng-Asong, J., Watonsi, E., Nyambi, P.Prevalence of infections affecting the child among pregnant women in Yaounde, Cameroon. Med Microbiol Immunol (Berl) 1992; 181: 127–130CrossRefGoogle Scholar
How, J. H., Bowditch, J. D.Syphilis in pregnancy: experience from a rural aboriginal community. Aust N Z J Obstet Gynaecol 1994; 34: 383–389CrossRefGoogle ScholarPubMed
Sanchez, P. J., Wendel, G. D.Syphilis in pregnancy. Clin Perinatol 1997; 24: 71–90CrossRefGoogle ScholarPubMed
American Academy of Pediatrics. Syphilis. In Pickering, L. K., ed. Red Book: 2000 Report of the Committee on Infectious Diseases. Elk Grove, IL: American Academy of Pediatrics, 2000; 547–559Google Scholar
Chhabra, R. S., Brion, L. P., Castro, M., Freundlich, L., Glaser, J. H.Comparison of maternal sera, cord blood, and neonatal sera for detecting presumptive congenital syphilis: relationship with maternal treatment. Pediatrics 1993; 91: 88–91Google ScholarPubMed
Whitaker, J. A., Sartain, P., Shaheedy, M. D.Hematologic aspects of congenital syphilis. J Pediatr 1965; 66: 629CrossRefGoogle Scholar
Freiman, I., Super, M.Thrombocytopenia and congenital syphilis in South African Bantu infants. Arch Dis Child 1965; 41: 87–90CrossRefGoogle Scholar
Pohl, M., Niemeyer, C. M., Hentschel, R., et al.Haemophagocytosis in early congenital syphilis. Eur J Pediatr 1999; 158: 553–555CrossRefGoogle ScholarPubMed
Brown, H. L., Abernathy, M. P.Cytomegalovirus infection. Semin Perinatol 1998; 22: 260–266CrossRefGoogle ScholarPubMed
Nelson, C. T., Demmler, G. J.Cytomegalovirus infection in the pregnant mother, fetus, and newborn infant. Clin Perinatol 1997; 24: 151–160CrossRefGoogle ScholarPubMed
Stagno, S. Cytomegalovirus. In Remington, J. S., Klein, J. O., eds. Infectious Diseases of the Fetus and Newborn Infant. Philadelphia: W. B. Saunders, 2001; 389–424Google Scholar
Boppana, S. B., Rivera, L. B., Fowler, K. B., Mach, M., Britt, W. J.Intrauterine transmission of cytomegalovirus to infants of women with preconceptional immunity. N Engl J Med 2001; 344: 1366–1371CrossRefGoogle ScholarPubMed
Adler, S. P.Transfusion-acquired CMV infection in premature infants. Transfusion 1989; 29: 278–290CrossRefGoogle ScholarPubMed
Fowler, K. B., Stagno, S., Pass, R. F., et al.The outcome of congenital cytomegalovirus infection in relation to maternal antibody status. N Engl J Med 1992; 326: 663–667CrossRefGoogle ScholarPubMed
Boppana, S. B., Fowler, K. B., Britt, W. J., Stagno, S., Pass, R. F.Symptomatic congenital cytomegalovirus infection in infants born to mothers with preexisting immunity to cytomegalovirus. Pediatrics 1999; 104: 55–60CrossRefGoogle ScholarPubMed
American Academy of Pediatrics. Cytomegalovirus infection. In Pickering, L. K., ed. Red Book: 2003 Report of the Committee on Infectious Disease. 26th edn. Elk Grove Village, IL: American Academy of Pediatrics, 2003; 259–263Google Scholar
Epps, R. E., Pittelkow, M. R., Su, W. P.TORCH syndrome. Semin Dermatol 1995; 14: 179–186CrossRefGoogle ScholarPubMed
Fowler, K. B., McCollister, F. P., Dahle, A. J., et al.Progressive and fluctuating sensorineural hearing loss in children with asymptomatic congenital cytomegalovirus infection. J Pediatr 1997; 130: 624–630CrossRefGoogle ScholarPubMed
Weiner, C. P.The elusive search for fetal infection: changing the gold standards. Obstet Gynecol Clin North Am 1997; 24: 19–32CrossRefGoogle ScholarPubMed
Hagay, Z. J., Biran, G., Ornoy, A., Reece, E. A.Congenital cytomegalovirus infection: a long-standing problem still seeking a solution. Am J Obstet Gynecol 1996; 174: 241–245CrossRefGoogle ScholarPubMed
Gouarin, S., Palmer, P., Cointe, D., et al.Congenital HCMV infection: a collaborative and comparative study of virus detection in amniotic fluid by culture and by PCR. J Clin Virol 2001; 21: 47–55CrossRefGoogle ScholarPubMed
Barbi, M., Binda, S., Primache, V., Novelli, C.Cytomegalovirus in peripheral blood leukocytes of infants with congenital or postnatal infection. Pediatr Infect Dis J 1996; 15: 898–903CrossRefGoogle ScholarPubMed
Arav-Boger, R., Reif, S., Bujanover, Y.Portal vein thrombosis caused by protein C and protein S deficiency associated with cytomegalovirus infection. J Pediatr 1995; 126: 586–588CrossRefGoogle ScholarPubMed
Hathaway, W. E., Mull, M. M., Pechet, G. S.Disseminated intravascular coagulation in the newborn. Pediatrics 1969; 43: 233–240Google ScholarPubMed
Mizutani, K., Azuma, E., Komada, Y., et al.An infantile case of cytomegalovirus induced idiopathic thrombocytopenic purpura with predominant proliferation of CD10 positive lymphoblast in bone marrow. Acta Paediatr Jpn 1995; 37: 71–74CrossRefGoogle ScholarPubMed
Crapnell, K., Zanjani, E. D., Chaudhuri, A., et al.In vitro infection of megakaryocytes and their precursors by human cytomegalovirus. Blood 2000; 95: 487–493Google ScholarPubMed
Hoekelman, R. A., Anderson, V. M.Congenital thrombocytopenia, hepatosplenomegaly, and growth retardation: a clinicopathologic conference. Am J Dis Child 1982; 136: 258–264CrossRefGoogle ScholarPubMed
Liesner, R. J. Non-immune neonatal anemias. In Lilleyman, J. S., Hann, I. M., Blanchette, V. S., eds. Pediatric Hematology. London: Churchill Livingstone, 1999; 185–202Google Scholar
Murray, J. C., Bernini, J. C., Bijou, H. L., et al.Infantile cytomegalovirus-associated autoimmune hemolytic anemia. J Pediatr Hematol Oncol 2001; 23: 318–320CrossRefGoogle ScholarPubMed
Maciejewski, J. P., Bruening, E. E., Donahue, R. E., et al.Infection of hematopoietic progenitor cells by human cytomegalovirus. Blood 1992; 80: 170–178Google ScholarPubMed
Cole, F. S. Viral infections of the fetus and newborn. In Taeusch, H. William, Ballard, Roberta A., eds. Avery's Diseases of the Newborn. 7th edn. 1998, W. B. Saunders Co., Philadelphia, 467–489Google Scholar
Ivarsson, S. A., Ljung, R.Neutropenia and congenital cytomegalovirus infection. Pediatr Infect Dis J 1988; 7: 436–437CrossRefGoogle ScholarPubMed
Cooper, L. Z., Charles, A., Alford, J. Rubella. In Remington, J. S., Klein, J. O., eds. Infectious Diseases of the Fetus and Newborn Infant, Vol. 1. Philadelphia: W. B. Saunders, 2001; 347–388Google Scholar
Freij, B. J., South, M. A., Sever, J. L.Maternal rubella and the congenital rubella syndrome. Clin Perinatol 1988; 15: 247–257CrossRefGoogle ScholarPubMed
Robinson, J., Lemay, M., Vaudry, W. L.Congenital rubella after anticipated maternal immunity: two cases and a review of the literature. Pediatr Infect Dis J 1994; 13: 812–815CrossRefGoogle Scholar
Barfield, W., Gardner, R., Lett, S., Johnsen, C.Congenital rubella reinfection in a mother with anti-cardiolipin and anti-platelet antibodies. Pediatr Infect Dis J 1997; 16: 249–251CrossRefGoogle Scholar
American Academy of Pediatrics. Rubella. In Pickering, L. K., ed. Red Book: 2003 Report of the Committee on Infectious Disease. 26th edn. Elk Grove Village, IL: American Academy of Pediatrics; 2003: 536–541Google Scholar
Brough, A. J., Jones, D., Page, R. H., Mizukami, I.Dermal erythropoiesis in neonatal infants: a manifestation of intra-uterine viral disease. Pediatrics 1967; 40: 627–635Google ScholarPubMed
Thomas, H. I., Morgan-Capner, P., Cradock-Watson, J. E., et al.Slow maturation of IgG1 avidity and persistence of specific IgM in congenital rubella: implications for diagnosis and immunopathology. J Med Virol 1993; 41: 196–200CrossRefGoogle ScholarPubMed
Bosma, T. J., Corbett, K. M., Eckstein, M. B., et al.Use of PCR for prenatal and postnatal diagnosis of congenital rubella. J Clin Microbiol 1995; 33: 2881–2887Google ScholarPubMed
Janner, D.Growth retardation, congenital heart disease and thrombocytopenia in a newborn infant. Pediatr Infect Dis J 1991; 10: 874–877Google Scholar
Franklin, S. L., Kelley, R.Congenital rubella and interstitial pneumonitis. Clin Pediatr (Phila) 2001; 40: 101–103CrossRefGoogle ScholarPubMed
Zinkham, W. H., Medearis, D. N. Jr, Osborn, J. E.Blood and bone-marrow findings in congenital rubella. J Pediatr 1967; 71: 512–524CrossRefGoogle ScholarPubMed
Bayer, W. L., Sherman, F. E., Michaels, R. H., Szeto, I. L., Lewis, J. H.Purpura in congenital and acquired rubella. N Engl J Med 1965; 273: 1362–1366CrossRefGoogle ScholarPubMed
Cooper, L. Z., Green, R. H., Krugman, S., Giles, J. P., Mirick, G. S.Neonatal thrombocytopenic purpura and other manifestations of rubella contracted in utero. Am J Dis Child 1965; 110: 416–427Google ScholarPubMed
Rausen, A. R., Richter, P., Tallal, L., Cooper, L. Z.Hematologic effects of intrauterine rubella. J Am Med Assoc 1967; 199: 75–78CrossRefGoogle ScholarPubMed
Lafer, C. Z., Morrison, A. N.Thrombocytopenic purpura progressing to transient hypoplastic anemia in a newborn with rubella syndrome. Pediatrics 1966; 38: 499–501Google Scholar
Scott, L. L., Hollier, L. M., Dias, K.Perinatal herpesvirus infections: herpes simplex, varicella, and cytomegalovirus. Infect Dis Clin North Am 1997; 11: 27–53CrossRefGoogle ScholarPubMed
Arvin, A. M., Whitley, R. J. Herpes simplex viral infections. In Remington, J. S., Klein, J. O., eds. Infectious Diseases of the Fetus and Newborn Infant. Philadelphia: W. B. Saunders, 2001; 425–446Google Scholar
Whitley, R. J., Lakeman, F.Herpes simplex virus infections of the central nervous system: therapeutic and diagnostic considerations. Clin Infect Dis 1995; 20: 414–420CrossRefGoogle ScholarPubMed
Kohl, S.Neonatal herpes simplex virus infection. Clin Perinatol 1997; 24: 129–150CrossRefGoogle ScholarPubMed
Douglas, J., Schmidt, O., Corey, L.Acquisition of neonatal HSV-1 infection from a paternal source contact. J Pediatr 1983; 103: 908–910CrossRefGoogle ScholarPubMed
Kimberlin, D. W., Lakeman, F. D., Arvin, A. M., et al.Application of the polymerase chain reaction to the diagnosis and management of neonatal herpes simplex virus disease. National Institute of Allergy and Infectious Diseases Collaborative Antiviral Study Group. J Infect Dis 1996; 174: 1162–1167CrossRefGoogle ScholarPubMed
Shershow, L. W., Ekert, H., Swanson, V. L., Wright, H. T. Jr, Gilchrist, G. S.Intravascular coagulation in generalized herpes simplex infection of the newborn. Acta Paediatr Scand 1969; 58: 535–539CrossRefGoogle ScholarPubMed
Ekert, H.Coagulation abnormalities in generalised herpes-simplex infection of newborn. Lancet 1970; 2: 775–776CrossRefGoogle ScholarPubMed
Miller, D. R., Hanshaw, J. B., O'Leary, D. S., Hnilicka, J. V.Fatal disseminated herpes simplex virus infection and hemorrhage in the neonate: coagulation studies in a case and a review. J Pediatr 1970; 76: 409–415CrossRefGoogle Scholar
Cherry, J. D., Enteroviruses. In Remington, J. S., Klein, J. O., eds. Infectious Diseases of the Fetus and Newborn Infant. Philadelphia: W. B. Saunders, 2001; 477–518Google Scholar
Lake, A. M., Lauer, B. A., Clark, J. C., Wesenberg, R. L., McIntosh, K.Enterovirus infections in neonates. J Pediatr 1976; 89: 787–791CrossRefGoogle ScholarPubMed
Abzug, M. J., Levin, M. J., Rotbart, H. A.Profile of enterovirus disease in the first two weeks of life. Pediatr Infect Dis J 1993; 12: 820–824CrossRefGoogle ScholarPubMed
Abzug, M. J., Loeffelholz, M., Rotbart, H. A.Diagnosis of neonatal enterovirus infection by polymerase chain reaction. J Pediatr 1995; 126: 447–450CrossRefGoogle ScholarPubMed
Abzug, M. J.Prognosis for neonates with enterovirus hepatitis and coagulopathy. Pediatr Infect Dis J 2001; 20: 758–763CrossRefGoogle ScholarPubMed
Modlin, J. F.Fatal echovirus 11 disease in premature neonates. Pediatrics 1980; 66: 775–780Google ScholarPubMed
Abzug, M. J., Johnson, S. M.Catastrophic intracranial hemorrhage complicating perinatal viral infections. Pediatr Infect Dis J 2000; 19: 556–559CrossRefGoogle ScholarPubMed
Brown, K. E., Anderson, S. M., Young, N. S.Erythrocyte P antigen: cellular receptor for B19 parvovirus. Science 1993; 262: 114–117CrossRefGoogle ScholarPubMed
American Academy of Pediatrics. Parvovirus B19. In Pickering, L. K., ed. Red Book: 2003 Report of the Committee on Infectious Disease. 26th edn. Elk Grove Village, IL: American Academy of Pediatrics, 2003; 459–462Google Scholar
Brown, K. E., Young, N. S.Parvovirus B19 in human disease. Annu Rev Med 1997; 48: 59–67CrossRefGoogle ScholarPubMed
Harger, J. H., Adler, S. P., Koch, W. C., Harger, G. F.Prospective evaluation of 618 pregnant women exposed to parvovirus B19: risks and symptoms. Obstet Gynecol 1998; 91: 413–420CrossRefGoogle Scholar
Gratacos, E., Torres, P. J., Vidal, J., et al.The incidence of human parvovirus B19 infection during pregnancy and its impact on perinatal outcome. J Infect Dis 1995; 171: 1360–1363CrossRefGoogle ScholarPubMed
Skjoldebrand-Sparre, L., Fridell, E., Nyman, M., Wahren, B.A prospective study of antibodies against parvovirus B19 in pregnancy. Acta Obstet Gynecol Scand 1996; 75: 336–339CrossRefGoogle ScholarPubMed
Gay, N. J., Hesketh, L. M., Cohen, B. J., et al.Age specific antibody prevalence to parvovirus B19: how many women are infected in pregnancy?Commun Dis Rep CDR Rev 1994; 4: R104–R107Google ScholarPubMed
Rodis, J. F., Quinn, D. L., Gary, G. W. Jr, et al.Management and outcomes of pregnancies complicated by human B19 parvovirus infection: a prospective study. Am J Obstet Gynecol 1990; 163: 1168–1171CrossRefGoogle ScholarPubMed
Miller, E., Fairley, C. K., Cohen, B. J., Seng, C.Immediate and long term outcome of human parvovirus B19 infection in pregnancy. Br J Obstet Gynaecol 1998; 105: 174–178CrossRefGoogle ScholarPubMed
Rodis, J. F., Rodner, C., Hansen, A. A., et al.Long-term outcome of children following maternal human parvovirus B19 infection. Obstet Gynecol 1998; 91: 125–128CrossRefGoogle ScholarPubMed
Markenson, G. R., Yancey, M. K.Parvovirus B19 infections in pregnancy. Semin Perinatol 1998; 22: 309–317CrossRefGoogle ScholarPubMed
Koch, W. C., Harger, J. H., Barnstein, B., Adler, S. P.Serologic and virologic evidence for frequent intrauterine transmission of human parvovirus B19 with a primary maternal infection during pregnancy. Pediatr Infect Dis J 1998; 17: 489–494CrossRefGoogle ScholarPubMed
Gallagher, P. G., Forget, B. G., Lux, S. E. Disorders of the erythrocyte membrane. In Nathan, D. G., Orkin, S. H., eds. Nathan and Oski's Hematology of Infancy and Childhood, Vol. 1. Philadelphia: W. B. Saunders, 1998; 544–664Google Scholar
Katz, V. L., Chescheir, N. C., Bethea, M.Hydrops fetalis from B19 parvovirus infection. J Perinatol 1990; 10: 366–368Google ScholarPubMed
Giannakopoulou, C., Hatzidaki, E., Giannakopoulos, K., et al.Congenital infection by human parvovirus B19 ascites-anaemia. Clin Exp Obstet Gynecol 1998; 25: 92–93Google ScholarPubMed
Hadi, H. A., Easley, K. O., Finley, J.Clinical significance of human parvovirus B19 infection in pregnancy. Am J Perinatol 1994; 11: 398–400CrossRefGoogle ScholarPubMed
Brown, K. E., Green, S. W., Antunez de Mayolo, J., et al.Congenital anaemia after transplacental B19 parvovirus infection. Lancet 1994; 343: 895–896CrossRefGoogle ScholarPubMed
Smoleniec, J. S., Pillai, M.Management of fetal hydrops associated with parvovirus B19 infection. Br J Obstet Gynaecol 1994; 101: 1079–1081CrossRefGoogle ScholarPubMed
Bahl, P. S., Davies, N. J.Spontaneous resolution of non-immune hydrops fetalis secondary to transplacental parvovirus B19 infection. Ultrasound Obstet Gynecol 1996; 7: 55–57CrossRefGoogle Scholar
Faure, J. M., Giacalone, P. L., Deschamps, F., Boulot, P.Nonimmune hydrops fetalis caused by intrauterine human parvovirus B19 infection: a case of spontaneous reversal in utero. Fetal Diagn Ther 1997; 12: 66–67CrossRefGoogle ScholarPubMed
Fairley, C. K., Smoleniec, J. S., Caul, O. E., Miller, E.Observational study of effect of intrauterine transfusions on outcome of fetal hydrops after parvovirus B19 infection. Lancet 1995; 346: 1335–1337CrossRefGoogle ScholarPubMed
Forestier, F., Tissot, J. D., Vial, Y., Daffos, F., Hohlfeld, P.Haematological parameters of parvovirus B19 infection in 13 fetuses with hydrops foetalis. Br J Haematol 1999; 104: 925–957CrossRefGoogle ScholarPubMed
Brown, K. E., Green, S. W., Antunez de Mayolo, J., et al.Congenital anaemia after transplacental B19 parvovirus infection. Lancet 1994; 343: 895–896CrossRefGoogle ScholarPubMed
Kurtzman, G., Frickhofen, N., Kimball, J., et al.Pure red-cell aplasia of 10 years' duration due to persistent parvovirus B19 infection and its cure with immunoglobulin therapy. N Engl J Med 1989; 321: 519–523CrossRefGoogle ScholarPubMed
Rates of mother-to-child transmission of HIV-1 in Africa, America, and Europe: results from 13 perinatal studies. The Working Group on Mother-To-Child Transmission of HIV. J Acquir Immune Defic Syndr Hum Retrovirol 1995; 8: 506–510CrossRef
Owen, W. C., Werner, E. J. Hematologic problems. In Zeichner, S. L., Read, J. S., eds. Handbook of Pediatric HIV Care. Philadelphia: Lippincott Williams & Wilkins, 1999; 403–413Google Scholar
Connor, E. M., Sperling, R. S., Gelber, R., et al.Reduction of maternal-infant transmission of human immunodeficiency virus type 1 with zidovudine treatment. Pediatric AIDS Clinical Trials Group Protocol 076 Study Group. N Engl J Med 1994; 331: 1173–1180CrossRefGoogle Scholar
Sperling, R. S., Stratton, P., O'Sullivan, M. J., et al.A survey of zidovudine use in pregnant women with human immuno-deficiency virus infection. N Engl J Med 1992; 326: 857–861CrossRefGoogle Scholar
Mandelbrot, L., Schlienger, I., Bongain, A., et al.Thrombocytopenia in pregnant women infected with human immunodeficiency virus: maternal and neonatal outcome. Am J Obstet Gynecol 1994; 171: 252–257CrossRefGoogle ScholarPubMed
Boucher, F. D., Modlin, J. F., Weller, S., et al.Phase I evaluation of zidovudine administered to infants exposed at birth to the human immunodeficiency virus. J Pediatr 1993; 122: 137–144CrossRefGoogle ScholarPubMed
Kuritzkes, D. R.Neuropenia, neurophil dysfunction, and bacterial infection in patients with human immunodefi-ciency virus disease: the role of granulocyte colony-stimulating factor. Clin Infect Dis 2000; 30: 256–260CrossRefGoogle Scholar
Goldberg, G. N., Fulginiti, V. A., Ray, C. G., et al.In utero Epstein–Barr virus (infectious mononucleosis) infection. J Am Med Assoc 1981; 246: 1579–1581CrossRefGoogle ScholarPubMed
Joncas, J. H., Alfieri, C., Leyritz-Wills, M., et al.Simultaneous congenital infection with Epstein–Barr virus and cytomegalovirus. N Engl J Med 1981; 304: 1399–1403CrossRefGoogle ScholarPubMed
Horwitz, C. A., McClain, K., Henle, W., Henle, G., Anderson, S. J.Fatal illness in a 2-week-old infant: diagnosis by detection of Epstein–Barr virus genomes from a lymph node biopsy. J Pediatr 1983; 103: 752–755CrossRefGoogle Scholar
Fleisher, G., Bologonese, R.Infectious mononucleosis during gestation: report of three women and their infants studied prospectively. Pediatr Infect Dis 1984; 3: 308–311CrossRefGoogle ScholarPubMed
Le, C. T., Chang, R. S., Lipson, M. H.Epstein–Barr virus infections during pregnancy: a prospective study and review of the literature. Am J Dis Child 1983; 137: 466–468CrossRefGoogle ScholarPubMed
Fleisher, G., Bologonese, R.Epstein–Barr virus infections in pregnancy: a prospective study. J Pediatr 1984; 104: 374–379CrossRefGoogle ScholarPubMed
Oski, F. A., Naiman, J. L. Anemia in the neonatal period. In Oski, F. A., Naiman, J. L., eds. Hematologic Problems in the Newborn, Vol. 1. Philadelphia: W. B. Saunders, 1982; 56–86Google ScholarPubMed
Lucio, L. Glucose-6-phosphate dehydrogenase deficiency and haemolytic anemia. In Nathan, D. G., Orkin, S. H., Ginsburg, D., Look, A. T., eds. Nathan and Oski's Hematology of Infancy and Childhood, 6th edn. Philadelphia: W. B. Saunders, 2003; 721–742Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×